Skip to main content

2016 | OriginalPaper | Buchkapitel

10. Insights on the REV of Source Shale from Nano- and Micromechanics

verfasst von : Katherine L. Hull, Younane N. Abousleiman

Erschienen in: New Frontiers in Oil and Gas Exploration

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nano. In the past decade, chemical, physical, and mechanical characterization of source rock reservoirs has moved towards micro- and nano-scale analyses. This is primarily driven by the fact that the representative elementary volume (REV) for characterizing shales is at the nanometer scale. Nanoindentation is now used in many industrial and university laboratories to measure both stiffness and strength and other mechanical properties of materials, such as anisotropic Young’s moduli and plastic yielding parameters. However, standardized methods of testing and analysis are yet to be developed.
Micro. The shale matrix, composed of nano-granular clay and microscale non-clay minerals, also includes the hydrocarbon source material kerogen. This biopolymer is interbedded and intertwined with the clay and non-clay minerals at almost all scales. Kerogen not only has a Young’s modulus in compression but also has a substantial Young’s modulus value in tension and much higher tensile strength than rocks in general. This fact has now been observed at the micro- and nanoscale during nanoindentation while monitoring in situ via scanning electron microscopy (SEM). Load and unload experiments with micro-Newton forces (μN) and nanometer (nm) displacements have clearly shown the elastic nature of kerogen in the shale gas matrix.
Macro. Given that the organic matter has an elastic Young’s moduli in tension, and viscoelastic characteristics, it is therefore capable of re-healing the hydraulic fracture. This is a major reason for our more or less unsuccessful gas shale stimulations. Keeping the fracture open even after proppant placement has proven to not be enough for gas and oil shale optimal well productivity. New macro-scale testing techniques are needed to evaluate the mechanical properties of shales that have not been possible to imagine outside of recent advances in nano- and micro-scale analyses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Richard, P., Nicodemi, M., Delannay, R., Ribière, P., & Bideau, D. (2005). Slow relaxation and compaction of granular systems. Nature Materials, 4, 121–128.CrossRef Richard, P., Nicodemi, M., Delannay, R., Ribière, P., & Bideau, D. (2005). Slow relaxation and compaction of granular systems. Nature Materials, 4, 121–128.CrossRef
2.
Zurück zum Zitat Han, Y., & Cundall, P. A. (2013). LBM-DEM modeling of fluid-solid interaction in porous media. International Journal for Numerical and Analytical Methods, 37(10), 1391–1407.CrossRef Han, Y., & Cundall, P. A. (2013). LBM-DEM modeling of fluid-solid interaction in porous media. International Journal for Numerical and Analytical Methods, 37(10), 1391–1407.CrossRef
3.
Zurück zum Zitat Hornby, B. E., Schwartz, L. M., & Hudson, J. A. (1994). Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics, 59(10), 1570–1583.CrossRef Hornby, B. E., Schwartz, L. M., & Hudson, J. A. (1994). Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics, 59(10), 1570–1583.CrossRef
4.
Zurück zum Zitat Wenk, H.-R., Lonardelli, I., Franz, H., Nihei, K., & Nakagawa, S. (2007). Preferred orientation and elastic anisotropy of illite-rich shale. Geophysics, 72(2), E69–E75.CrossRef Wenk, H.-R., Lonardelli, I., Franz, H., Nihei, K., & Nakagawa, S. (2007). Preferred orientation and elastic anisotropy of illite-rich shale. Geophysics, 72(2), E69–E75.CrossRef
5.
Zurück zum Zitat Abousleiman, Y., Ulm, F. -J. (2003). “TheGeoGenome™ Industry Consortium” JIP internal report, The Poromechanics Institute, Oklahoma University and Massachusetts Institute of Technology. Abousleiman, Y., Ulm, F. -J. (2003). “TheGeoGenome™ Industry Consortium” JIP internal report, The Poromechanics Institute, Oklahoma University and Massachusetts Institute of Technology.
6.
