Skip to main content
Erschienen in: Acta Mechanica Sinica 6/2018

09.07.2018 | Research Paper

Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles

verfasst von: Zunyi Duan, Jun Yan, Ikjin Lee, Jingyuan Wang, Tao Yu

Erschienen in: Acta Mechanica Sinica | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace, satellite and wind turbine. Natural fundamental frequency is one of key indicators in the design requirement of the composite frame since structural resonance can be effectively avoided with the increase of the fundamental frequency. Inspired by the concept of integrated design optimization of composite frame structures and materials, the design optimization for the maximum structural fundamental frequency of fiber reinforced frame structures is proposed. An optimization model oriented at the maximum structural fundamental frequency under a composite material volume constraint is established. Two kinds of independent design variables are optimized, in which one is variables represented structural topology, the other is variables of continuous fiber winding angles. Sensitivity analysis of the frequency with respect to the two kinds of independent design variables is implemented with the semi-analytical sensitivity method. Some representative examples in the manuscript demonstrate that the integrated design optimization of composite structures can effectively explore coupled effects between structural configurations and material properties to increase the structural fundamental frequency. The proposed integrated optimization model has great potential to improve composite frames structural dynamic performance in aerospace industries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schütze, R.: Lightweight carbon fibre rods and truss structures. Mater. Des. 18, 231–238 (1997)CrossRef Schütze, R.: Lightweight carbon fibre rods and truss structures. Mater. Des. 18, 231–238 (1997)CrossRef
2.
Zurück zum Zitat Yang, C.Y., Yang, H.N.: Bending rigidity of a satellite antenna truss joint made of 3D woven composites. Mater. Sci. Technol. 16, 810–813 (2008) Yang, C.Y., Yang, H.N.: Bending rigidity of a satellite antenna truss joint made of 3D woven composites. Mater. Sci. Technol. 16, 810–813 (2008)
3.
Zurück zum Zitat Hu, B., Xue, J.X., Yan, D.Q.: Structural materials and design study for space station. Fiber Compos. 2, 60–64 (2004) Hu, B., Xue, J.X., Yan, D.Q.: Structural materials and design study for space station. Fiber Compos. 2, 60–64 (2004)
4.
Zurück zum Zitat Michell, A.G.M.: The limits of economy of material in frame-structures. Philos. Mag. 8, 589–597 (1904)CrossRef Michell, A.G.M.: The limits of economy of material in frame-structures. Philos. Mag. 8, 589–597 (1904)CrossRef
5.
Zurück zum Zitat Takezawa, A., Nishiwaki, S., Izui, K., et al.: Structural optimization based on topology optimization techniques using frame elements considering cross-sectional properties. Struct. Multidiscip. Optim. 34, 41–60 (2007)CrossRef Takezawa, A., Nishiwaki, S., Izui, K., et al.: Structural optimization based on topology optimization techniques using frame elements considering cross-sectional properties. Struct. Multidiscip. Optim. 34, 41–60 (2007)CrossRef
6.
Zurück zum Zitat Pedersen, N.L., Nielsen, A.K.: Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling. Struct. Multidiscip. Optim. 25, 436–445 (2003)CrossRef Pedersen, N.L., Nielsen, A.K.: Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling. Struct. Multidiscip. Optim. 25, 436–445 (2003)CrossRef
7.
Zurück zum Zitat Ni, C.H., Yan, J., Cheng, G.D., et al.: Integrated size and topology optimization of skeletal structures with exact frequency constraints. Struct. Multidiscip. Optim. 50, 113–128 (2014)CrossRef Ni, C.H., Yan, J., Cheng, G.D., et al.: Integrated size and topology optimization of skeletal structures with exact frequency constraints. Struct. Multidiscip. Optim. 50, 113–128 (2014)CrossRef
8.
Zurück zum Zitat Kanno, Y.: Mixed-integer second-order cone programming for global optimization of compliance of frame structure with discrete design variables. Struct. Multidiscip. Optim. 54, 301–316 (2016)MathSciNetCrossRef Kanno, Y.: Mixed-integer second-order cone programming for global optimization of compliance of frame structure with discrete design variables. Struct. Multidiscip. Optim. 54, 301–316 (2016)MathSciNetCrossRef
9.
Zurück zum Zitat Pan, J., Wang, D.Y.: Topology optimization of truss structure under dynamic response constraints. Vib. Shock 25, 8–12 (2006) Pan, J., Wang, D.Y.: Topology optimization of truss structure under dynamic response constraints. Vib. Shock 25, 8–12 (2006)
10.
