Skip to main content
Erschienen in:

01.10.2024

Instability of thermal convection in an inclined fluid layer with temperature-dependent internal heat source

verfasst von: Gurpreet Kaur, Akshita Batra, Renu Bajaj

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The onset of instability of thermal convection in an inclined layer of viscous, incompressible fluid having internal heat source is studied using linear stability analysis. The heat source consists of a uniform component as well as a temperature-dependent component. The boundaries of the layer are maintained at different constant temperatures. The thermal Rayleigh number \(R_1\) and the dimensionless parameters \(R_2\) and \(R_3\) determining the strength of the internal heat source are used to establish the onset of instability. The collocation method utilising Chebyshev polynomials is adopted to obtain the critical values of various parameters. The Prandtl number of the fluid and the angle of inclination of the layer are also the key factors in determining the onset of instability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bodenschatz E, Pesch W, Ahlers G (2000) Recent developments in Rayleigh-Bénard convection. Annu Rev Fluid Mech 32:709–778CrossRef Bodenschatz E, Pesch W, Ahlers G (2000) Recent developments in Rayleigh-Bénard convection. Annu Rev Fluid Mech 32:709–778CrossRef
2.
Zurück zum Zitat Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press, Oxford Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press, Oxford
3.
Zurück zum Zitat Drazin WHRPG (2004) Hydrodynamic stability (Cambridge monographs on mechanics and applied mathematics, Cambridge mathematical library), 2nd edn. Cambridge University Press, Cambridge Drazin WHRPG (2004) Hydrodynamic stability (Cambridge monographs on mechanics and applied mathematics, Cambridge mathematical library), 2nd edn. Cambridge University Press, Cambridge
4.
Zurück zum Zitat Lappa M (2009) Thermal convection: patterns, evolution and stability, 1st edn. Wiley, HobokenCrossRef Lappa M (2009) Thermal convection: patterns, evolution and stability, 1st edn. Wiley, HobokenCrossRef
5.
Zurück zum Zitat Rayleigh L (1916) LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Lond Edinb Dublin Philos Mag J Sci 32(192):529–546CrossRef Rayleigh L (1916) LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Lond Edinb Dublin Philos Mag J Sci 32(192):529–546CrossRef
6.
Zurück zum Zitat Tveitereid M, Palm E (1976) Convection due to internal heat sources. J Fluid Mech 76(3):481–499CrossRef Tveitereid M, Palm E (1976) Convection due to internal heat sources. J Fluid Mech 76(3):481–499CrossRef
7.
Zurück zum Zitat Tveitereid M (1978) Thermal convection in a horizontal fluid layer with internal heat sources. Int J Heat Mass Transf 21(3):335–339CrossRef Tveitereid M (1978) Thermal convection in a horizontal fluid layer with internal heat sources. Int J Heat Mass Transf 21(3):335–339CrossRef
8.
Zurück zum Zitat Siddheshwar PG, Stephen Titus P (2013) Nonlinear Rayleigh-Bénard convection with variable heat source. J Heat Transf 135:122502CrossRef Siddheshwar PG, Stephen Titus P (2013) Nonlinear Rayleigh-Bénard convection with variable heat source. J Heat Transf 135:122502CrossRef
9.
Zurück zum Zitat Disu A (2015) Heat transfer with radiation and temperature dependent heat source in MHD free convection flow in a porous medium between two vertical wavy walls. J Niger Math Soc 27:01MathSciNet Disu A (2015) Heat transfer with radiation and temperature dependent heat source in MHD free convection flow in a porous medium between two vertical wavy walls. J Niger Math Soc 27:01MathSciNet
10.
Zurück zum Zitat Riahi N (1984) Nonlinear convection in a horizontal layer with an internal heat source. J Phys Soc Jpn 53(12):4169–4178MathSciNetCrossRef Riahi N (1984) Nonlinear convection in a horizontal layer with an internal heat source. J Phys Soc Jpn 53(12):4169–4178MathSciNetCrossRef
11.
