Skip to main content

2019 | OriginalPaper | Buchkapitel

5. Integrated Demand Response in the Multi-Energy System

verfasst von : Pengwei Du, Ning Lu, Haiwang Zhong

Erschienen in: Demand Response in Smart Grids

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Demand response (DR) is a critical and effective measure to stimulate the demand side resources to interact with renewable generation in the power system. However, the conventional scope of DR cannot fully exploit the interaction capabilities of demand side resources, which limits the energy users in the electric power system. With the revolution of the traditional economic and social pattern based on centralized fossil energy consumption, “Energy Internet” is impelling the development of the third industrial revolution, which aims at promoting the incorporation of sustainable energy and internet technology, and facilitating the integration of multi-energy systems (MESs). By integrating electricity, thermal energy, natural gas, and other forms of energy, the smart energy hub (SEH) makes it possible for energy users to flexibly switch the source of consumed energy. With the complementarity of MESs, even the inelastic loads can actively participate in DR programs, which fully exploits the interaction capability of DR resources while maintaining the consumers’ comfort. This novel vision of the DR programs is termed as “Integrated Demand Response (IDR).” In this context, the state of the art of IDR in the MESs is reviewed for the first time. First, the basic concept of IDR and the value analysis are introduced. The research on IDR in the MES is then summarized. The overviews of the engineering projects around the world are introduced. Finally, the key issues and potential research topics on IDR in the MES are proposed. Hopefully, this chapter will provide reference for future research and engineering projects on IDR programs in the MES.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu, X. H., & Xue, Y. S. (2016). Smart grids: A cyber-physical systems perspective. Proceedings of the IEEE, 104(5), 1058–1070.MathSciNetCrossRef Yu, X. H., & Xue, Y. S. (2016). Smart grids: A cyber-physical systems perspective. Proceedings of the IEEE, 104(5), 1058–1070.MathSciNetCrossRef
2.
Zurück zum Zitat Ahlgren, L. W. (2012). The dual-fuel strategy: An energy transition plan. Proceedings of the IEEE, 100(11), 3001–3052.CrossRef Ahlgren, L. W. (2012). The dual-fuel strategy: An energy transition plan. Proceedings of the IEEE, 100(11), 3001–3052.CrossRef
3.
Zurück zum Zitat Glinkowski, M., Hou, J., & Rackliffe, G. (2011). Advances in wind energy technologies in the context of smart grid. Proceedings of the IEEE, 99(6), 1083–1097.CrossRef Glinkowski, M., Hou, J., & Rackliffe, G. (2011). Advances in wind energy technologies in the context of smart grid. Proceedings of the IEEE, 99(6), 1083–1097.CrossRef
4.
Zurück zum Zitat Kong, F. X., Dong, C. S., Liu, X., et al. (2014). Quantity versus quality: Optimal harvesting wind power for the smart grid. Proceedings of the IEEE, 102(11), 1762–1776.CrossRef Kong, F. X., Dong, C. S., Liu, X., et al. (2014). Quantity versus quality: Optimal harvesting wind power for the smart grid. Proceedings of the IEEE, 102(11), 1762–1776.CrossRef
5.
Zurück zum Zitat Huang, Q. A., Crow, L. M., Heydt, T. G., et al. (2011). The future renewable electric energy delivery and management (FREEDM) system: The energy internet. Proceedings of the IEEE, 99(1), 133–148.CrossRef Huang, Q. A., Crow, L. M., Heydt, T. G., et al. (2011). The future renewable electric energy delivery and management (FREEDM) system: The energy internet. Proceedings of the IEEE, 99(1), 133–148.CrossRef
6.
Zurück zum Zitat Rifkin, J. (2011). The third industrial revolution: How lateral power is transforming energy, the economy and the world. New York: Palgrave Macmillan. Rifkin, J. (2011). The third industrial revolution: How lateral power is transforming energy, the economy and the world. New York: Palgrave Macmillan.
8.
Zurück zum Zitat Krause, T., Andersson, G., Frohlich, K., et al. (2011). Multiple-energy carriers: Modeling of production, delivery and consumption. Proceedings of the IEEE, 99(1), 15–27.CrossRef Krause, T., Andersson, G., Frohlich, K., et al. (2011). Multiple-energy carriers: Modeling of production, delivery and consumption. Proceedings of the IEEE, 99(1), 15–27.CrossRef
9.
Zurück zum Zitat Biegel, B., Andersen, P., Stoustrup, J., et al. (2016). Sustainable reserve power from demand response and fluctuating production-two Danish demonstrations. Proceedings of the IEEE, 104(4), 780–788.CrossRef Biegel, B., Andersen, P., Stoustrup, J., et al. (2016). Sustainable reserve power from demand response and fluctuating production-two Danish demonstrations. Proceedings of the IEEE, 104(4), 780–788.CrossRef
10.