Zurück zum Zitat Zeszotarski, J. C., Chromik, R. R., Vinci, R. P., Messmer, M. C., Michels, R., & Larsen, J. W. (2004). Imaging and mechanical property measurements of kerogen via nanoindentation. Geochimica et Cosmochimica Acta, 68(20), 4113–4119.CrossRef Zeszotarski, J. C., Chromik, R. R., Vinci, R. P., Messmer, M. C., Michels, R., & Larsen, J. W. (2004). Imaging and mechanical property measurements of kerogen via nanoindentation. Geochimica et Cosmochimica Acta, 68(20), 4113–4119.CrossRef
7.
Zurück zum Zitat Ulm, F.-J., & Abousleiman, Y. (2006). The nano granular nature of shale. Acta Geotechnica, 1(2), 77–88.CrossRef Ulm, F.-J., & Abousleiman, Y. (2006). The nano granular nature of shale. Acta Geotechnica, 1(2), 77–88.CrossRef
8.
Zurück zum Zitat Ulm, F.-J., Constantinides, G., Delafargue, A., Abousleiman, Y., Ewy, R., Duranti, L., et al. (2005). Material invariant poromechanics properties of shales. In Y. Abousleiman, A. H.-D. Cheng, & F.-J. Ulm (Eds.), Poromechanics III. Biot centennial (1905-2005) (pp. 637–644). London: A.A. Balkema Publishers.CrossRef Ulm, F.-J., Constantinides, G., Delafargue, A., Abousleiman, Y., Ewy, R., Duranti, L., et al. (2005). Material invariant poromechanics properties of shales. In Y. Abousleiman, A. H.-D. Cheng, & F.-J. Ulm (Eds.), Poromechanics III. Biot centennial (1905-2005) (pp. 637–644). London: A.A. Balkema Publishers.CrossRef
9.
Zurück zum Zitat Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155–164.CrossRefMATH Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155–164.CrossRefMATH
10.
Zurück zum Zitat Podio, A. L., Gregory, A. R., & Gray, K. E. (1968). Dynamic properties of dry- and water-saturated green river shale under stress. Society of Petroleum Engineers Journal, 8(4). Podio, A. L., Gregory, A. R., & Gray, K. E. (1968). Dynamic properties of dry- and water-saturated green river shale under stress. Society of Petroleum Engineers Journal, 8(4).
11.
Zurück zum Zitat Abousleiman, Y., Cheng, A. H.-D., Cui, L., Detournay, E., & Roegiers, J.-C. (1996). Mandel’s problem revisited: Consolidation of a porous anisotropic rock. Geotechnique, 46(2), 187–195.CrossRef Abousleiman, Y., Cheng, A. H.-D., Cui, L., Detournay, E., & Roegiers, J.-C. (1996). Mandel’s problem revisited: Consolidation of a porous anisotropic rock. Geotechnique, 46(2), 187–195.CrossRef
12.
Zurück zum Zitat Abousleiman, Y., Hoang, S., & Liu, C. (2014). Anisotropic porothermoelastic solution and hydro-thermal effects on fracture width in hydraulic fracturing. International Journal for Numerical and Analytical Methods, 38(5), 493–517.CrossRef Abousleiman, Y., Hoang, S., & Liu, C. (2014). Anisotropic porothermoelastic solution and hydro-thermal effects on fracture width in hydraulic fracturing. International Journal for Numerical and Analytical Methods, 38(5), 493–517.CrossRef
13.
Zurück zum Zitat Ekbote, S., & Abousleiman, Y. (2006). Porochemoelastic solution for an inclined borehole in a transversely isotropic formation. Journal of Engineering Mechanics ASCE, 132(7), 754–763.CrossRef Ekbote, S., & Abousleiman, Y. (2006). Porochemoelastic solution for an inclined borehole in a transversely isotropic formation. Journal of Engineering Mechanics ASCE, 132(7), 754–763.CrossRef
14.
Zurück zum Zitat Vernik, L., & Nur, A. (1992). Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics, 57(5), 727–735.CrossRef Vernik, L., & Nur, A. (1992). Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics, 57(5), 727–735.CrossRef
15.