Zurück zum Zitat Gholizadeh, S., Salajegheh, E., Torkzadeh, P.: Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network. J. Sound Vib. 312, 316–331 (2008)CrossRef Gholizadeh, S., Salajegheh, E., Torkzadeh, P.: Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network. J. Sound Vib. 312, 316–331 (2008)CrossRef
11.
Zurück zum Zitat An, H.C., Chen, S.Y., Huang, H.: Simultaneous optimization of stacking sequences and sizing with two-level approximations and a genetic algorithm. Compos. Struct. 123, 180–189 (2015)CrossRef An, H.C., Chen, S.Y., Huang, H.: Simultaneous optimization of stacking sequences and sizing with two-level approximations and a genetic algorithm. Compos. Struct. 123, 180–189 (2015)CrossRef
12.
Zurück zum Zitat Bert, C.W.: Optimal design of a composite-material plate to maximize its fundamental frequency. J. Sound Vib. 50, 229–237 (1977)CrossRef Bert, C.W.: Optimal design of a composite-material plate to maximize its fundamental frequency. J. Sound Vib. 50, 229–237 (1977)CrossRef
13.
Zurück zum Zitat Fukunaga, H., Sekine, H., Sato, M.: Optimal design of symmetric laminated plates for fundamental frequency. J. Sound Vib. 171, 219–229 (1994)CrossRef Fukunaga, H., Sekine, H., Sato, M.: Optimal design of symmetric laminated plates for fundamental frequency. J. Sound Vib. 171, 219–229 (1994)CrossRef
14.
Zurück zum Zitat Sørensen, S.N., Lund, E.: Topology and thickness optimization of laminated composites including manufacturing constraints. Struct. Multidiscip. Optim. 48, 249–265 (2013)MathSciNetCrossRef Sørensen, S.N., Lund, E.: Topology and thickness optimization of laminated composites including manufacturing constraints. Struct. Multidiscip. Optim. 48, 249–265 (2013)MathSciNetCrossRef
15.
Zurück zum Zitat Sørensen, S.N., Sørensen, R., Lund, E.: DMTO-a method for discrete material and thickness optimization of laminated composite structures. Struct. Multidiscip. Optim. 50, 25–47 (2014)CrossRef Sørensen, S.N., Sørensen, R., Lund, E.: DMTO-a method for discrete material and thickness optimization of laminated composite structures. Struct. Multidiscip. Optim. 50, 25–47 (2014)CrossRef
16.
Zurück zum Zitat Du, S.Y.: Advanced composite materials and aerospace engineering. Acta Mater. Compos. Sin. 24, 1–12 (2007) Du, S.Y.: Advanced composite materials and aerospace engineering. Acta Mater. Compos. Sin. 24, 1–12 (2007)
17.
Zurück zum Zitat Ashby, M.F.: Multi-objective optimization in material design and selection. Acta Mater. 48, 359–369 (2000)CrossRef Ashby, M.F.: Multi-objective optimization in material design and selection. Acta Mater. 48, 359–369 (2000)CrossRef
18.
Zurück zum Zitat Ferreira, R.T.L., Rodrigues, H.C., Guedes, J.M., et al.: Hierarchical optimization of laminated fiber reinforced composites. Compos. Struct. 107, 246–259 (2014)CrossRef Ferreira, R.T.L., Rodrigues, H.C., Guedes, J.M., et al.: Hierarchical optimization of laminated fiber reinforced composites. Compos. Struct. 107, 246–259 (2014)CrossRef
19.
Zurück zum Zitat Liu, L., Yan, J., Cheng, G.D.: Optimum structure with homogeneous optimum truss-like material. Comput. Struct. 86, 1417–1425 (2008)CrossRef Liu, L., Yan, J., Cheng, G.D.: Optimum structure with homogeneous optimum truss-like material. Comput. Struct. 86, 1417–1425 (2008)CrossRef
20.
Zurück zum Zitat Deng, J.D., Yan, J., Cheng, G.D.: Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct. Multidiscip. Optim. 47, 583–597 (2013)MathSciNetCrossRef Deng, J.D., Yan, J., Cheng, G.D.: Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct. Multidiscip. Optim. 47, 583–597 (2013)MathSciNetCrossRef
21.
Zurück zum Zitat Gao, T., Zhang, W.H., Duysinx, P.: Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint. Struct. Multidiscip. Optim. 48, 1075–1088 (2013)MathSciNetCrossRef Gao, T., Zhang, W.H., Duysinx, P.: Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint. Struct. Multidiscip. Optim. 48, 1075–1088 (2013)MathSciNetCrossRef
22.
Zurück zum Zitat Gao, T., Zhang, W.H., Duysinx, P.: A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int. J. Numer. Methods Eng. 91, 98–114 (2012)CrossRef Gao, T., Zhang, W.H., Duysinx, P.: A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int. J. Numer. Methods Eng. 91, 98–114 (2012)CrossRef
23.
Zurück zum Zitat Niu, B., Yan, J., Cheng, G.D.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multidiscip. Optim. 39, 115–132 (2009)CrossRef Niu, B., Yan, J., Cheng, G.D.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multidiscip. Optim. 39, 115–132 (2009)CrossRef
24.
Zurück zum Zitat An, H.C., Chen, S.Y., Huang, H.: Laminate stacking sequence optimization with strength constraints using two-level approximations and adaptive genetic algorithm. Struct. Multidiscip. Optim. 51, 903–918 (2015)CrossRef An, H.C., Chen, S.Y., Huang, H.: Laminate stacking sequence optimization with strength constraints using two-level approximations and adaptive genetic algorithm. Struct. Multidiscip. Optim. 51, 903–918 (2015)CrossRef