Zurück zum Zitat Zhong, H., Xie, L., & Xia, Q. (2013). Coupon incentive-based demand response: Theory and case study. IEEE Transactions on Power Apparatus and Systems, 28(2), 1266–1276.CrossRef Zhong, H., Xie, L., & Xia, Q. (2013). Coupon incentive-based demand response: Theory and case study. IEEE Transactions on Power Apparatus and Systems, 28(2), 1266–1276.CrossRef
11.
Zurück zum Zitat Nolan, S., & O’Malley, M. (2015). Challenges and barriers to demand response deployment and evaluation. Applied Energy, 152, 1–10.CrossRef Nolan, S., & O’Malley, M. (2015). Challenges and barriers to demand response deployment and evaluation. Applied Energy, 152, 1–10.CrossRef
13.
Zurück zum Zitat Siano, P., & Sarno, D. (2016). Assessing the benefits of residential demand response in a real time distribution energy market. Applied Energy, 161, 533–551.CrossRef Siano, P., & Sarno, D. (2016). Assessing the benefits of residential demand response in a real time distribution energy market. Applied Energy, 161, 533–551.CrossRef
14.
Zurück zum Zitat Finn, P., & Fitzpatrick, C. (2014). Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing. Applied Energy, 113, 11–21.CrossRef Finn, P., & Fitzpatrick, C. (2014). Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing. Applied Energy, 113, 11–21.CrossRef
15.
Zurück zum Zitat Chehreghani, M., Hashmi, A., Hasse, H., et al. (2012). Optimal operation of residential EH in smart grids. IEEE Transactions on Smart Grid, 3(4), 1755–1766.CrossRef Chehreghani, M., Hashmi, A., Hasse, H., et al. (2012). Optimal operation of residential EH in smart grids. IEEE Transactions on Smart Grid, 3(4), 1755–1766.CrossRef
16.
Zurück zum Zitat Yang, H., Xiong, T., Qiu, J., et al. (2016). Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response. Applied Energy, 167, 353–365.CrossRef Yang, H., Xiong, T., Qiu, J., et al. (2016). Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response. Applied Energy, 167, 353–365.CrossRef
17.
Zurück zum Zitat Zhang, Q., & Li, J. (2012). Demand response in electricity markets: A review. 2012 9th international conference on the European Energy market (pp. 1–8). Zhang, Q., & Li, J. (2012). Demand response in electricity markets: A review. 2012 9th international conference on the European Energy market (pp. 1–8).
18.
Zurück zum Zitat Fadlullah, M., Quan, D., Kato, N., et al. (2014). GTES: An optimized game-theoretic demand-side management scheme for smart grid. IEEE Systems Journal, 8(2), 588–597.CrossRef Fadlullah, M., Quan, D., Kato, N., et al. (2014). GTES: An optimized game-theoretic demand-side management scheme for smart grid. IEEE Systems Journal, 8(2), 588–597.CrossRef
19.
Zurück zum Zitat Hong, Y. W., Shahidehpour, M., & Khodayar, M. (2013). Hourly demand response in day-ahead scheduling considering generating unit ramping cost. IEEE Transactions on Power Apparatus and Systems, 28(3), 2446–2454.CrossRef Hong, Y. W., Shahidehpour, M., & Khodayar, M. (2013). Hourly demand response in day-ahead scheduling considering generating unit ramping cost. IEEE Transactions on Power Apparatus and Systems, 28(3), 2446–2454.CrossRef
20.
Zurück zum Zitat Shao, S., Pipattanasomporn, M., & Rahman, S. (2013). Development of physical-based demand response-enabled residential load models. IEEE Transactions on Power Apparatus and Systems, 28(2), 607–614.CrossRef Shao, S., Pipattanasomporn, M., & Rahman, S. (2013). Development of physical-based demand response-enabled residential load models. IEEE Transactions on Power Apparatus and Systems, 28(2), 607–614.CrossRef
21.
Zurück zum Zitat Alabdulwahab, A., Abusorrah, A., Zhang, X. P., et al. (2015). Coordination of interdependent natural gas and electricity infrastructures for firming the variability of wind energy in stochastic day-ahead scheduling. IEEE Transactions on Sustainable Energy, 6(2), 606–615.CrossRef Alabdulwahab, A., Abusorrah, A., Zhang, X. P., et al. (2015). Coordination of interdependent natural gas and electricity infrastructures for firming the variability of wind energy in stochastic day-ahead scheduling. IEEE Transactions on Sustainable Energy, 6(2), 606–615.CrossRef
22.