Zurück zum Zitat Abousleiman, Y., & Cui, L. (1998). Poroelastic solutions in transversely isotropic media for wellbore and cylinders. International Journal of Solids and Structures, 35(34-35), 4905–4930.CrossRefMATH Abousleiman, Y., & Cui, L. (1998). Poroelastic solutions in transversely isotropic media for wellbore and cylinders. International Journal of Solids and Structures, 35(34-35), 4905–4930.CrossRefMATH
16.
Zurück zum Zitat Abousleiman, Y., Hoang, S., & Tran, M. (2010). Mechanical characterization of small shale samples subjected to fluid exposure using the inclined direct shear testing device. International Journal of Rock Mechanics and Mining Sciences, 47(3), 355–367.CrossRef Abousleiman, Y., Hoang, S., & Tran, M. (2010). Mechanical characterization of small shale samples subjected to fluid exposure using the inclined direct shear testing device. International Journal of Rock Mechanics and Mining Sciences, 47(3), 355–367.CrossRef
17.
Zurück zum Zitat Ortega, J. A., Ulm, F.-J., & Abousleiman, Y. (2007). The effect of the nanogranular nature of shale on their poroelastic behavior. Acta Geotechnica, 2(3), 155–182.CrossRef Ortega, J. A., Ulm, F.-J., & Abousleiman, Y. (2007). The effect of the nanogranular nature of shale on their poroelastic behavior. Acta Geotechnica, 2(3), 155–182.CrossRef
18.
Zurück zum Zitat Ortega, A., Ulm, F.-J., & Abousleiman, Y. (2009). The nanogranular acoustic signature of shale. Geophysics, 74(3), 65–84.CrossRef Ortega, A., Ulm, F.-J., & Abousleiman, Y. (2009). The nanogranular acoustic signature of shale. Geophysics, 74(3), 65–84.CrossRef
19.
Zurück zum Zitat Allan, M., Kanitpanyacharoen, W., & Vanorio, T. (2015). A multiscale methodology for the analysis of velocity anisotropy in organic-rich shale. Geophysics, 80(4), C73–C88.CrossRef Allan, M., Kanitpanyacharoen, W., & Vanorio, T. (2015). A multiscale methodology for the analysis of velocity anisotropy in organic-rich shale. Geophysics, 80(4), C73–C88.CrossRef
20.
Zurück zum Zitat Frazer, D., Abad, M. D., Krumwiede, D., Back, C. A., Khalifa, H. E., Deck, C. P., et al. (2015). Localized mechanical property assessment of SiC/SiC composite materials. Composites Part A: Applied Science & Manufacturing, 70, 93–101.CrossRef Frazer, D., Abad, M. D., Krumwiede, D., Back, C. A., Khalifa, H. E., Deck, C. P., et al. (2015). Localized mechanical property assessment of SiC/SiC composite materials. Composites Part A: Applied Science & Manufacturing, 70, 93–101.CrossRef
21.
Zurück zum Zitat Abousleiman, Y. N., Hull, K. L., Han, Y., Al-Muntasheri, G., Hosemann, P., Parker, S., et al. (2016). The granular and polymer composite nature of kerogen-rich shale. Acta Geotechnica. doi:10.1007/s11440-016-0435-y. Abousleiman, Y. N., Hull, K. L., Han, Y., Al-Muntasheri, G., Hosemann, P., Parker, S., et al. (2016). The granular and polymer composite nature of kerogen-rich shale. Acta Geotechnica. doi:10.​1007/​s11440-016-0435-y.
22.
Zurück zum Zitat Kelemen, S. R., Walters, C. C., Ertas, D., Kwiatek, L. M., & Curry, D. J. (2006). Petroleum expulsion part 2. Organic matter type and maturity effects on kerogen swelling by solvents and thermodynamic parameters for kerogen from regular solution theory. Energy & Fuels, 20(1), 301–308.CrossRef Kelemen, S. R., Walters, C. C., Ertas, D., Kwiatek, L. M., & Curry, D. J. (2006). Petroleum expulsion part 2. Organic matter type and maturity effects on kerogen swelling by solvents and thermodynamic parameters for kerogen from regular solution theory. Energy & Fuels, 20(1), 301–308.CrossRef
23.
