Skip to main content
Erschienen in: Thermal Engineering 11/2022

01.11.2022 | RENEWABLE ENERGY SOURCES, HYDROPOWER ENGINEERING

Integrated Aluminum-Water Technology for Hydrogen Production

verfasst von: E. P. Volkov, E. I. Shkol’nikov

Erschienen in: Thermal Engineering | Ausgabe 11/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the features of the hydrothermal oxidation of dispersed aluminum are outlined and the prospects of its use for the mass production of “carbon-free” hydrogen are substantiated. In the course of hydrothermal oxidation, aluminum reacts with water or steam. In this case, hydrogen without the admixture of carbon or its compounds and thermal energy are formed. The solid product of aluminum oxidation is represented by aluminum hydroxide. This paper describes an integrated low-waste aluminum-water technology using such a single consumable agent as electricity. The technology involves the reduction to the metal of the obtained aluminum hydroxide within the framework of a single production. The aluminum regenerated in the electrolysis process can be again returned to the cycle for obtaining hydrogen from water in the hydrothermal oxidation reaction. If relatively recently developed inert anodes, as well as electricity generated at hydroelectric power plants or nuclear power plants, are used in the electrolysis of aluminum, then the technology has no carbon traces. The weight-energy characteristics and the composition of the products of each of the main processes used in the integrated aluminum-water technology are analyzed, namely the reduction of aluminum from Al2O3 by means of electrolysis to return Al to the hydrogen-production cycle, the hydrothermal aluminum oxidation with the production of a steam-hydrogen mixture and a condensed mixture of water and boehmite, the obtaining of aluminum oxide Al2O3 from boehmite AlOOH, obtaining pure hydrogen from a steam-hydrogen mixture as well as water for reuse, and hydrogen compression. Serious attention is paid to the potentialities of utilizing the thermal energy of the steam-hydrogen mixture for hydrogen compression. Owing to the production low-grade heat in large amounts under implementing the technology of hydrothermal aluminum oxidation, a thermal sorption compressor can be used for compressing hydrogen to operating parameters (40–90 MPa). This makes it possible to reduce the operating costs for hydrogen compression by more than an order of magnitude compared to traditional mechanical compressors and, at the same time, to provide an increase in the efficiency of aluminum hydrothermal oxidation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat “RUSAL started tests of electrolysis unit with new generation inert anodes,” Argumenty Fakty [Krasnoyarsk], June 10 (2020). https://krsk.aif.ru/money/rusal_nachal_ ispytaniya_elektrolizera_s_inertnymi_anodami_novogo_ pokoleniya. Accessed May 24, 2021. “RUSAL started tests of electrolysis unit with new generation inert anodes,” Argumenty Fakty [Krasnoyarsk], June 10 (2020). https://​krsk.​aif.​ru/​money/​rusal_​nachal_​ ispytaniya_elektrolizera_s_inertnymi_anodami_novogo_ pokoleniya. Accessed May 24, 2021.
3.
Zurück zum Zitat M. S. Vlaskin, E. I. Shkol’nikov, A. V. Bersh, A. Z. Zhuk, A. V. Lisitsyn, A. I. Sorokovikov, and Yu. V. Pankina, “Experimental cogeneration energy plant based on aluminum hydrothermal oxidization,” Izv. Ross. Akad. Nauk, Energ., No. 6, 31–45 (2011). https://www.elibrary.ru/item.asp?id=17055893 M. S. Vlaskin, E. I. Shkol’nikov, A. V. Bersh, A. Z. Zhuk, A. V. Lisitsyn, A. I. Sorokovikov, and Yu. V. Pankina, “Experimental cogeneration energy plant based on aluminum hydrothermal oxidization,” Izv. Ross. Akad. Nauk, Energ., No. 6, 31–45 (2011). https://www.elibrary.ru/item.asp?id=17055893
4.
Zurück zum Zitat G. V. Belov, V. S. Iorish, and V. S. Yungman, “Simulation of equilibrium states of thermodynamic systems using IVTANTERMO for Windows,” High Temp. 38, 191–196 (2000).CrossRef G. V. Belov, V. S. Iorish, and V. S. Yungman, “Simulation of equilibrium states of thermodynamic systems using IVTANTERMO for Windows,” High Temp. 38, 191–196 (2000).CrossRef
5.
Zurück zum Zitat G. Parks, R. Boyd, J. Cornish, and R. Remick, Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs, Technical Report NREL/BK-6A10-58564 (National Renewable Energy Laboratory, Golden, Col., 2014). G. Parks, R. Boyd, J. Cornish, and R. Remick, Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs, Technical Report NREL/BK-6A10-58564 (National Renewable Energy Laboratory, Golden, Col., 2014).
7.
Zurück zum Zitat Linde Hydrogen FuelTech — Driving the Future of Mobility. Linde Engineering. https://www.linde-engineering.com/en/plant-components/hydrogen-fueling-technologies/index.html. Accessed May 24, 2021. Linde Hydrogen FuelTech — Driving the Future of Mobility. Linde Engineering. https://​www.​linde-engineering.​com/​en/​plant-components/​hydrogen-fueling-technologies/​index.​html.​ Accessed May 24, 2021.
Metadaten
Titel
Integrated Aluminum-Water Technology for Hydrogen Production
verfasst von
E. P. Volkov
E. I. Shkol’nikov
Publikationsdatum
01.11.2022
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 11/2022
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601522110106

Weitere Artikel der Ausgabe 11/2022

Thermal Engineering 11/2022 Zur Ausgabe

    Premium Partner