Zurück zum Zitat Zhang, X. P., Shahidehpour, M., Alabdulwahab, A., et al. (2016). Hourly electricity demand response in the stochastic day-ahead scheduling of coordinated electricity and natural gas networks. IEEE Transactions on Power Apparatus and Systems, 31(1), 592–601.CrossRef Zhang, X. P., Shahidehpour, M., Alabdulwahab, A., et al. (2016). Hourly electricity demand response in the stochastic day-ahead scheduling of coordinated electricity and natural gas networks. IEEE Transactions on Power Apparatus and Systems, 31(1), 592–601.CrossRef
23.
Zurück zum Zitat Zhang, X. P., Che, L., Shahidehpour, M., et al. (2016). Electricity-natural gas operation planning with hourly demand response for deployment of flexible ramp. IEEE Transactions on Sustainable Energy, 7(3), 996–1004.CrossRef Zhang, X. P., Che, L., Shahidehpour, M., et al. (2016). Electricity-natural gas operation planning with hourly demand response for deployment of flexible ramp. IEEE Transactions on Sustainable Energy, 7(3), 996–1004.CrossRef
24.
Zurück zum Zitat Geidl, M., & Andersson, G. (2007). Optimal coupling of energy infrastructures. 2007 IEEE Lausanne Power Tech (pp. 1398–1403). Geidl, M., & Andersson, G. (2007). Optimal coupling of energy infrastructures. 2007 IEEE Lausanne Power Tech (pp. 1398–1403).
25.
Zurück zum Zitat Behboodi, S., Chassin, D., Crawford, C., et al. (2016). Renewable resources portfolio optimization in the presence of demand response. Applied Energy, 162, 139–148.CrossRef Behboodi, S., Chassin, D., Crawford, C., et al. (2016). Renewable resources portfolio optimization in the presence of demand response. Applied Energy, 162, 139–148.CrossRef
26.
Zurück zum Zitat Mazidi, M., Monsef, H., & Siano, P. (2016). Robust day-ahead scheduling of smart distribution networks considering demand response programs. Applied Energy, 178, 929–942.CrossRef Mazidi, M., Monsef, H., & Siano, P. (2016). Robust day-ahead scheduling of smart distribution networks considering demand response programs. Applied Energy, 178, 929–942.CrossRef
27.
Zurück zum Zitat Clegg, S., & Mancarella, P. (2015). Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks. IEEE Transactions on Sustainable Energy, 6(4), 1234–1244.CrossRef Clegg, S., & Mancarella, P. (2015). Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks. IEEE Transactions on Sustainable Energy, 6(4), 1234–1244.CrossRef
28.
Zurück zum Zitat Clegg, S., & Mancarella, P. (2016). Storing renewables in the gas network: Modelling of power-to-gas seasonal storage flexibility in low-carbon power systems. IET Generation, Transmission & Distribution, 10(3), 566–575.CrossRef Clegg, S., & Mancarella, P. (2016). Storing renewables in the gas network: Modelling of power-to-gas seasonal storage flexibility in low-carbon power systems. IET Generation, Transmission & Distribution, 10(3), 566–575.CrossRef
29.
Zurück zum Zitat Wang, J., Zhong, H., Xia, Q., et al. (2016). Optimal joint-dispatch of energy and reserve for CCHP-based microgrids. IET Generation, Transmission & Distribution. 2016. Wang, J., Zhong, H., Xia, Q., et al. (2016). Optimal joint-dispatch of energy and reserve for CCHP-based microgrids. IET Generation, Transmission & Distribution. 2016.
30.
Zurück zum Zitat Mancarella, P. (2014). MES (multi-energy systems): An overview of concepts and evaluation models. Energy, 65, 1–17.CrossRef Mancarella, P. (2014). MES (multi-energy systems): An overview of concepts and evaluation models. Energy, 65, 1–17.CrossRef
31.
Zurück zum Zitat Strbac, G. (2008). Demand side management: Benefits and challenges. Energy Policy, 36, 4419–4426.CrossRef Strbac, G. (2008). Demand side management: Benefits and challenges. Energy Policy, 36, 4419–4426.CrossRef
32.
Zurück zum Zitat Hawkes, A. D., & Leach, M. A. (2007). Cost-effective operating strategy for residential micro-combined heat and power. Energy, 32(5), 711–723.CrossRef Hawkes, A. D., & Leach, M. A. (2007). Cost-effective operating strategy for residential micro-combined heat and power. Energy, 32(5), 711–723.CrossRef
33.
Zurück zum Zitat Cesena, E. A. M., & Mancarella, P. (2016). Distribution network support from multi-energy demand side response in smart districts. Innovative Smart Grid Technologies-Asia, 99, 753–758. Cesena, E. A. M., & Mancarella, P. (2016). Distribution network support from multi-energy demand side response in smart districts. Innovative Smart Grid Technologies-Asia, 99, 753–758.
