Skip to main content

2020 | OriginalPaper | Buchkapitel

Integral Transform Benchmarks of Diffusion, Convection–Diffusion, and Conjugated Problems in Complex Domains

verfasst von : Renato M. Cotta, Diego C. Knupp, João N. N. Quaresma, Kleber M. Lisboa, Carolina P. Naveira-Cotta, José Luiz Z. Zotin, Helder K. Miyagawa

Erschienen in: 50 Years of CFD in Engineering Sciences

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Generalized Integral Transform Technique (GITT) is reviewed as a hybrid numerical–analytical approach for linear or nonlinear diffusive and convective–diffusive partial differential formulations, including an important class of conjugated problems in heat transfer and fluid flow analyses. This chapter focus is on the handling of irregular regions and heterogeneous domains, as a tribute to Prof. D. B. Spalding, who stimulated this research direction in a private communication with the first author, back in 1994. First, formal solutions for nonlinear diffusion and convection–diffusion formulations are reviewed, including the alternatives of adopting nonlinear and/or convective eigenvalue problems, either on total or partial transformation schemes. Next, the GITT itself is formalized in the solution of linear and nonlinear eigenvalue problems, including the direct integral transformation of problems defined in irregular domains, based on simpler auxiliary eigenvalue problems written for the same geometry. Then, a single domain reformulation strategy is discussed, which accounts for heterogeneities on either physical properties or geometrical forms, by rewriting the different media transitions as space variable equation coefficients and source terms. The two complementary strategies are then illustrated through representative examples in convection and conjugated conduction–convection problems, confirming the excellent convergence characteristics of the proposed eigenfunction expansions, toward the establishment of sets of benchmark reference results. The present hybrid solutions are also co-verified against results from purely numerical general-purpose CFD codes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Deakin, M. A. B. (1985). Euler´s Invention of the Integral Transforms. Archive for History of Exact Sciences, 33, 307–319.MathSciNetMATHCrossRef Deakin, M. A. B. (1985). Euler´s Invention of the Integral Transforms. Archive for History of Exact Sciences, 33, 307–319.MathSciNetMATHCrossRef
3.
Zurück zum Zitat Fourier, J. B. (2007). The analytical theory of heat (Unabridged). Cosimo Inc., New York. Translation of Original: (1822) Théorie Analytique de la Chaleur. Paris: Firmin Didot Père et Fils. Fourier, J. B. (2007). The analytical theory of heat (Unabridged). Cosimo Inc., New York. Translation of Original: (1822) Théorie Analytique de la Chaleur. Paris: Firmin Didot Père et Fils.
4.
Zurück zum Zitat Koshlyakov, N. S. (1936). Basic differential equations of mathematical physics (In Russian). ONTI, Moscow, 4th edition. Koshlyakov, N. S. (1936). Basic differential equations of mathematical physics (In Russian). ONTI, Moscow, 4th edition.
5.
Zurück zum Zitat Titchmarsh, E. C. (1946). Eigenfunction expansion associated with second order differential equations, Oxford University Press. Titchmarsh, E. C. (1946). Eigenfunction expansion associated with second order differential equations, Oxford University Press.
6.
Zurück zum Zitat Grinberg, G. A. (1948). Selected problems of mathematical theory of electrical and magnetic effects (In Russian). Nauk SSSR: Akad. Grinberg, G. A. (1948). Selected problems of mathematical theory of electrical and magnetic effects (In Russian). Nauk SSSR: Akad.
7.
Zurück zum Zitat Koshlyakov, N. S., Smirnov, M. M., & Gliner, E. B. (1951). Differential equations of mathematical physics. North Holland, Amsterdam: Translated by Script Technica, 1964. Koshlyakov, N. S., Smirnov, M. M., & Gliner, E. B. (1951). Differential equations of mathematical physics. North Holland, Amsterdam: Translated by Script Technica, 1964.
9.
Zurück zum Zitat Olçer, N. Y. (1964). On the theory of conductive heat transfer in finite regions. International Journal of Heat and Mass Transfer, 7, 307–314.CrossRef Olçer, N. Y. (1964). On the theory of conductive heat transfer in finite regions. International Journal of Heat and Mass Transfer, 7, 307–314.CrossRef
10.
