Skip to main content

2020 | OriginalPaper | Buchkapitel

Integral-Based Material Point Method and Peridynamics Model for Animating Elastoplastic Material

verfasst von : Yao Lyu, Jinglu Zhang, Ari Sarafopoulos, Jian Chang, Shihui Guo, Jian Jun Zhang

Erschienen in: Transactions on Computational Science XXXVII

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper exploits the use of Material Point Method (MPM) for graphical animation of elastoplastic materials and fracture. Previous partial derivative based MPM studies face challenges of underlying instability issues of particle distribution and the complexity of modeling discontinuities. This paper incorporates the state-based peridynamics structure with the MPM to alleviate these problems, which outweighs differential-based methods in both accuracy and stability. The deviatoric flow theory and a simple yield function are incorporated to animate plasticity. To model viscoelastic material, the constitutive model is developed with the linearized peridynamics theory which regards the current configuration as equilibrated and is only influenced by current incremental deformation. The peridynamics theory doesn’t involve the deformation gradient, thus it is straightforward to handle the problem of cracking in our hybrid framework. To ease the implementation of the fracture divergence under MPM, two time integration methods are adopted to update the crack interface and continuous parts separately. Our work can create a wide range of material phenomenon including elasticity, plasticity, viscoelasticity and fracture. Our framework provides an attractive method for producing a variety of elastoplastic materials and fracture with visual realism and high stability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Bottcher, G., Allerkamp, D., Wolter, F.E.: Virtual reality systems modelling haptic two-finger contact with deformable physical surfaces. In: 2007 International Conference on Cyberworlds (CW 2007), pp. 292–299. IEEE (2007) Bottcher, G., Allerkamp, D., Wolter, F.E.: Virtual reality systems modelling haptic two-finger contact with deformable physical surfaces. In: 2007 International Conference on Cyberworlds (CW 2007), pp. 292–299. IEEE (2007)
3.
Zurück zum Zitat Chao, I., Pinkall, U., Sanan, P., Schröder, P.: A simple geometric model for elastic deformations. ACM Trans. Graph. (TOG) 29(4), 38 (2010) Chao, I., Pinkall, U., Sanan, P., Schröder, P.: A simple geometric model for elastic deformations. ACM Trans. Graph. (TOG) 29(4), 38 (2010)
4.
Zurück zum Zitat Chen, W., Zhu, F., Zhao, J., Li, S., Wang, G.: Peridynamics-based fracture animation for elastoplastic solids. In: Computer Graphics Forum, vol. 37, pp. 112–124. Wiley Online Library (2018) Chen, W., Zhu, F., Zhao, J., Li, S., Wang, G.: Peridynamics-based fracture animation for elastoplastic solids. In: Computer Graphics Forum, vol. 37, pp. 112–124. Wiley Online Library (2018)
5.
Zurück zum Zitat Gao, M., Tampubolon, A.P., Jiang, C., Sifakis, E.: An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans. Graph. (TOG) 36(6), 223 (2017) Gao, M., Tampubolon, A.P., Jiang, C., Sifakis, E.: An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans. Graph. (TOG) 36(6), 223 (2017)
6.
Zurück zum Zitat Gerszewski, D., Bhattacharya, H., Bargteil, A.W.: A point-based method for animating elastoplastic solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 133–138. ACM (2009) Gerszewski, D., Bhattacharya, H., Bargteil, A.W.: A point-based method for animating elastoplastic solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 133–138. ACM (2009)
7.
Zurück zum Zitat He, X., Wang, H., Wu, E.: Projective peridynamics for modeling versatile elastoplastic materials. IEEE Trans. Visual Comput. Graphics 24(9), 2589–2599 (2018) He, X., Wang, H., Wu, E.: Projective peridynamics for modeling versatile elastoplastic materials. IEEE Trans. Visual Comput. Graphics 24(9), 2589–2599 (2018)
8.
Zurück zum Zitat Homel, M.A., Herbold, E.B.: Field-gradient partitioning for fracture and frictional contact in the material point method. Int. J. Numer. Meth. Eng. 109(7), 1013–1044 (2017)MathSciNet Homel, M.A., Herbold, E.B.: Field-gradient partitioning for fracture and frictional contact in the material point method. Int. J. Numer. Meth. Eng. 109(7), 1013–1044 (2017)MathSciNet