34.
Zurück zum Zitat Houwing, M., Negenborn, R. R., & De Schutter, B. (2011). Demand response with micro-CHP systems. Proceedings of the IEEE, 99(1), 200–213.CrossRef Houwing, M., Negenborn, R. R., & De Schutter, B. (2011). Demand response with micro-CHP systems. Proceedings of the IEEE, 99(1), 200–213.CrossRef
35.
Zurück zum Zitat Good, N., Zhang, L., Navarro-Espinosa, A., & Mancarella, P. (2013). Physical modeling of electro-thermal domestic heating systems with quantification of economic and environmental costs. Eurocon, 1164–1171. Good, N., Zhang, L., Navarro-Espinosa, A., & Mancarella, P. (2013). Physical modeling of electro-thermal domestic heating systems with quantification of economic and environmental costs. Eurocon, 1164–1171.
36.
Zurück zum Zitat Peacock, A. D., & Newborough, M. (2005). Impact of micro-CHP systems on domestic sector CO2 emissions. Applied Thermal Engineering, 25(17), 2653–2676.CrossRef Peacock, A. D., & Newborough, M. (2005). Impact of micro-CHP systems on domestic sector CO2 emissions. Applied Thermal Engineering, 25(17), 2653–2676.CrossRef
37.
Zurück zum Zitat Geidl, M., Koeppel, G., Favre-Perrod, P., et al. (2007). Energy hubs for the future. IEEE Power and Energy Magazine, 5(1), 24–30.CrossRef Geidl, M., Koeppel, G., Favre-Perrod, P., et al. (2007). Energy hubs for the future. IEEE Power and Energy Magazine, 5(1), 24–30.CrossRef
38.
Zurück zum Zitat Geidl, M., & Andersson, G. (2007). Optimal power flow of multiple energy carriers. IEEE Transactions on Power Systems, 22(1), 145–155.CrossRef Geidl, M., & Andersson, G. (2007). Optimal power flow of multiple energy carriers. IEEE Transactions on Power Systems, 22(1), 145–155.CrossRef
39.
Zurück zum Zitat Parisio, A., Del Vecchio, C., & Vaccaro, A. (2012). A robust optimization approach to energy hub management. International Journal of Electrical Power & Energy Systems, 42(1), 98–104.CrossRef Parisio, A., Del Vecchio, C., & Vaccaro, A. (2012). A robust optimization approach to energy hub management. International Journal of Electrical Power & Energy Systems, 42(1), 98–104.CrossRef
40.
Zurück zum Zitat Evins, R., Orehounig, K., Dorer, V., et al. (2014). New formulations of the ‘energy hub’ model to address operational constraints. Energy, 73, 387–398.CrossRef Evins, R., Orehounig, K., Dorer, V., et al. (2014). New formulations of the ‘energy hub’ model to address operational constraints. Energy, 73, 387–398.CrossRef
41.
Zurück zum Zitat Rong, A., Hakonen, H., & Lahdelma, R. (2006). An efficient linear model and optimisation algorithm for multi-site combined heat and power production. European Journal of Operational Research, 168(2), 612–632.MathSciNetMATHCrossRef Rong, A., Hakonen, H., & Lahdelma, R. (2006). An efficient linear model and optimisation algorithm for multi-site combined heat and power production. European Journal of Operational Research, 168(2), 612–632.MathSciNetMATHCrossRef
42.
Zurück zum Zitat Bracco, S., Dentici, G., & Siri, S. (2013). Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area. Energy, 55, 1014–1024.CrossRef Bracco, S., Dentici, G., & Siri, S. (2013). Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area. Energy, 55, 1014–1024.CrossRef
44.
Zurück zum Zitat Waheed, M. A., Oni, A. O., Adejuyigbe, S. B., et al. (2014). Performance enhancement of vapor recompression heat pump. Applied Energy, 114, 69–79.CrossRef Waheed, M. A., Oni, A. O., Adejuyigbe, S. B., et al. (2014). Performance enhancement of vapor recompression heat pump. Applied Energy, 114, 69–79.CrossRef
45.
Zurück zum Zitat Rad, F. M., Fung, A. S., & Leong, W. H. (2013). Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada. Energy and Buildings, 61, 224–232.CrossRef Rad, F. M., Fung, A. S., & Leong, W. H. (2013). Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada. Energy and Buildings, 61, 224–232.CrossRef
46.
Zurück zum Zitat Corrêa, J. M., Farret, F. A., Canha, L. N., et al. (2004). An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Transactions on Industrial Electronics, 51(5), 1103–1112.CrossRef Corrêa, J. M., Farret, F. A., Canha, L. N., et al. (2004). An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Transactions on Industrial Electronics, 51(5), 1103–1112.CrossRef
47.