Zurück zum Zitat Mikhailov, M. D. (1967). Nonstationary temperature fields in skin. Moscow: Energiya. Mikhailov, M. D. (1967). Nonstationary temperature fields in skin. Moscow: Energiya.
11.
Zurück zum Zitat Luikov, A. V. (1968). Analytical heat diffusion theory. New York: Academic Press. Luikov, A. V. (1968). Analytical heat diffusion theory. New York: Academic Press.
12.
Zurück zum Zitat Ozisik, M. N. (1968). Boundary value problems of heat conduction. New York, Int: Textbooks Co. Ozisik, M. N. (1968). Boundary value problems of heat conduction. New York, Int: Textbooks Co.
13.
Zurück zum Zitat Sneddon, I. N. (1972). Use of integral transforms. New York: McGraw-Hill.MATH Sneddon, I. N. (1972). Use of integral transforms. New York: McGraw-Hill.MATH
14.
Zurück zum Zitat Mikhailov, M. D. (1972). General solution of the heat equation of finite regions. International Journal of Engineering Science, 10, 577–591.MATHCrossRef Mikhailov, M. D. (1972). General solution of the heat equation of finite regions. International Journal of Engineering Science, 10, 577–591.MATHCrossRef
15.
Zurück zum Zitat Ozisik, M. N. (1980). Heat conduction. New York: John Wiley. Ozisik, M. N. (1980). Heat conduction. New York: John Wiley.
16.
Zurück zum Zitat Luikov, A. V. (1980). Heat and mass transfer. Moscow: Mir Publishers.MATH Luikov, A. V. (1980). Heat and mass transfer. Moscow: Mir Publishers.MATH
17.
Zurück zum Zitat Mikhailov, M. D., & Özisik, M. N. (1984). Unified analysis and solutions of heat and mass diffusion. John Wiley: New York; also, Dover Publications, 1994. Mikhailov, M. D., & Özisik, M. N. (1984). Unified analysis and solutions of heat and mass diffusion. John Wiley: New York; also, Dover Publications, 1994.
18.
Zurück zum Zitat Ozisik, M. N., & Murray, R. L. (1974). On the solution of linear diffusion problems with variable boundary condition parameters. ASME J. Heat Transfer, 96c, 48–51. Ozisik, M. N., & Murray, R. L. (1974). On the solution of linear diffusion problems with variable boundary condition parameters. ASME J. Heat Transfer, 96c, 48–51.
19.
Zurück zum Zitat Mikhailov, M. D. (1975). On the solution of the heat equation with time dependent coefficient. International Journal of Heat and Mass Transfer, 18, 344–345.MATHCrossRef Mikhailov, M. D. (1975). On the solution of the heat equation with time dependent coefficient. International Journal of Heat and Mass Transfer, 18, 344–345.MATHCrossRef
20.
Zurück zum Zitat Cotta, R. M. (1986). Diffusion in media with prescribed moving boundaries: Application to metals oxidation at high temperatures. Proc. of the II Latin American Congress of Heat & Mass Transfer, Vol. 1, pp. 502–513, São Paulo, Brasil, May. Cotta, R. M. (1986). Diffusion in media with prescribed moving boundaries: Application to metals oxidation at high temperatures. Proc. of the II Latin American Congress of Heat & Mass Transfer, Vol. 1, pp. 502–513, São Paulo, Brasil, May.
21.
Zurück zum Zitat Cotta, R. M., & Ozisik, M. N. (1987). Diffusion problems with general time-dependent coefficients. Rev. Bras. Ciências Mecânicas, 9(4), 269–292. Cotta, R. M., & Ozisik, M. N. (1987). Diffusion problems with general time-dependent coefficients. Rev. Bras. Ciências Mecânicas, 9(4), 269–292.
22.
Zurück zum Zitat Aparecido, J. B., Cotta, R. M., & Ozisik, M. N. (1989). Analytical Solutions to Two-Dimensional Diffusion Type Problems in Irregular Geometries. J. of the Franklin Institute, 326, 421–434.MathSciNetMATHCrossRef Aparecido, J. B., Cotta, R. M., & Ozisik, M. N. (1989). Analytical Solutions to Two-Dimensional Diffusion Type Problems in Irregular Geometries. J. of the Franklin Institute, 326, 421–434.MathSciNetMATHCrossRef
23.
