Skip to main content

2010 | OriginalPaper | Buchkapitel

Integrated Microfluidic Systems

verfasst von : Shohei Kaneda, Teruo Fujii

Erschienen in: Nano/Micro Biotechnology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using unique physical phenomena at the microscale, such as laminar flow, mixing by diffusion, relative increase of the efficiency of heat exchange, surface tension and friction due to the increase of surface-to-volume ratio by downscaling, research in the field of microfluidic devices, aims at miniaturization of (bio)chemical apparatus for high-throughput analyses. Microchannel networks as core components of microfluidic devices are fabricated on various materials, such as silicon, glass, polymers, metals, etc., using microfabrication techniques adopted from the semiconductor industry and microelectromechanical systems (MEMS) technology, enabling integration of the components capable of performing various operations in microchannel networks. This chapter describes examples of diverse integrated microfluidic devices that incorporate functional components such as heaters for reaction temperature control, micropumps for liquid transportation, air vent structures for pneumatic manipulation of small volume droplets, optical fibers with aspherical lens structures for fluorescence detection, and electrochemical sensors for monitoring of glucose consumption during cell culture. The focus of this review is these integrated components and systems that realize useful functionalities for biochemical analyses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636CrossRef Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636CrossRef
2.
Zurück zum Zitat Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74:2637–2652CrossRef Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74:2637–2652CrossRef
3.
Zurück zum Zitat Verpoorte EB, Rooij NFD (2003) Microfluidics meets MEMS. Proc IEEE 91:930–953CrossRef Verpoorte EB, Rooij NFD (2003) Microfluidics meets MEMS. Proc IEEE 91:930–953CrossRef
4.
Zurück zum Zitat McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRef McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRef
5.
Zurück zum Zitat Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56:267–287CrossRef Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56:267–287CrossRef
6.
Zurück zum Zitat Belder D, Ludwig M (2003) Surface modification in microchip electrophoresis. Electrophoresis 24:3595–3606CrossRef Belder D, Ludwig M (2003) Surface modification in microchip electrophoresis. Electrophoresis 24:3595–3606CrossRef
7.
Zurück zum Zitat Northrup MA, Ching MT, White RM, Watson RT (1993) DNA amplification with a microfabricated reaction chamber. In: Transducers’93 digest of technical papers, pp 924–926 Northrup MA, Ching MT, White RM, Watson RT (1993) DNA amplification with a microfabricated reaction chamber. In: Transducers’93 digest of technical papers, pp 924–926
8.
Zurück zum Zitat Kopp MU, Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048CrossRef Kopp MU, Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048CrossRef
9.
Zurück zum Zitat Yamamoto T, Fujii T, Nojima T (2002) PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis. Lab Chip 2:197–202CrossRef Yamamoto T, Fujii T, Nojima T (2002) PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis. Lab Chip 2:197–202CrossRef
10.
Zurück zum Zitat Fukuba T, Yamamoto T, Naganuma T, Fujii T (2004) Microfabricated flow-through device for DNA amplification – towards in situ gene analysis. Chem Eng J 101:151–156CrossRef Fukuba T, Yamamoto T, Naganuma T, Fujii T (2004) Microfabricated flow-through device for DNA amplification – towards in situ gene analysis. Chem Eng J 101:151–156CrossRef
11.
Zurück zum Zitat Tokeshi M, Minagawa T, Uchiyama K, Hibara A, Sato K, Hisamoto H, Kitamori T (2002) Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal Chem 74:1565–1571CrossRef Tokeshi M, Minagawa T, Uchiyama K, Hibara A, Sato K, Hisamoto H, Kitamori T (2002) Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal Chem 74:1565–1571CrossRef
12.
Zurück zum Zitat Fair R (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluidics 3:245–281CrossRef Fair R (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluidics 3:245–281CrossRef
13.
Zurück zum Zitat Jones TB, Gunji M, Washizu M, Feldman MJ (2001) Dielectrophoretic liquid actuation and nanodroplet formation. J Appl Phys 89:1441–1448CrossRef Jones TB, Gunji M, Washizu M, Feldman MJ (2001) Dielectrophoretic liquid actuation and nanodroplet formation. J Appl Phys 89:1441–1448CrossRef
14.
Zurück zum Zitat Zheng B, Tice JD, Ismagilov RF (2004) Formation of arrayed droplets by soft lithography and two-phase fluid flow, and application in protein crystallization. Adv Mater 16:1365–1368CrossRef Zheng B, Tice JD, Ismagilov RF (2004) Formation of arrayed droplets by soft lithography and two-phase fluid flow, and application in protein crystallization. Adv Mater 16:1365–1368CrossRef
15.
Zurück zum Zitat Hosokawa K, Fujii T, Endo I (1999) Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device. Anal Chem 71:4781–4785CrossRef Hosokawa K, Fujii T, Endo I (1999) Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device. Anal Chem 71:4781–4785CrossRef