Zurück zum Zitat Pasricha, S., & Shaw, S. R. (2006). A dynamic PEM fuel cell model. IEEE Transactions on Energy Conversion, 21(2), 484–490.CrossRef Pasricha, S., & Shaw, S. R. (2006). A dynamic PEM fuel cell model. IEEE Transactions on Energy Conversion, 21(2), 484–490.CrossRef
48.
Zurück zum Zitat Huang, J. H., Zhou, H. S., Wu, Q. H., et al. (2016). Assessment of an integrated energy system embedded with power-to-gas plant. Innovative Smart Grid Technologies-Asia, 77, 196–201. Huang, J. H., Zhou, H. S., Wu, Q. H., et al. (2016). Assessment of an integrated energy system embedded with power-to-gas plant. Innovative Smart Grid Technologies-Asia, 77, 196–201.
49.
Zurück zum Zitat Sheikhi, A., Rayati, M., Bahrami, S., et al. (2015). Integrated demand side management game in smart energy hubs. IEEE Transactions on Smart Grid, 6(2), 675–683.CrossRef Sheikhi, A., Rayati, M., Bahrami, S., et al. (2015). Integrated demand side management game in smart energy hubs. IEEE Transactions on Smart Grid, 6(2), 675–683.CrossRef
50.
Zurück zum Zitat Aghaei, J., & Alizadeh, M. I. (2013). Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems). Energy, 55, 1044–1054.CrossRef Aghaei, J., & Alizadeh, M. I. (2013). Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems). Energy, 55, 1044–1054.CrossRef
51.
Zurück zum Zitat Mancarella, P., & Chicco, G. (2013). Real-time demand response from energy shifting in distributed multi-generation. IEEE Transactions on Smart Grid, 4(4), 1928–1938.CrossRef Mancarella, P., & Chicco, G. (2013). Real-time demand response from energy shifting in distributed multi-generation. IEEE Transactions on Smart Grid, 4(4), 1928–1938.CrossRef
52.
Zurück zum Zitat Alipour, M., Zare, K., & Mohammadi-Ivatloo, B. (2014). Short-term scheduling of combined heat and power generation units in the presence of demand response programs. Energy, 71, 289–301.CrossRef Alipour, M., Zare, K., & Mohammadi-Ivatloo, B. (2014). Short-term scheduling of combined heat and power generation units in the presence of demand response programs. Energy, 71, 289–301.CrossRef
53.
Zurück zum Zitat Good, N., Karangelos, E., Navarro-Espinosa, A., et al. (2015). Optimization under uncertainty of thermal storage-based flexible demand response with quantification of residential users’ discomfort. IEEE Transactions on Smart Grid, 6(5), 2333–2342.CrossRef Good, N., Karangelos, E., Navarro-Espinosa, A., et al. (2015). Optimization under uncertainty of thermal storage-based flexible demand response with quantification of residential users’ discomfort. IEEE Transactions on Smart Grid, 6(5), 2333–2342.CrossRef
54.
Zurück zum Zitat Sheikhi, A., Bahrami, S., & Ranjbar, A. M. (2015). An autonomous demand response program for electricity and natural gas networks in smart energy hubs. Energy, 89, 490–499.CrossRef Sheikhi, A., Bahrami, S., & Ranjbar, A. M. (2015). An autonomous demand response program for electricity and natural gas networks in smart energy hubs. Energy, 89, 490–499.CrossRef
55.
Zurück zum Zitat Zhang, X., Shahidehpour, M., Alabdulwahab, A., et al. (2016). Hourly electricity demand response in the stochastic day-ahead scheduling of coordinated electricity and natural gas networks. IEEE Transactions on Power Systems, 31(1), 592–601.CrossRef Zhang, X., Shahidehpour, M., Alabdulwahab, A., et al. (2016). Hourly electricity demand response in the stochastic day-ahead scheduling of coordinated electricity and natural gas networks. IEEE Transactions on Power Systems, 31(1), 592–601.CrossRef
56.
Zurück zum Zitat Pazouki, S., Haghifam, M. R., & Olamaei, J. (2013). Economical scheduling of multi carrier energy systems integrating renewable, energy storage and demand response under energy hub approach. Smart Grid Conference, 67, 80–84. Pazouki, S., Haghifam, M. R., & Olamaei, J. (2013). Economical scheduling of multi carrier energy systems integrating renewable, energy storage and demand response under energy hub approach. Smart Grid Conference, 67, 80–84.
57.