Zurück zum Zitat Cotta, R. M. (1990). Hybrid Numerical-Analytical Approach to Nonlinear Diffusion Problems. Num. Heat Transfer, Part B, 127, 217–226.CrossRef Cotta, R. M. (1990). Hybrid Numerical-Analytical Approach to Nonlinear Diffusion Problems. Num. Heat Transfer, Part B, 127, 217–226.CrossRef
24.
Zurück zum Zitat Cotta, R. M., & Carvalho, T. M. B. (1991). Hybrid Analysis of Boundary Layer Equations for Internal Flow Problems. 7th Int. Conf. on Num. Meth. in Laminar & Turbulent Flow, Part 1, pp. 106–115, Stanford CA, July. Cotta, R. M., & Carvalho, T. M. B. (1991). Hybrid Analysis of Boundary Layer Equations for Internal Flow Problems. 7th Int. Conf. on Num. Meth. in Laminar & Turbulent Flow, Part 1, pp. 106–115, Stanford CA, July.
25.
Zurück zum Zitat Perez Guerrero, J. S., & Cotta, R. M. (1992). Integral Transform Method for Navier-Stokes Equations in Stream Function-Only Formulation. Int. J. Num. Meth. in Fluids, 15, 399–409.MATHCrossRef Perez Guerrero, J. S., & Cotta, R. M. (1992). Integral Transform Method for Navier-Stokes Equations in Stream Function-Only Formulation. Int. J. Num. Meth. in Fluids, 15, 399–409.MATHCrossRef
26.
Zurück zum Zitat Cotta, R. M. (1993). Integral Transforms in Computational Heat and Fluid Flow. Boca Raton, FL: CRC Press.MATH Cotta, R. M. (1993). Integral Transforms in Computational Heat and Fluid Flow. Boca Raton, FL: CRC Press.MATH
27.
Zurück zum Zitat Cotta, R. M. (1994). The Integral Transform Method in Computational Heat and Fluid Flow. Special Keynote Lecture. Proc. of the 10th Int. Heat Transfer Conf., Brighton, UK, SK-3, Vol. 1, pp. 43–60, August. Cotta, R. M. (1994). The Integral Transform Method in Computational Heat and Fluid Flow. Special Keynote Lecture. Proc. of the 10th Int. Heat Transfer Conf., Brighton, UK, SK-3, Vol. 1, pp. 43–60, August.
28.
Zurück zum Zitat Cotta, R. M. (1994). Benchmark Results in Computational Heat and Fluid Flow: - The Integral Transform Method. Int. J. Heat Mass Transfer, Invited Paper, 37, 381–394.MATHCrossRef Cotta, R. M. (1994). Benchmark Results in Computational Heat and Fluid Flow: - The Integral Transform Method. Int. J. Heat Mass Transfer, Invited Paper, 37, 381–394.MATHCrossRef
29.
Zurück zum Zitat Napolitano, M., & Orlandi, P. (1985). Laminar Flow in a Complex Geometry: A Comparison. Int. Journal for Numerical methods in Fluids, 5, 667–683.MathSciNetCrossRef Napolitano, M., & Orlandi, P. (1985). Laminar Flow in a Complex Geometry: A Comparison. Int. Journal for Numerical methods in Fluids, 5, 667–683.MathSciNetCrossRef
30.
Zurück zum Zitat Perez Guerrero, J. S., & Cotta, R. M. (1995). A Review on Benchmark Results for the Navier-Stokes Equations Through Integral Transformation. Revista Perfiles de Ingenieria, (Invited Paper), no.4, pp.C.30–33, Peru, July. Perez Guerrero, J. S., & Cotta, R. M. (1995). A Review on Benchmark Results for the Navier-Stokes Equations Through Integral Transformation. Revista Perfiles de Ingenieria, (Invited Paper), no.4, pp.C.30–33, Peru, July.
31.
Zurück zum Zitat Perez Guerrero, J. S., Quaresma, J. N. N., & Cotta, R. M. (2000). Simulation of Laminar Flow inside Ducts of Irregular Geometry using Integral Transforms. Computational Mechanics, 25(4), 413–420.MATHCrossRef Perez Guerrero, J. S., Quaresma, J. N. N., & Cotta, R. M. (2000). Simulation of Laminar Flow inside Ducts of Irregular Geometry using Integral Transforms. Computational Mechanics, 25(4), 413–420.MATHCrossRef
32.