16.
Zurück zum Zitat Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220CrossRef Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220CrossRef
17.
Zurück zum Zitat Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, Demello AJ (2008) Microdroplets: a sea of applications? Lab Chip 8:1244–1254CrossRef Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, Demello AJ (2008) Microdroplets: a sea of applications? Lab Chip 8:1244–1254CrossRef
18.
Zurück zum Zitat Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, de Rooij N, Delamarche E (2002) Autonomous microfluidic capillary system. Anal Chem 74:6139–6144CrossRef Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, de Rooij N, Delamarche E (2002) Autonomous microfluidic capillary system. Anal Chem 74:6139–6144CrossRef
19.
Zurück zum Zitat Lai S, Wang S, Luo J, Lee LJ, Yang S-T, Madou MJ (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 76:1832–1837CrossRef Lai S, Wang S, Luo J, Lee LJ, Yang S-T, Madou MJ (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 76:1832–1837CrossRef
20.
Zurück zum Zitat McKnight TE, Culbertson CT, Jacobson SC, Ramsey JM (2001) Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. Anal Chem 73:4045–4049CrossRef McKnight TE, Culbertson CT, Jacobson SC, Ramsey JM (2001) Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. Anal Chem 73:4045–4049CrossRef
21.
Zurück zum Zitat Fujii T, Sando Y, Higashino K, Fujii Y (2003) A plug and play microfluidic device. Lab Chip 3:193–197CrossRef Fujii T, Sando Y, Higashino K, Fujii Y (2003) A plug and play microfluidic device. Lab Chip 3:193–197CrossRef
22.
Zurück zum Zitat Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. J Chromatogr A 593:253–258CrossRef Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. J Chromatogr A 593:253–258CrossRef
23.
Zurück zum Zitat Harrison DJ, Manz A, Fan Z, Luedi H, Widmer HM (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 64:1926–1932CrossRef Harrison DJ, Manz A, Fan Z, Luedi H, Widmer HM (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 64:1926–1932CrossRef
24.
Zurück zum Zitat Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261:895–897CrossRef Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261:895–897CrossRef
25.
Zurück zum Zitat Kaneda S, Nojima T, Yamamoto T, Fujii T (2008) A droplet on demand microfluidic device for detecting DNA single base substitution using PNA probe. In: Proceedings of the micro total analysis systems 2008, University of Tokyo, Tokyo, pp 176–178 Kaneda S, Nojima T, Yamamoto T, Fujii T (2008) A droplet on demand microfluidic device for detecting DNA single base substitution using PNA probe. In: Proceedings of the micro total analysis systems 2008, University of Tokyo, Tokyo, pp 176–178
26.
Zurück zum Zitat Webster JR, Burns MA, Burke DT, Mastrangelo CH (2001) Monolithic capillary electrophoresis device with integrated fluorescence detector. Anal Chem 73:1622–1626CrossRef Webster JR, Burns MA, Burke DT, Mastrangelo CH (2001) Monolithic capillary electrophoresis device with integrated fluorescence detector. Anal Chem 73:1622–1626CrossRef
27.
Zurück zum Zitat Chabinyc ML, Chiu DT, McDonald JC, Stroock AD, Christian JF, Karger AM, Whitesides GM (2001) An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem 73:4491–4498CrossRef Chabinyc ML, Chiu DT, McDonald JC, Stroock AD, Christian JF, Karger AM, Whitesides GM (2001) An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem 73:4491–4498CrossRef
28.
Zurück zum Zitat Camou S, Fujita H, Fujii T (2003) PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45CrossRef Camou S, Fujita H, Fujii T (2003) PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45CrossRef
29.
Zurück zum Zitat Ono K, Kaneda S, Camou S, Fujii T (2003) Integration of multi-aspherical lenses and optical fibers onto a PDMS microfluidic device for fluorescence-based detection. In: Proceedings of the micro total analysis systems 2003, pp 1307–1310 Ono K, Kaneda S, Camou S, Fujii T (2003) Integration of multi-aspherical lenses and optical fibers onto a PDMS microfluidic device for fluorescence-based detection. In: Proceedings of the micro total analysis systems 2003, pp 1307–1310
30.
Zurück zum Zitat Joseph W (2005) Electrochemical detection for capillary electrophoresis microchips: a review. Electroanalysis 17:1133–1140CrossRef Joseph W (2005) Electrochemical detection for capillary electrophoresis microchips: a review. Electroanalysis 17:1133–1140CrossRef
31.
Zurück zum Zitat Pereira-Rodrigues N, Sakai Y, Fujii T (2008) Cell-based microfluidic biochip for the electrochemical real-time monitoring of glucose and oxygen. Sens Actuators B Chem 132:608–613CrossRef Pereira-Rodrigues N, Sakai Y, Fujii T (2008) Cell-based microfluidic biochip for the electrochemical real-time monitoring of glucose and oxygen. Sens Actuators B Chem 132:608–613CrossRef
32.
Zurück zum Zitat Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584CrossRef Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584CrossRef
Metadaten
Titel
Integrated Microfluidic Systems
verfasst von
Shohei Kaneda
Teruo Fujii
Copyright-Jahr
2010
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2010_68

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.