9.
Zurück zum Zitat Jiang, C., Gast, T., Teran, J.: Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans. Graph. (TOG) 36(4), 152 (2017) Jiang, C., Gast, T., Teran, J.: Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans. Graph. (TOG) 36(4), 152 (2017)
10.
Zurück zum Zitat Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method. ACM Trans. Graph. (TOG) 34(4), 51 (2015)MATH Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method. ACM Trans. Graph. (TOG) 34(4), 51 (2015)MATH
11.
Zurück zum Zitat Jiang, C., Schroeder, C., Teran, J., Stomakhin, A., Selle, A.: The material point method for simulating continuum materials. In: ACM SIGGRAPH 2016 Courses, p. 24. ACM (2016) Jiang, C., Schroeder, C., Teran, J., Stomakhin, A., Selle, A.: The material point method for simulating continuum materials. In: ACM SIGGRAPH 2016 Courses, p. 24. ACM (2016)
12.
Zurück zum Zitat Levin, D.I., Litven, J., Jones, G.L., Sueda, S., Pai, D.K.: Eulerian solid simulation with contact. ACM Trans. Graph. (TOG) 30(4), 36 (2011) Levin, D.I., Litven, J., Jones, G.L., Sueda, S., Pai, D.K.: Eulerian solid simulation with contact. ACM Trans. Graph. (TOG) 30(4), 36 (2011)
13.
Zurück zum Zitat Levine, J.A., Bargteil, A.W., Corsi, C., Tessendorf, J., Geist, R.: A peridynamic perspective on spring-mass fracture. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 47–55. Eurographics Association (2014) Levine, J.A., Bargteil, A.W., Corsi, C., Tessendorf, J., Geist, R.: A peridynamic perspective on spring-mass fracture. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 47–55. Eurographics Association (2014)
14.
Zurück zum Zitat Liang, Y., Benedek, T., Zhang, X., Liu, Y.: Material point method with enriched shape function for crack problems. Comput. Methods Appl. Mech. Eng. 322, 541–562 (2017)MathSciNetMATH Liang, Y., Benedek, T., Zhang, X., Liu, Y.: Material point method with enriched shape function for crack problems. Comput. Methods Appl. Mech. Eng. 322, 541–562 (2017)MathSciNetMATH
15.
Zurück zum Zitat Lyu, Y., Zhang, J., Chang, J., Guo, S., Zhang, J.J.: Integrating peridynamics with material point method for elastoplastic material modeling. In: Gavrilova, M., Chang, J., Thalmann, N.M., Hitzer, E., Ishikawa, H. (eds.) CGI 2019. LNCS, vol. 11542, pp. 228–239. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22514-8_19CrossRef Lyu, Y., Zhang, J., Chang, J., Guo, S., Zhang, J.J.: Integrating peridynamics with material point method for elastoplastic material modeling. In: Gavrilova, M., Chang, J., Thalmann, N.M., Hitzer, E., Ishikawa, H. (eds.) CGI 2019. LNCS, vol. 11542, pp. 228–239. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-22514-8_​19CrossRef
16.
Zurück zum Zitat Moutsanidis, G., Kamensky, D., Zhang, D.Z., Bazilevs, Y., Long, C.C.: Modeling strong discontinuities in the material point method using a single velocity field. Comput. Methods Appl. Mech. Eng. 345, 584–601 (2019)MathSciNetMATH Moutsanidis, G., Kamensky, D., Zhang, D.Z., Bazilevs, Y., Long, C.C.: Modeling strong discontinuities in the material point method using a single velocity field. Comput. Methods Appl. Mech. Eng. 345, 584–601 (2019)MathSciNetMATH
17.
Zurück zum Zitat O’brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. In: ACM Transactions on Graphics (TOG), vol. 21, pp. 291–294. ACM (2002) O’brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. In: ACM Transactions on Graphics (TOG), vol. 21, pp. 291–294. ACM (2002)
18.
Zurück zum Zitat Ram, D., et al.: A material point method for viscoelastic fluids, foams and sponges. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 157–163. ACM (2015) Ram, D., et al.: A material point method for viscoelastic fluids, foams and sponges. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 157–163. ACM (2015)
19.
Zurück zum Zitat Salsedo, F., et al.: Architectural design of the haptex system. In: Submitted to the Proceedings of this Conference (2005) Salsedo, F., et al.: Architectural design of the haptex system. In: Submitted to the Proceedings of this Conference (2005)