Zurück zum Zitat Cotta, R. M., & Mikhailov, M. D. (1997). Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic Computation. Chichester, UK: Wiley. Cotta, R. M., & Mikhailov, M. D. (1997). Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic Computation. Chichester, UK: Wiley.
33.
Zurück zum Zitat Cotta, R. M. (1998). The Integral Transform Method in Thermal and Fluids Sciences and Engineering. New York: Begell House.MATH Cotta, R. M. (1998). The Integral Transform Method in Thermal and Fluids Sciences and Engineering. New York: Begell House.MATH
34.
Zurück zum Zitat Cotta, R. M., & Mikhailov, M. D. (2006). Hybrid Methods and Symbolic Computations. In W. J. Minkowycz, E. M. Sparrow, & J. Y. Murthy (Eds.), Handbook of Numerical Heat Transfer, 2nd edition, Chapter 16. New York: John Wiley. Cotta, R. M., & Mikhailov, M. D. (2006). Hybrid Methods and Symbolic Computations. In W. J. Minkowycz, E. M. Sparrow, & J. Y. Murthy (Eds.), Handbook of Numerical Heat Transfer, 2nd edition, Chapter 16. New York: John Wiley.
35.
Zurück zum Zitat Cotta, R. M., Knupp, D. C., & Naveira-Cotta, C. P. (2016). Analytical Heat and Fluid Flow in Microchannels and Microsystems. Mechanical Eng. Series. New York: Springer.MATHCrossRef Cotta, R. M., Knupp, D. C., & Naveira-Cotta, C. P. (2016). Analytical Heat and Fluid Flow in Microchannels and Microsystems. Mechanical Eng. Series.  New York: Springer.MATHCrossRef
36.
Zurück zum Zitat Cotta, R. M., Knupp, D. C., & Quaresma, J. N. N. (2018). Analytical Methods in Heat Transfer. In Handbook of Thermal Science and Engineering, F. A. Kulacki et al., Eds., Chapter 1. Springer. Cotta, R. M., Knupp, D. C., & Quaresma, J. N. N. (2018). Analytical Methods in Heat Transfer. In Handbook of Thermal Science and Engineering, F. A. Kulacki et al., Eds., Chapter 1. Springer.
37.
Zurück zum Zitat Cotta, R. M., Naveira-Cotta, C. P., Knupp, D. C., Zotin, J. L. Z., Pontes, P. C., & Almeida, A. P. (2018). Recent Advances in Computational-Analytical Integral Transforms for Convection-Diffusion Problems. Heat & Mass Transfer, Invited Paper, 54, 2475–2496.CrossRef Cotta, R. M., Naveira-Cotta, C. P., Knupp, D. C., Zotin, J. L. Z., Pontes, P. C., & Almeida, A. P. (2018). Recent Advances in Computational-Analytical Integral Transforms for Convection-Diffusion Problems. Heat & Mass Transfer, Invited Paper, 54, 2475–2496.CrossRef
38.
Zurück zum Zitat Cotta, R. M., Su, J., Pontedeiro, A. C., & Lisboa, K. M. (2018). Computational-Analytical Integral Transforms and Lumped-Differential Formulations: Benchmarks and Applications in Nuclear Technology. Special Lecture, 9th Int. Symp. on Turbulence, Heat and Mass Transfer, THMT-ICHMT, Rio de Janeiro, July 10th–13th. In Turbulence, Heat and Mass Transfer 9, pp. 129–144, Eds. A. P. Silva Freire et al., Begell House, New York. Cotta, R. M., Su, J., Pontedeiro, A. C., & Lisboa, K. M. (2018). Computational-Analytical Integral Transforms and Lumped-Differential Formulations: Benchmarks and Applications in Nuclear Technology. Special Lecture, 9th Int. Symp. on Turbulence, Heat and Mass Transfer, THMT-ICHMT, Rio de Janeiro, July 10th–13th. In Turbulence, Heat and Mass Transfer 9, pp. 129–144, Eds. A. P. Silva Freire et al., Begell House, New York.
39.