Zurück zum Zitat Tritton DJ, Zarraga MN (1967) Convection in horizontal layers with internal heat generation. Experiments. J Fluid Mech 30(1):21–31CrossRef Tritton DJ, Zarraga MN (1967) Convection in horizontal layers with internal heat generation. Experiments. J Fluid Mech 30(1):21–31CrossRef
12.
Zurück zum Zitat Roberts PH (1967) Convection in horizontal layers with internal heat generation. Theory. J Fluid Mech 30:33–49CrossRef Roberts PH (1967) Convection in horizontal layers with internal heat generation. Theory. J Fluid Mech 30:33–49CrossRef
13.
Zurück zum Zitat Clever RM (1977) Heat transfer and stability properties of convection rolls in an internally heated fluid layer. Zeitschrift für angewandte Mathematik und Physik 28:585–597CrossRef Clever RM (1977) Heat transfer and stability properties of convection rolls in an internally heated fluid layer. Zeitschrift für angewandte Mathematik und Physik 28:585–597CrossRef
14.
Zurück zum Zitat Kulacki FA, Goldstein RJ (1972) Thermal convection in a horizontal fluid layer with uniform volumetric energy sources. J Fluid Mech 55(2):271–287CrossRef Kulacki FA, Goldstein RJ (1972) Thermal convection in a horizontal fluid layer with uniform volumetric energy sources. J Fluid Mech 55(2):271–287CrossRef
15.
Zurück zum Zitat Goluskin D (2016) Internally heated convection and Rayleigh-Bénard convection. 1st edn. SpringerBriefs in Applied Sciences and Technology, Springer, New York Goluskin D (2016) Internally heated convection and Rayleigh-Bénard convection. 1st edn. SpringerBriefs in Applied Sciences and Technology, Springer, New York
16.
Zurück zum Zitat Batchelor GK (1954) Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Q Appl Math 12:209–233MathSciNetCrossRef Batchelor GK (1954) Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Q Appl Math 12:209–233MathSciNetCrossRef
17.
Zurück zum Zitat Bergholz RF (1978) Instability of steady natural convection in a vertical fluid layer. J Fluid Mech 84(4):743–768CrossRef Bergholz RF (1978) Instability of steady natural convection in a vertical fluid layer. J Fluid Mech 84(4):743–768CrossRef
18.
Zurück zum Zitat Chait A, Korpela SA (1989) The secondary flow and its stability for natural convection in a tall vertical enclosure. J Fluid Mech 200:189–216MathSciNetCrossRef Chait A, Korpela SA (1989) The secondary flow and its stability for natural convection in a tall vertical enclosure. J Fluid Mech 200:189–216MathSciNetCrossRef
19.
Zurück zum Zitat Korpela SA, Gözüm D, Baxi CB (1973) On the stability of the conduction regime of natural convection in a vertical slot. Int J Heat Mass Transf 16(9):1683–1690CrossRef Korpela SA, Gözüm D, Baxi CB (1973) On the stability of the conduction regime of natural convection in a vertical slot. Int J Heat Mass Transf 16(9):1683–1690CrossRef
20.
Zurück zum Zitat Mizushima J, Gotoh K (1976) The stability of natural convection in a vertical fluid layer. J Fluid Mech 73(1):65–75CrossRef Mizushima J, Gotoh K (1976) The stability of natural convection in a vertical fluid layer. J Fluid Mech 73(1):65–75CrossRef
21.
Zurück zum Zitat Gershuni G, Zhukhovitskii E, Iakimov A (1970) On the stability of steady convective motion generated by internal heat sources. J Appl Math Mech 34:669–674CrossRef Gershuni G, Zhukhovitskii E, Iakimov A (1970) On the stability of steady convective motion generated by internal heat sources. J Appl Math Mech 34:669–674CrossRef
22.