20.
Zurück zum Zitat Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetMATH Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetMATH
21.
22.
Zurück zum Zitat Silling, S.A.: A coarsening method for linear peridynamics. Int. J. Multiscale Comput. Eng. 9(6), 609–622 (2011) Silling, S.A.: A coarsening method for linear peridynamics. Int. J. Multiscale Comput. Eng. 9(6), 609–622 (2011)
23.
Zurück zum Zitat Silling, S.A., Askari, A.: Peridynamic model for fatigue cracking. SAND2014-18590. Sandia National Laboratories, Albuquerque (2014) Silling, S.A., Askari, A.: Peridynamic model for fatigue cracking. SAND2014-18590. Sandia National Laboratories, Albuquerque (2014)
24.
Zurück zum Zitat Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)MathSciNetMATH Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)MathSciNetMATH
25.
Zurück zum Zitat Silling, S.A., Askari, A.: Practical peridynamics. Technical report, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) (2014) Silling, S.A., Askari, A.: Practical peridynamics. Technical report, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) (2014)
26.
Zurück zum Zitat Stomakhin, A., Howes, R., Schroeder, C., Teran, J.M.: Energetically consistent invertible elasticity. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32. Eurographics Association (2012) Stomakhin, A., Howes, R., Schroeder, C., Teran, J.M.: Energetically consistent invertible elasticity. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32. Eurographics Association (2012)
27.
Zurück zum Zitat Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. (TOG) 32(4), 102 (2013)MATH Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. (TOG) 32(4), 102 (2013)MATH
28.
Zurück zum Zitat Stomakhin, A., Teran, J., Selle, A.: Augmented material point method for simulating phase changes and varied materials. US Patent App. 14/323,798, 2 July 2015 Stomakhin, A., Teran, J., Selle, A.: Augmented material point method for simulating phase changes and varied materials. US Patent App. 14/323,798, 2 July 2015
29.
Zurück zum Zitat Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)MathSciNetMATH Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)MathSciNetMATH
30.
Zurück zum Zitat Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87(1–2), 236–252 (1995)MATH Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87(1–2), 236–252 (1995)MATH
31.
Zurück zum Zitat Tampubolon, A.P., et al.: Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. (TOG) 36(4), 105 (2017) Tampubolon, A.P., et al.: Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. (TOG) 36(4), 105 (2017)
32.
Zurück zum Zitat Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In: ACM Siggraph Computer Graphics, vol. 22, pp. 269–278. ACM (1988) Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In: ACM Siggraph Computer Graphics, vol. 22, pp. 269–278. ACM (1988)
33.
Zurück zum Zitat Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. ACM Siggraph Comput. Graph. 21(4), 205–214 (1987) Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. ACM Siggraph Comput. Graph. 21(4), 205–214 (1987)
34.
Zurück zum Zitat Xu, L., He, X., Chen, W., Li, S., Wang, G.: Reformulating hyperelastic materials with peridynamic modeling. In: Computer Graphics Forum, vol. 37, pp. 121–130. Wiley Online Library (2018) Xu, L., He, X., Chen, W., Li, S., Wang, G.: Reformulating hyperelastic materials with peridynamic modeling. In: Computer Graphics Forum, vol. 37, pp. 121–130. Wiley Online Library (2018)
35.
Zurück zum Zitat Zhu, B., Lee, M., Quigley, E., Fedkiw, R.: Codimensional non-newtonian fluids. ACM Trans. Graph. (TOG) 34(4), 115 (2015)MATH Zhu, B., Lee, M., Quigley, E., Fedkiw, R.: Codimensional non-newtonian fluids. ACM Trans. Graph. (TOG) 34(4), 115 (2015)MATH
Metadaten
Titel
Integral-Based Material Point Method and Peridynamics Model for Animating Elastoplastic Material
verfasst von
Yao Lyu
Jinglu Zhang
Ari Sarafopoulos
Jian Chang
Shihui Guo
Jian Jun Zhang
Copyright-Jahr
2020
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-61983-4_6

Neuer Inhalt