Zurück zum Zitat Cotta, R. M., Lisboa, K. M., Curi, M. F., Balabani, S., Quaresma, J. N. N., Perez-Guerrero, J. S., et al. (2019). A Review of Hybrid Integral Transform Solutions in Fluid Flow Problems with Heat or Mass Transfer and under Navier-Stokes Equations Formulations. Num. Heat Transfer, Part B - Fundamentals, 76, 1–28.CrossRef Cotta, R. M., Lisboa, K. M., Curi, M. F., Balabani, S., Quaresma, J. N. N., Perez-Guerrero, J. S., et al. (2019). A Review of Hybrid Integral Transform Solutions in Fluid Flow Problems with Heat or Mass Transfer and under Navier-Stokes Equations Formulations. Num. Heat Transfer, Part B - Fundamentals, 76, 1–28.CrossRef
40.
Zurück zum Zitat Cotta, R. M., Naveira-Cotta, C. P., & Knupp, D. C. (2016). Nonlinear Eigenvalue Problem in the Integral Transforms Solution of Convection-diffusion with Nonlinear Boundary Conditions. Int. J. Num. Meth. Heat & Fluid Flow, Invited Paper, 25th Anniversary Special Issue, 26, 767–789. Cotta, R. M., Naveira-Cotta, C. P., & Knupp, D. C. (2016). Nonlinear Eigenvalue Problem in the Integral Transforms Solution of Convection-diffusion with Nonlinear Boundary Conditions. Int. J. Num. Meth. Heat & Fluid Flow, Invited Paper, 25th Anniversary Special Issue, 26, 767–789.
41.
Zurück zum Zitat Pontes, P. C., Almeida, A. P., Cotta, R. M., & Naveira-Cotta, C. P. (2018). Analysis of Mass Transfer in Hollow-Fiber Membrane Separator via Nonlinear Eigenfunction Expansions. Multiphase Science and Technology, 30(2-3), 165–186.CrossRef Pontes, P. C., Almeida, A. P., Cotta, R. M., & Naveira-Cotta, C. P. (2018). Analysis of Mass Transfer in Hollow-Fiber Membrane Separator via Nonlinear Eigenfunction Expansions. Multiphase Science and Technology, 30(2-3), 165–186.CrossRef
42.
Zurück zum Zitat Cotta, R. M., Knupp, D. C., Naveira-Cotta, C. P., Sphaier, L. A., & Quaresma, J. N. N. (2014). The Unified Integral Transforms (UNIT) Algorithm with Total and Partial Transformation. Comput. Thermal Sciences, 6, 507–524.CrossRef Cotta, R. M., Knupp, D. C., Naveira-Cotta, C. P., Sphaier, L. A., & Quaresma, J. N. N. (2014). The Unified Integral Transforms (UNIT) Algorithm with Total and Partial Transformation. Comput. Thermal Sciences, 6, 507–524.CrossRef
43.
Zurück zum Zitat Ozisik, M. N., Orlande, H. R. B., Colaço, M. J., & Cotta, R. M. (2017). Finite Difference Methods in Heat Transfer (2nd ed.). Boca Raton, FL: CRC Press.CrossRef Ozisik, M. N., Orlande, H. R. B., Colaço, M. J., & Cotta, R. M. (2017). Finite Difference Methods in Heat Transfer (2nd ed.). Boca Raton, FL: CRC Press.CrossRef
44.
Zurück zum Zitat Serfaty, R., & Cotta, R. M. (1992). Hybrid Analysis of Transient Nonlinear Convection-Diffusion Problems. Int. J. Num. Meth. Heat & Fluid Flow, 2, 55–62.CrossRef Serfaty, R., & Cotta, R. M. (1992). Hybrid Analysis of Transient Nonlinear Convection-Diffusion Problems. Int. J. Num. Meth. Heat & Fluid Flow, 2, 55–62.CrossRef
45.
Zurück zum Zitat Cotta, R. M., Naveira-Cotta, C. P., & Knupp, D. C. (2017). Convective Eigenvalue Problems for Convergence Enhancement of Eigenfunction Expansions in Convection-diffusion Problems. ASME J. Thermal Science and Eng. Appl., 10(2), 021009 (12 pages). Cotta, R. M., Naveira-Cotta, C. P., & Knupp, D. C. (2017). Convective Eigenvalue Problems for Convergence Enhancement of Eigenfunction Expansions in Convection-diffusion Problems. ASME J. Thermal Science and Eng. Appl., 10(2), 021009 (12 pages).
46.