Zurück zum Zitat Pazouki, S., Haghifam, M. R., & Moser, A. (2014). Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response. International Journal of Electrical Power & Energy Systems, 61, 335–345.CrossRef Pazouki, S., Haghifam, M. R., & Moser, A. (2014). Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response. International Journal of Electrical Power & Energy Systems, 61, 335–345.CrossRef
58.
Zurück zum Zitat Orehounig, K., Evins, R., & Dorer, V. (2015). Integration of decentralized energy systems in neighbourhoods using the energy hub approach. Applied Energy, 154, 277–289.CrossRef Orehounig, K., Evins, R., & Dorer, V. (2015). Integration of decentralized energy systems in neighbourhoods using the energy hub approach. Applied Energy, 154, 277–289.CrossRef
59.
Zurück zum Zitat Nguyen, D. T., & Le, L. B. (2014). Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics. IEEE Transactions on Smart Grid, 5(4), 1608–1620.CrossRef Nguyen, D. T., & Le, L. B. (2014). Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics. IEEE Transactions on Smart Grid, 5(4), 1608–1620.CrossRef
60.
Zurück zum Zitat Vrettos, E., Oldewurtel, F., & Andersson, G. (2016). Robust energy-constrained frequency reserves from aggregations of commercial buildings. IEEE Transactions on Power Systems, 31(6), 4272–4285.CrossRef Vrettos, E., Oldewurtel, F., & Andersson, G. (2016). Robust energy-constrained frequency reserves from aggregations of commercial buildings. IEEE Transactions on Power Systems, 31(6), 4272–4285.CrossRef
61.
Zurück zum Zitat Bahrami, S., & Sheikhi, A. (2016). From demand response in smart grid toward integrated demand response in smart energy hub. IEEE Transactions on Smart Grid, 7(2), 650–658. Bahrami, S., & Sheikhi, A. (2016). From demand response in smart grid toward integrated demand response in smart energy hub. IEEE Transactions on Smart Grid, 7(2), 650–658.
62.
Zurück zum Zitat Ma, L., Zhang, J., Tushar, W., & Yuen, C. (2016). Energy management for joint operation of CHP and PV prosumers inside a grid-connected microgrid: A game theoretic approach. IEEE Transactions on Industrial Informatics, 12(5), 1930–1942.CrossRef Ma, L., Zhang, J., Tushar, W., & Yuen, C. (2016). Energy management for joint operation of CHP and PV prosumers inside a grid-connected microgrid: A game theoretic approach. IEEE Transactions on Industrial Informatics, 12(5), 1930–1942.CrossRef
64.
Zurück zum Zitat Huang, A. (2010). FREEDM system-a vision for the future grid. IEEE PES General Meeting IEEE, 18, 1–4. Huang, A. (2010). FREEDM system-a vision for the future grid. IEEE PES General Meeting IEEE, 18, 1–4.
65.
Zurück zum Zitat Xu, Y., Zhang, J., Wang, W., et al. (2011). Energy router: Architectures and functionalities toward Energy internet. Smart grid communications. 2011 IEEE international conference on IEEE, 16, 31–36. Xu, Y., Zhang, J., Wang, W., et al. (2011). Energy router: Architectures and functionalities toward Energy internet. Smart grid communications. 2011 IEEE international conference on IEEE, 16, 31–36.
66.
Zurück zum Zitat Zhang, J., Wang, W., & Bhattacharya, S. (2012). Architecture of solid state transformer-based energy router and models of energy traffic. IEEE PES Innovative Smart Grid Technologies IEEE, 2012, 1–8. Zhang, J., Wang, W., & Bhattacharya, S. (2012). Architecture of solid state transformer-based energy router and models of energy traffic. IEEE PES Innovative Smart Grid Technologies IEEE, 2012, 1–8.
68.
Zurück zum Zitat Vermesan, O., Blystad, L. C., Zafalon, R., et al. (2011). Internet of energy–Connecting energy anywhere anytime (Advanced microsystems for automotive applications) (pp. 33–48). Berlin: Springer. Vermesan, O., Blystad, L. C., Zafalon, R., et al. (2011). Internet of energy–Connecting energy anywhere anytime (Advanced microsystems for automotive applications) (pp. 33–48). Berlin: Springer.
69.
Zurück zum Zitat Qadrdan, M., Chaudry, M., Wu, J., et al. (2010). Impact of a large penetration of wind generation on the GB gas network. Energy Policy, 38(10), 5684–5695.CrossRef Qadrdan, M., Chaudry, M., Wu, J., et al. (2010). Impact of a large penetration of wind generation on the GB gas network. Energy Policy, 38(10), 5684–5695.CrossRef
71.