25.
Zurück zum Zitat Duan, Z.Y., Yan, J., Zhao, G.Z.: Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model. Struct. Multidiscip. Optim. 51, 721–732 (2015)CrossRef Duan, Z.Y., Yan, J., Zhao, G.Z.: Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model. Struct. Multidiscip. Optim. 51, 721–732 (2015)CrossRef
26.
Zurück zum Zitat Yan, J., Duan, Z.Y., Lund, E., et al.: Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model. Acta Mech. Sin. 32, 430–441 (2016)MathSciNetCrossRef Yan, J., Duan, Z.Y., Lund, E., et al.: Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model. Acta Mech. Sin. 32, 430–441 (2016)MathSciNetCrossRef
27.
Zurück zum Zitat Yan, J., Duan, Z.Y., Lund, E., et al.: Concurrent multi-scale design optimization of composite frames with manufacturing constraints. Struct. Multidiscip. Optim. 56, 519–533 (2017)CrossRef Yan, J., Duan, Z.Y., Lund, E., et al.: Concurrent multi-scale design optimization of composite frames with manufacturing constraints. Struct. Multidiscip. Optim. 56, 519–533 (2017)CrossRef
28.
Zurück zum Zitat Guo, X., Zhang, W.S., Zhong, W.L.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)CrossRef Guo, X., Zhang, W.S., Zhong, W.L.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)CrossRef
29.
Zurück zum Zitat Guo, X., Zhang, W.S., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)MathSciNetCrossRef Guo, X., Zhang, W.S., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)MathSciNetCrossRef
30.
Zurück zum Zitat Guo, X., Zhang, W.S., Zhong, W.L.: Explicit feature control in structural topology optimization via level set method. Comput. Methods Appl. Mech. Eng. 272, 354–378 (2014)MathSciNetCrossRef Guo, X., Zhang, W.S., Zhong, W.L.: Explicit feature control in structural topology optimization via level set method. Comput. Methods Appl. Mech. Eng. 272, 354–378 (2014)MathSciNetCrossRef
31.
Zurück zum Zitat Zuo, Z.H., Huang, X.D., Rong, J.H., et al.: Multi-scale design of composite materials and structures for maximum natural frequencies. Mater. Des. 51, 1023–1034 (2013)CrossRef Zuo, Z.H., Huang, X.D., Rong, J.H., et al.: Multi-scale design of composite materials and structures for maximum natural frequencies. Mater. Des. 51, 1023–1034 (2013)CrossRef
32.
Zurück zum Zitat Du, J.B., Olhoff, N.: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct. Multidiscip. Optim. 34, 91–110 (2007)MathSciNetCrossRef Du, J.B., Olhoff, N.: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct. Multidiscip. Optim. 34, 91–110 (2007)MathSciNetCrossRef
33.
Zurück zum Zitat Dorn, W.S.: Automatic design of optimal structures. J. Mec. 3, 25–52 (1964) Dorn, W.S.: Automatic design of optimal structures. J. Mec. 3, 25–52 (1964)
34.
Zurück zum Zitat Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, Berlin (2013)MATH Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, Berlin (2013)MATH
35.
Zurück zum Zitat Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)MathSciNetCrossRef Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)MathSciNetCrossRef
36.
Zurück zum Zitat Blasques, J.P.: User’s Manuel for BECAS. Technical University of Denmark (2012) Blasques, J.P.: User’s Manuel for BECAS. Technical University of Denmark (2012)
37.
Zurück zum Zitat Lund, E.: Finite element based design sensitivity analysis and optimization. Ph.D. Thesis, Institute of Mechanical Engineering, Aalborg University, Denmark (1994) Lund, E.: Finite element based design sensitivity analysis and optimization. Ph.D. Thesis, Institute of Mechanical Engineering, Aalborg University, Denmark (1994)
38.
Zurück zum Zitat Cheng, G.D., Olhoff, N.: Rigid body motion test against error in semi-analytical sensitivity analysis. Comput. Struct. 46, 515–527 (1993)CrossRef Cheng, G.D., Olhoff, N.: Rigid body motion test against error in semi-analytical sensitivity analysis. Comput. Struct. 46, 515–527 (1993)CrossRef
39.
Zurück zum Zitat Blasques, J.P., Stolpe, M.: Maximum stiffness and minimum weight optimization of laminated composite beams using continuous fiber angles. Struct. Multidiscip. Optim. 43, 573–588 (2011)CrossRef Blasques, J.P., Stolpe, M.: Maximum stiffness and minimum weight optimization of laminated composite beams using continuous fiber angles. Struct. Multidiscip. Optim. 43, 573–588 (2011)CrossRef
Metadaten
Titel
Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles
verfasst von
Zunyi Duan
Jun Yan
Ikjin Lee
Jingyuan Wang
Tao Yu
Publikationsdatum
09.07.2018
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 6/2018
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0784-x

Weitere Artikel der Ausgabe 6/2018

Acta Mechanica Sinica 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.