Zurück zum Zitat Passey, Q. R., Bohacs, K. M., Esch, W. L., Klimentidis, R., & Sinha, S. (2010). From oil-prone source rock to gas-producing shale reservoir—geologic and petrophysical characterization of unconventional shale gas reservoirs. CPS/SPE International Oil & Gas Conference & Exhibition in China, Beijing, 8–10 June. Passey, Q. R., Bohacs, K. M., Esch, W. L., Klimentidis, R., & Sinha, S. (2010). From oil-prone source rock to gas-producing shale reservoir—geologic and petrophysical characterization of unconventional shale gas reservoirs. CPS/SPE International Oil & Gas Conference & Exhibition in China, Beijing, 8–10 June.
24.
Zurück zum Zitat Abousleiman, Y., Tran, M., Hoang, S., Bobko, C., Ortega, J. A., Ulm, F. -J. (2007). Geomechanics field and lab characterization of Woodford shale: The next gas play. SPE Annual Technical Conference, Society of Petroleum Engineers, Anaheim, CA, 11–14 November. Abousleiman, Y., Tran, M., Hoang, S., Bobko, C., Ortega, J. A., Ulm, F. -J. (2007). Geomechanics field and lab characterization of Woodford shale: The next gas play. SPE Annual Technical Conference, Society of Petroleum Engineers, Anaheim, CA, 11–14 November.
25.
Zurück zum Zitat Abousleiman, Y., Tran, M., Hoang, S., Ortega, J. A., & Ulm, F. -J. (2009) GeoMechanics field characterization of the two prolific U.S. mid-west gas plays with advanced wire-line logging tools. SPE Annual Technical Conference, New Orleans, Louisiana, 4–7 October. Abousleiman, Y., Tran, M., Hoang, S., Ortega, J. A., & Ulm, F. -J. (2009) GeoMechanics field characterization of the two prolific U.S. mid-west gas plays with advanced wire-line logging tools. SPE Annual Technical Conference, New Orleans, Louisiana, 4–7 October.
26.
Zurück zum Zitat Bennett, K. C., Berla, L. A., Nix, W. D., & Borja, R. I. (2015). Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotechnica, 10, 1–14.CrossRef Bennett, K. C., Berla, L. A., Nix, W. D., & Borja, R. I. (2015). Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotechnica, 10, 1–14.CrossRef
27.
Zurück zum Zitat Abousleiman, Y., Tran, M., Hoang, S., Ulm, F. -J., Ortega, J. A., & Bobko, C. (2013). Method of predicting mechanical properties of rocks using mineral compositions provided by in-situ logging tools. U.S. Patent: 8,380,437. Abousleiman, Y., Tran, M., Hoang, S., Ulm, F. -J., Ortega, J. A., & Bobko, C. (2013). Method of predicting mechanical properties of rocks using mineral compositions provided by in-situ logging tools. U.S. Patent: 8,380,437.
28.
Zurück zum Zitat Sierra, R., Tran, M. H., Abousleiman, Y. N., & Slatt, R. M. (2011). Woodford shale mechanical properties and the impacts of lithofacies. 44th U.S. Rock Mechanics Symposium and 5th U.S. Canada Rock Mechanics Symposium, Salt Lake City, Utah, 27–30 June. Sierra, R., Tran, M. H., Abousleiman, Y. N., & Slatt, R. M. (2011). Woodford shale mechanical properties and the impacts of lithofacies. 44th U.S. Rock Mechanics Symposium and 5th U.S. Canada Rock Mechanics Symposium, Salt Lake City, Utah, 27–30 June.
29.