Zurück zum Zitat Zhang, X., Karady, G. G., & Ariaratnam, S. T. (2014). Optimal allocation of CHP-based distributed generation on urban energy distribution networks. IEEE Transactions on Sustainable Energy, 5(1), 246–253.CrossRef Zhang, X., Karady, G. G., & Ariaratnam, S. T. (2014). Optimal allocation of CHP-based distributed generation on urban energy distribution networks. IEEE Transactions on Sustainable Energy, 5(1), 246–253.CrossRef
72.
Zurück zum Zitat Chen, X., Xia, Q., Kang, C., et al. (2012). A rural heat load direct control model for wind power integration in China. 2012 IEEE Power and Energy Society General Meeting (pp. 1–6). Chen, X., Xia, Q., Kang, C., et al. (2012). A rural heat load direct control model for wind power integration in China. 2012 IEEE Power and Energy Society General Meeting (pp. 1–6).
73.
Zurück zum Zitat Ellis, M. W., Von Spakovsky, M. R., & Nelson, D. J. (2001). Fuel cell systems: Efficient, flexible energy conversion for the 21st century. Proceedings of the IEEE, 89(12), 1808–1818.CrossRef Ellis, M. W., Von Spakovsky, M. R., & Nelson, D. J. (2001). Fuel cell systems: Efficient, flexible energy conversion for the 21st century. Proceedings of the IEEE, 89(12), 1808–1818.CrossRef
74.
Zurück zum Zitat Lemofouet, S., & Rufer, A. (2005). Hybrid energy storage systems based on compressed air and supercapacitors with maximum efficiency point tracking. Power electronics and applications, 2005 European conference on. IEEE 2005: 10. Lemofouet, S., & Rufer, A. (2005). Hybrid energy storage systems based on compressed air and supercapacitors with maximum efficiency point tracking. Power electronics and applications, 2005 European conference on. IEEE 2005: 10.
75.
Zurück zum Zitat Mukherjee, U., Walker, S., Maroufmashat, A., et al. (2016). Power-to-gas to meet transportation demand while providing ancillary services to the electrical grid. Smart Energy Grid Engineering, IEEE, 89, 221–225.CrossRef Mukherjee, U., Walker, S., Maroufmashat, A., et al. (2016). Power-to-gas to meet transportation demand while providing ancillary services to the electrical grid. Smart Energy Grid Engineering, IEEE, 89, 221–225.CrossRef
76.
Zurück zum Zitat Liu, C., Shahidehpour, M., Fu, Y., et al. (2009). Security-constrained unit commitment with natural gas transmission constraints. IEEE Transactions on Power Systems, 24(3), 1523–1536.CrossRef Liu, C., Shahidehpour, M., Fu, Y., et al. (2009). Security-constrained unit commitment with natural gas transmission constraints. IEEE Transactions on Power Systems, 24(3), 1523–1536.CrossRef
77.
Zurück zum Zitat Tushar, W., Chai, B., Yuen, C., et al. (2016). Energy storage sharing in smart grid: A modified auction-based approach. IEEE Transactions on Smart Grid, 7(3), 1462–1475.CrossRef Tushar, W., Chai, B., Yuen, C., et al. (2016). Energy storage sharing in smart grid: A modified auction-based approach. IEEE Transactions on Smart Grid, 7(3), 1462–1475.CrossRef
78.
Zurück zum Zitat Abbasi, A. R., & Seifi, A. R. (2014). Simultaneous integrated stochastic electrical and thermal energy expansion planning. IET Generation, Transmission & Distribution, 8(6), 1017–1027.CrossRef Abbasi, A. R., & Seifi, A. R. (2014). Simultaneous integrated stochastic electrical and thermal energy expansion planning. IET Generation, Transmission & Distribution, 8(6), 1017–1027.CrossRef
79.
Zurück zum Zitat Yao, W., Zhao, J., Wen, F., et al. (2014). A multi-objective collaborative planning strategy for integrated power distribution and electric vehicle charging systems. IEEE Transactions on Power Systems, 29(4), 1811–1821.CrossRef Yao, W., Zhao, J., Wen, F., et al. (2014). A multi-objective collaborative planning strategy for integrated power distribution and electric vehicle charging systems. IEEE Transactions on Power Systems, 29(4), 1811–1821.CrossRef
80.
Zurück zum Zitat Salimi, M., Ghasemi, H., Adelpour, M., et al. (2015). Optimal planning of energy hubs in interconnected energy systems: A case study for natural gas and electricity. IET Generation, Transmission & Distribution, 9(8), 695–707.CrossRef Salimi, M., Ghasemi, H., Adelpour, M., et al. (2015). Optimal planning of energy hubs in interconnected energy systems: A case study for natural gas and electricity. IET Generation, Transmission & Distribution, 9(8), 695–707.CrossRef
81.