Zurück zum Zitat Knupp, D. C., Cotta, R. M., Naveira-Cotta, C. P., & Cerqueira, I. G. S. (2018). Conjugated Heat Transfer via Integral Tranforms: Single Domain Formulation, Total and Partial Transformation, and Convective Eigenvalue Problems. Proc. of the 10th Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators, Power Sources”, pp. 171–178, Minsk, Belarus, September 10th–13th. Knupp, D. C., Cotta, R. M., Naveira-Cotta, C. P., & Cerqueira, I. G. S. (2018). Conjugated Heat Transfer via Integral Tranforms: Single Domain Formulation, Total and Partial Transformation, and Convective Eigenvalue Problems. Proc. of the 10th Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators, Power Sources”, pp. 171–178, Minsk, Belarus, September 10th–13th.
47.
Zurück zum Zitat Lima, G. G. C., Santos, C. A. C., Haag, A., & Cotta, R. M. (2007). Integral Transform Solution of Internal Flow Problems Based on Navier-Stokes Equations and Primitive Variables Formulation. Int. J. Num. Meth. Eng., 69, 544–561.MATHCrossRef Lima, G. G. C., Santos, C. A. C., Haag, A., & Cotta, R. M. (2007). Integral Transform Solution of Internal Flow Problems Based on Navier-Stokes Equations and Primitive Variables Formulation. Int. J. Num. Meth. Eng., 69, 544–561.MATHCrossRef
48.
Zurück zum Zitat Lisboa, K. M., & Cotta, R. M. (2018). Hybrid Integral Transforms for Flow Development in Ducts Partially Filled with Porous Media. Proc. Royal Society A - Mathematical, Physical and Eng. Sciences, 474, 1–20. Lisboa, K. M., & Cotta, R. M. (2018). Hybrid Integral Transforms for Flow Development in Ducts Partially Filled with Porous Media. Proc. Royal Society A - Mathematical, Physical and Eng. Sciences, 474, 1–20.
49.
Zurück zum Zitat Lisboa, K. M., Su, J., & Cotta, R. M. (2019). Vector Eigenfunction Expansion in the Integral Transform Solution of Transient Natural Convection. Int. J. Num. Meth. Heat & Fluid Flow, 29, 2684–2708.CrossRef Lisboa, K. M., Su, J., & Cotta, R. M. (2019). Vector Eigenfunction Expansion in the Integral Transform Solution of Transient Natural Convection. Int. J. Num. Meth. Heat & Fluid Flow, 29, 2684–2708.CrossRef
50.
Zurück zum Zitat Sphaier, L. A., & Cotta, R. M. (2000). Integral Transform Analysis of Multidimensional Eigenvalue Problems Within Irregular Domains. Numerical Heat Transfer, Part B-Fundamentals, 38, 157–175.CrossRef Sphaier, L. A., & Cotta, R. M. (2000). Integral Transform Analysis of Multidimensional Eigenvalue Problems Within Irregular Domains. Numerical Heat Transfer, Part B-Fundamentals, 38, 157–175.CrossRef
51.
Zurück zum Zitat Sphaier, L. A., & Cotta, R. M. (2002). Analytical and Hybrid Solutions of Diffusion Problems within Arbitrarily Shaped Regions via Integral Transforms. Computational Mechanics, 29(3), 265–276.MathSciNetMATHCrossRef Sphaier, L. A., & Cotta, R. M. (2002). Analytical and Hybrid Solutions of Diffusion Problems within Arbitrarily Shaped Regions via Integral Transforms. Computational Mechanics, 29(3), 265–276.MathSciNetMATHCrossRef
52.
Zurück zum Zitat Monteiro, E. R., Quaresma, J. N. N., & Cotta, R. M. (2011). Integral transformation of multidimensional phase change problems: Computational and physical analysis. 21st International Congress of Mechanical Engineering, COBEM-2011, ABCM, pp.1–10, Natal, RN, Brazil, October. Monteiro, E. R., Quaresma, J. N. N., & Cotta, R. M. (2011). Integral transformation of multidimensional phase change problems: Computational and physical analysis. 21st International Congress of Mechanical Engineering, COBEM-2011, ABCM, pp.1–10, Natal, RN, Brazil, October.
53.
Zurück zum Zitat Cotta, R. M., & Mikhailov, M. D. (2005). Semi-analytical evaluation of integrals for the generalized integral transform technique. Proc. of the 4th Workshop on Integral Transforms and Benchmark Problems – IV WIT, pp. 1–10, CNEN, Rio de Janeiro, RJ, August. Cotta, R. M., & Mikhailov, M. D. (2005). Semi-analytical evaluation of integrals for the generalized integral transform technique. Proc. of the 4th Workshop on Integral Transforms and Benchmark Problems – IV WIT, pp. 1–10, CNEN, Rio de Janeiro, RJ, August.