Zurück zum Zitat Takashima M (1983) The stability of natural convection in a vertical fluid layer with internal heat generation. J Phys Soc Jpn 52(7):2364–2370CrossRef Takashima M (1983) The stability of natural convection in a vertical fluid layer with internal heat generation. J Phys Soc Jpn 52(7):2364–2370CrossRef
23.
Zurück zum Zitat Takashima M, Hamabata H (1985) The stability of natural convection in a vertical fluid layer having side walls of different temperatures and internal heat generation. J Phys Soc Jpn 54(5):1782–1788CrossRef Takashima M, Hamabata H (1985) The stability of natural convection in a vertical fluid layer having side walls of different temperatures and internal heat generation. J Phys Soc Jpn 54(5):1782–1788CrossRef
24.
Zurück zum Zitat Masaki T (1990) The stability of natural convection due to internal heat sources in a vertical fluid layer. Fluid Dyn Res 6:15CrossRef Masaki T (1990) The stability of natural convection due to internal heat sources in a vertical fluid layer. Fluid Dyn Res 6:15CrossRef
25.
Zurück zum Zitat Sparrow E, Cess R (1961) Temperature dependent heat sources or sinks in stagnation point flow. Appl Sci Res 10:185–197CrossRef Sparrow E, Cess R (1961) Temperature dependent heat sources or sinks in stagnation point flow. Appl Sci Res 10:185–197CrossRef
26.
Zurück zum Zitat Krishnamurti R (1998) Convection induced by selective absorption of radiation: a laboratory model of conditional instability. Dyn Atmos Oceans 27(1):367–382CrossRef Krishnamurti R (1998) Convection induced by selective absorption of radiation: a laboratory model of conditional instability. Dyn Atmos Oceans 27(1):367–382CrossRef
27.
Zurück zum Zitat Alim MA, Alam S, Miraj M (2014) Effects of volumetric heat source and temperature dependent viscosity on natural convection flow along a wavy surface. Procedia Eng 90:12CrossRef Alim MA, Alam S, Miraj M (2014) Effects of volumetric heat source and temperature dependent viscosity on natural convection flow along a wavy surface. Procedia Eng 90:12CrossRef
28.
Zurück zum Zitat Yekasi V, Pranesh S, Bathul S (2018) Effect of internal heating on weakly non-linear stability analysis of Rayleigh-Bénard convection in a vertically oscillating micropolar fluid. Internat J Appl Eng Res 13:11164–11171 Yekasi V, Pranesh S, Bathul S (2018) Effect of internal heating on weakly non-linear stability analysis of Rayleigh-Bénard convection in a vertically oscillating micropolar fluid. Internat J Appl Eng Res 13:11164–11171
29.
Zurück zum Zitat Ramachandramurthy V, Aruna A, Kavitha N (2020) Bénard-Taylor convection in temperature-dependent variable viscosity Newtonian liquids with internal heat source. Int J Appl Comput Math 6:27CrossRef Ramachandramurthy V, Aruna A, Kavitha N (2020) Bénard-Taylor convection in temperature-dependent variable viscosity Newtonian liquids with internal heat source. Int J Appl Comput Math 6:27CrossRef
30.
Zurück zum Zitat Clever R (1973) Finite amplitude longitudinal convection rolls in an inclined layer. J Heat Transf 95:407CrossRef Clever R (1973) Finite amplitude longitudinal convection rolls in an inclined layer. J Heat Transf 95:407CrossRef
31.
Zurück zum Zitat Clever R, Busse F (1977) Instabilities of longitudinal convection rolls in an inclined layer. J Fluid Mech 81:107–127CrossRef Clever R, Busse F (1977) Instabilities of longitudinal convection rolls in an inclined layer. J Fluid Mech 81:107–127CrossRef
32.
Zurück zum Zitat Daniels K, Bodenschatz E (1999) Pattern formation in inclined layer convection. Phys Rev Lett 84:12 Daniels K, Bodenschatz E (1999) Pattern formation in inclined layer convection. Phys Rev Lett 84:12
33.