Zurück zum Zitat Kirschen, D. S., Strbac, G., Cumperayot, P., et al. (2000). Factoring the elasticity of demand in electricity prices. IEEE Transactions on Power Systems, 15(2), 612–617.CrossRef Kirschen, D. S., Strbac, G., Cumperayot, P., et al. (2000). Factoring the elasticity of demand in electricity prices. IEEE Transactions on Power Systems, 15(2), 612–617.CrossRef
82.
Zurück zum Zitat Solanki, B. V., Raghurajan, A., Bhattacharya, K., et al. (2015). Including smart loads for optimal demand response in integrated Energy Management Systems for Isolated Microgrids. IEEE Transactions on Smart Grid, 99, 1–10. Solanki, B. V., Raghurajan, A., Bhattacharya, K., et al. (2015). Including smart loads for optimal demand response in integrated Energy Management Systems for Isolated Microgrids. IEEE Transactions on Smart Grid, 99, 1–10.
83.
Zurück zum Zitat Wang, Q., Zhang, C., Ding, Y., et al. (2015). Review of real-time electricity markets for integrating distributed energy resources and demand response. Applied Energy, 138, 695–706.CrossRef Wang, Q., Zhang, C., Ding, Y., et al. (2015). Review of real-time electricity markets for integrating distributed energy resources and demand response. Applied Energy, 138, 695–706.CrossRef
1.
Zurück zum Zitat Neyestani, N., Damavandi, M. Y., Shafie-khah, M., et al. (2015). Uncertainty characterization of carrier-based demand response in smart multi-energy systems. 2015 IEEE 5th international conference on power engineering, Energy and electrical drives IEEE (pp. 366–371). Neyestani, N., Damavandi, M. Y., Shafie-khah, M., et al. (2015). Uncertainty characterization of carrier-based demand response in smart multi-energy systems. 2015 IEEE 5th international conference on power engineering, Energy and electrical drives IEEE (pp. 366–371).
2.
Zurück zum Zitat Arteconi, A., Patteeuw, D., Bruninx, K., et al. (2016). Active demand response with electric heating systems: Impact of market penetration. Applied Energy, 177, 636–648.CrossRef Arteconi, A., Patteeuw, D., Bruninx, K., et al. (2016). Active demand response with electric heating systems: Impact of market penetration. Applied Energy, 177, 636–648.CrossRef
3.
Zurück zum Zitat Pazouki, S., Haghifam, M. R., & Olamaei, J. (2013). Economical scheduling of multi carrier energy systems integrating renewable, Energy storage and demand response under Energy hub approach. Smart Grid Conference IEEE, 12, 80–84. Pazouki, S., Haghifam, M. R., & Olamaei, J. (2013). Economical scheduling of multi carrier energy systems integrating renewable, Energy storage and demand response under Energy hub approach. Smart Grid Conference IEEE, 12, 80–84.
4.
Zurück zum Zitat Gitizadeh, M., Farhadi, S., & Safarloo, S. (2014). Multi-objective energy management of CHP-based microgrid considering demand response programs. Smart Grid Conference IEEE, 15, 1–7. Gitizadeh, M., Farhadi, S., & Safarloo, S. (2014). Multi-objective energy management of CHP-based microgrid considering demand response programs. Smart Grid Conference IEEE, 15, 1–7.
5.
Zurück zum Zitat Zhang, X., Shahidehpour, M., Alabdulwahab, A., et al. (2015). Optimal expansion planning of energy hub with multiple energy infrastructures. IEEE Transactions on Smart Grid, 6(5), 2302–2311.CrossRef Zhang, X., Shahidehpour, M., Alabdulwahab, A., et al. (2015). Optimal expansion planning of energy hub with multiple energy infrastructures. IEEE Transactions on Smart Grid, 6(5), 2302–2311.CrossRef
6.
Zurück zum Zitat Arteconi, A., Hewitt, N. J., & Polonara, F. (2012). State of the art of thermal storage for demand-side management. Applied Energy, 93, 371–389.CrossRef Arteconi, A., Hewitt, N. J., & Polonara, F. (2012). State of the art of thermal storage for demand-side management. Applied Energy, 93, 371–389.CrossRef
7.
Zurück zum Zitat Lopes, J. A. P., Soares, F. J., & Almeida, P. M. R. (2011). Integration of electric vehicles in the electric power system. Proceedings of the IEEE, 99(1), 168–183.CrossRef Lopes, J. A. P., Soares, F. J., & Almeida, P. M. R. (2011). Integration of electric vehicles in the electric power system. Proceedings of the IEEE, 99(1), 168–183.CrossRef
Metadaten
Titel
Integrated Demand Response in the Multi-Energy System
verfasst von
Pengwei Du
Ning Lu
Haiwang Zhong
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-19769-8_5