54.
Zurück zum Zitat Cotta, R. M., Knupp, D. C., Naveira-Cotta, C. P., Sphaier, L. A., & Quaresma, J. N. N. (2013). Unified Integral Transforms Algorithm for Solving Multidimensional Nonlinear Convection-Diffusion Problems. Num. Heat Transfer, part A - Applications, 63, 1–27. Cotta, R. M., Knupp, D. C., Naveira-Cotta, C. P., Sphaier, L. A., & Quaresma, J. N. N. (2013). Unified Integral Transforms Algorithm for Solving Multidimensional Nonlinear Convection-Diffusion Problems. Num. Heat Transfer, part A - Applications, 63, 1–27.
55.
Zurück zum Zitat Knupp, D. C., Naveira-Cotta, C. P., & Cotta, R. M. (2012). Theoretical Analysis of Conjugated Heat Transfer with a Single Domain Formulation and Integral Transforms. Int. Comm. Heat & Mass Transfer, 39(3), 355–362.CrossRef Knupp, D. C., Naveira-Cotta, C. P., & Cotta, R. M. (2012). Theoretical Analysis of Conjugated Heat Transfer with a Single Domain Formulation and Integral Transforms. Int. Comm. Heat & Mass Transfer, 39(3), 355–362.CrossRef
56.
Zurück zum Zitat Knupp, D. C., Naveira-Cotta, C. P., & Cotta, R. M. (2014). Theoretical–experimental Analysis of Conjugated Heat Transfer in Nanocomposite Heat Spreaders with Multiple Microchannels. Int. J. Heat Mass Transfer, 74, 306–318.CrossRef Knupp, D. C., Naveira-Cotta, C. P., & Cotta, R. M. (2014). Theoretical–experimental Analysis of Conjugated Heat Transfer in Nanocomposite Heat Spreaders with Multiple Microchannels. Int. J. Heat Mass Transfer, 74, 306–318.CrossRef
57.
Zurück zum Zitat Knupp, D. C., Cotta, R. M., Naveira-Cotta, C. P., & Kakaç, S. (2015). Transient Conjugated Heat Transfer in Microchannels: Integral Transforms with Single Domain Formulation. Int. J. Thermal Sciences, 88, 248–257.CrossRef Knupp, D. C., Cotta, R. M., Naveira-Cotta, C. P., & Kakaç, S. (2015). Transient Conjugated Heat Transfer in Microchannels: Integral Transforms with Single Domain Formulation. Int. J. Thermal Sciences, 88, 248–257.CrossRef
58.
Zurück zum Zitat Knupp, D. C., Cotta, R. M., & Naveira-Cotta, C. P. (2015). Fluid Flow and Conjugated Heat Transfer in Arbitrarily Shaped Channels via Single Domain Formulation and Integral Transforms. Int. J. Heat Mass Transfer, 82, 479–489.CrossRef Knupp, D. C., Cotta, R. M., & Naveira-Cotta, C. P. (2015). Fluid Flow and Conjugated Heat Transfer in Arbitrarily Shaped Channels via Single Domain Formulation and Integral Transforms. Int. J. Heat Mass Transfer, 82, 479–489.CrossRef
59.
Zurück zum Zitat Almeida, A. P., Naveira-Cotta, C. P., & Cotta, R. M. (2018). Integral Transforms for Transient Three-dimensional Heat Conduction in Heterogeneous Media with Multiple Geometries and Materials. Paper # IHTC16–24583. Proc. of the 16th International Heat Transfer Conference – IHTC16, Beijing, China, August 10th–15th. Almeida, A. P., Naveira-Cotta, C. P., & Cotta, R. M. (2018). Integral Transforms for Transient Three-dimensional Heat Conduction in Heterogeneous Media with Multiple Geometries and Materials. Paper # IHTC16–24583. Proc. of the 16th International Heat Transfer Conference – IHTC16, Beijing, China, August 10th–15th.
60.