Zurück zum Zitat Slatt, R., & Abousleiman, Y. (2011). Merging sequence stratigraphy and geomechanics for unconventional gas shales. The Leading Edge, 30(3), 274–282.CrossRef Slatt, R., & Abousleiman, Y. (2011). Merging sequence stratigraphy and geomechanics for unconventional gas shales. The Leading Edge, 30(3), 274–282.CrossRef
30.
Zurück zum Zitat Maio, D. D., & Roberts, S. G. (2005). Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. Journal of Materials Research, 20, 299–302.CrossRef Maio, D. D., & Roberts, S. G. (2005). Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. Journal of Materials Research, 20, 299–302.CrossRef
31.
Zurück zum Zitat Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564–1583.CrossRef Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564–1583.CrossRef
32.
Zurück zum Zitat Oliver, W. C., & Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19(1), 3–20.CrossRef Oliver, W. C., & Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19(1), 3–20.CrossRef
33.
Zurück zum Zitat Delafargue, A., & Ulm, F.-J. (2004). Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Journal of Solids and Structures, 41(26), 7351–7360.CrossRefMATH Delafargue, A., & Ulm, F.-J. (2004). Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Journal of Solids and Structures, 41(26), 7351–7360.CrossRefMATH
34.
Zurück zum Zitat Chen, S. H., & Feng, B. (2011). Size effect in micro-scale cantilever beam bending. Acta Mechanica, 219, 291–307.CrossRefMATH Chen, S. H., & Feng, B. (2011). Size effect in micro-scale cantilever beam bending. Acta Mechanica, 219, 291–307.CrossRefMATH
35.
Zurück zum Zitat Bazant, Z. P., & Oh, B. H. (1984). Deformation of progressively cracking reinforced concrete beams. ACI Journal, 81(3), 268–278. Bazant, Z. P., & Oh, B. H. (1984). Deformation of progressively cracking reinforced concrete beams. ACI Journal, 81(3), 268–278.
36.
Zurück zum Zitat Bhandari, A., Han, J., & Parsons, R. L. (2015). Two-dimensional DEM analysis of behavior of geogrid-reinforced uniform granular bases under a vertical cyclic load. Acta Geotechnica, 10, 469–480.CrossRef Bhandari, A., Han, J., & Parsons, R. L. (2015). Two-dimensional DEM analysis of behavior of geogrid-reinforced uniform granular bases under a vertical cyclic load. Acta Geotechnica, 10, 469–480.CrossRef
37.
Zurück zum Zitat Newman, D. A., & Bennett, D. G. (1990). The effect of specimen size and stress rate for the Brazilian test—a statistical analysis. Rock Mechanics and Rock Engineering, 23, 123–134.CrossRef Newman, D. A., & Bennett, D. G. (1990). The effect of specimen size and stress rate for the Brazilian test—a statistical analysis. Rock Mechanics and Rock Engineering, 23, 123–134.CrossRef
38.
Zurück zum Zitat Chang, S. H., Lee, C. I., & Jeon, S. (2002). Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Engineering Geology, 66, 79–97.CrossRef Chang, S. H., Lee, C. I., & Jeon, S. (2002). Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Engineering Geology, 66, 79–97.CrossRef
39.
Zurück zum Zitat Kuruppu, M. D. (1997). Fracture toughness measurement using chevron-notched semi-circular bend specimen. International Journal of Fracture, 86, L33–L38. Kuruppu, M. D. (1997). Fracture toughness measurement using chevron-notched semi-circular bend specimen. International Journal of Fracture, 86, L33–L38.
40.
Zurück zum Zitat Claesson, J., & Bohloli, B. (2002). Brazilian test: Stress field and tensile strength of anisotropic rocks using analytical solution. International Journal of Rock Mechanics and Mining Sciences, 39, 991–1004.CrossRef Claesson, J., & Bohloli, B. (2002). Brazilian test: Stress field and tensile strength of anisotropic rocks using analytical solution. International Journal of Rock Mechanics and Mining Sciences, 39, 991–1004.CrossRef
Metadaten
Titel
Insights on the REV of Source Shale from Nano- and Micromechanics
verfasst von
Katherine L. Hull
Younane N. Abousleiman
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-40124-9_10