Zurück zum Zitat Zier O, Zimmermann W, Pesch W (2019) On low-Prandtl-number convection in an inclined layer of liquid mercury. J Fluid Mech 874:76–101MathSciNetCrossRef Zier O, Zimmermann W, Pesch W (2019) On low-Prandtl-number convection in an inclined layer of liquid mercury. J Fluid Mech 874:76–101MathSciNetCrossRef
34.
Zurück zum Zitat Arora M, Singh J, Bajaj R (2020) Nonlinear stability of natural convection in an inclined fluid layer. Int J Appl Comput Math 6:02MathSciNetCrossRef Arora M, Singh J, Bajaj R (2020) Nonlinear stability of natural convection in an inclined fluid layer. Int J Appl Comput Math 6:02MathSciNetCrossRef
35.
Zurück zum Zitat Gershuni G, Zhukhovitsky E, Yakimov A (1974) On stability of plane-parallel convective motion due to internal heat sources. Int J Heat Mass Transf 17(7):717–726CrossRef Gershuni G, Zhukhovitsky E, Yakimov A (1974) On stability of plane-parallel convective motion due to internal heat sources. Int J Heat Mass Transf 17(7):717–726CrossRef
36.
Zurück zum Zitat Hideo I (1984) Experimental study of natural convection in an inclined air layer. Int J Heat Mass Transf 27(8):1127–1139CrossRef Hideo I (1984) Experimental study of natural convection in an inclined air layer. Int J Heat Mass Transf 27(8):1127–1139CrossRef
37.
Zurück zum Zitat Lee J-H, Goldstein RJ (1988) An experimental study on natural convection heat transfer in an inclined square enclosure containing internal energy sources. J Heat Transf 110:345–349CrossRef Lee J-H, Goldstein RJ (1988) An experimental study on natural convection heat transfer in an inclined square enclosure containing internal energy sources. J Heat Transf 110:345–349CrossRef
38.
Zurück zum Zitat Takashima M (1989) The stability of natural convection in an inclined fluid layer with internal heat generation. J Phys Soc Jpn 58(12):4431–4440CrossRef Takashima M (1989) The stability of natural convection in an inclined fluid layer with internal heat generation. J Phys Soc Jpn 58(12):4431–4440CrossRef
39.
Zurück zum Zitat Arora M, Bajaj R (2021) Global stability of natural convection in internally heated inclined fluid layer. J Eng Math 128:06MathSciNetCrossRef Arora M, Bajaj R (2021) Global stability of natural convection in internally heated inclined fluid layer. J Eng Math 128:06MathSciNetCrossRef
40.
Zurück zum Zitat Rajagopal KR, Ruzicka M, Srinivasa AR (1996) On the Oberbeck-Boussinesq approximation. Mathematical Models and Methods in Applied Sciences 06:1157–1167MathSciNetCrossRef Rajagopal KR, Ruzicka M, Srinivasa AR (1996) On the Oberbeck-Boussinesq approximation. Mathematical Models and Methods in Applied Sciences 06:1157–1167MathSciNetCrossRef
41.
Zurück zum Zitat Hayat T, Ullah I, Alsaedi A, Ahmad B (2018) Impact of temperature dependent heat source and nonlinear radiative flow of third grade fluid with chemical aspects. Therm Sci 2018:245–245 Hayat T, Ullah I, Alsaedi A, Ahmad B (2018) Impact of temperature dependent heat source and nonlinear radiative flow of third grade fluid with chemical aspects. Therm Sci 2018:245–245
42.
Zurück zum Zitat Mason JC, Handscomb DC (2003) Chebyshev polynomials, 1st edn. Chapman Hall/CRC, Boca Raton Mason JC, Handscomb DC (2003) Chebyshev polynomials, 1st edn. Chapman Hall/CRC, Boca Raton
Metadaten
Titel
Instability of thermal convection in an inclined fluid layer with temperature-dependent internal heat source
verfasst von
Gurpreet Kaur
Akshita Batra
Renu Bajaj
Publikationsdatum
01.10.2024
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2024
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-024-10388-6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.