Zurück zum Zitat Lisboa, K. M., Su, J., & Cotta, R. M. (2018). Single Domain Integral Transforms Analysis of Natural Convection in Cavities Partially Filled with Heat Generating Porous Medium. Num. Heat Transfer, Part A – Applications, 74(3), 1068–1086. Lisboa, K. M., Su, J., & Cotta, R. M. (2018). Single Domain Integral Transforms Analysis of Natural Convection in Cavities Partially Filled with Heat Generating Porous Medium. Num. Heat Transfer, Part A – Applications, 74(3), 1068–1086.
61.
Zurück zum Zitat Lisboa, K. M., & Cotta, R. M. (2018). On the Mass Transport in Membraneless Flow Batteries of Flow-by Configuration. Int. J. Heat & Mass Transfer, 122, 954–966.CrossRef Lisboa, K. M., & Cotta, R. M. (2018). On the Mass Transport in Membraneless Flow Batteries of Flow-by Configuration. Int. J. Heat & Mass Transfer, 122, 954–966.CrossRef
62.
Zurück zum Zitat Wang, C. C., & Chen, C. K. (2002). Forced Convection in a Wavy-Wall Channel. Int. Journal of Heat and Mass Transfer, 45, 2587–2595.MATHCrossRef Wang, C. C., & Chen, C. K. (2002). Forced Convection in a Wavy-Wall Channel. Int. Journal of Heat and Mass Transfer, 45, 2587–2595.MATHCrossRef
63.
Zurück zum Zitat Silva, R. L., Santos, C. A. C., Quaresma, J. N. N., & Cotta, R. M. (2011). Integral Transforms Solution for Flow Development in Wavy-Wall Ducts. Int. J. Num. Meth. Heat & Fluid Flow, 21(2), 219–243. Silva, R. L., Santos, C. A. C., Quaresma, J. N. N., & Cotta, R. M. (2011). Integral Transforms Solution for Flow Development in Wavy-Wall Ducts. Int. J. Num. Meth. Heat & Fluid Flow, 21(2), 219–243.
64.
Zurück zum Zitat Castellões, F. V., Quaresma, J. N. N., & Cotta, R. M. (2010). Convective Heat Transfer Enhancement in Low Reynolds Number Flows with Wavy Walls. Int. J. Heat & Mass Transfer, 53, 2022–2034.MATHCrossRef Castellões, F. V., Quaresma, J. N. N., & Cotta, R. M. (2010). Convective Heat Transfer Enhancement in Low Reynolds Number Flows with Wavy Walls. Int. J. Heat & Mass Transfer, 53, 2022–2034.MATHCrossRef
65.
Zurück zum Zitat Zotin, J. L. Z., Knupp, D. C., & Cotta, R. M. (2017). Conjugated Heat Transfer in Complex Channel-Substrate Configurations: Hybrid Solution with Total Integral Transformation and Single Domain Formulation. Proc. of ITherm 2017 - Sixteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Paper #435, Orlando, FL, USA, May 30th–June 2nd. Zotin, J. L. Z., Knupp, D. C., & Cotta, R. M. (2017). Conjugated Heat Transfer in Complex Channel-Substrate Configurations: Hybrid Solution with Total Integral Transformation and Single Domain Formulation. Proc. of ITherm 2017 - Sixteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Paper #435, Orlando, FL, USA, May 30th–June 2nd.
66.
Zurück zum Zitat Knupp, D. C., Cotta, R. M., & Naveira-Cotta, C. P. (2020). Conjugated Heat Transfer Analysis via Integral Transforms and Convective Eigenvalue Problems. J. Eng. Physics & Thermophysics, (in press). Knupp, D. C., Cotta, R. M., & Naveira-Cotta, C. P. (2020). Conjugated Heat Transfer Analysis via Integral Transforms and Convective Eigenvalue Problems. J. Eng. Physics & Thermophysics, (in press).
67.
Zurück zum Zitat Wolfram, S. (2017). Mathematica, version 11. Champaign, IL: Wolfram Research Inc. Wolfram, S. (2017). Mathematica, version 11. Champaign, IL: Wolfram Research Inc.
Metadaten
Titel
Integral Transform Benchmarks of Diffusion, Convection–Diffusion, and Conjugated Problems in Complex Domains
verfasst von
Renato M. Cotta
Diego C. Knupp
João N. N. Quaresma
Kleber M. Lisboa
Carolina P. Naveira-Cotta
José Luiz Z. Zotin
Helder K. Miyagawa
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2670-1_20

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.