Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 3/2015

01.03.2015 | RESEARCH PAPER

Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model

verfasst von: Zunyi Duan, Jun Yan, Guozhong Zhao

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on discrete material optimization and topology optimization technologies, this paper discusses the problem of integrated optimization design of the material and structure of fiber-reinforced composites by considering the characteristics of the discrete variable of fiber ply angle because of the manufacture requirements. An optimization model based on the minimum structural compliance with a specified composite volume constraint is established. The ply angle and the distribution of the composite material are introduced as independent variables in two geometric scales (material and structural scales). The void material is added into the optional discrete material set to realize the topology change of the structure. This paper proposes an improved HPDMO (Heaviside Penalization of Discrete Material Optimization) model to obtain a better convergent result, and an explicit sensitivity analysis is performed. The effects of the HPDMO model on the convergence rate of the optimization results, the objective function value and the iteration history are studied and compared with those from the classical Discrete Material Optimization model and the Continuous Discrete Material Optimization model in this paper. Numerical examples in this paper show that the HPDMO model can effectively achieve the integrated optimization of the fiber ply angle and its distribution in the structural domain, and can also considerably improve the convergence rate of the optimal results compared with other DMO models. This model will help to reduce the manufacture cost of the optimal design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Banichuk NV, Karihaloo BL (1976) Minimum-weight design of multipurpose cylindrical bars. Int J Solids Struct 12(4):267–273CrossRefMATH Banichuk NV, Karihaloo BL (1976) Minimum-weight design of multipurpose cylindrical bars. Int J Solids Struct 12(4):267–273CrossRefMATH
Zurück zum Zitat Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefMathSciNet Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefMathSciNet
Zurück zum Zitat Bendsoe M, Sigmund O (2003) Topology optimization-theory, methods and applications. Springer, Berlin Bendsoe M, Sigmund O (2003) Topology optimization-theory, methods and applications. Springer, Berlin
Zurück zum Zitat Bruyneel M (2011) SFP-a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43(1):17–27CrossRef Bruyneel M (2011) SFP-a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43(1):17–27CrossRef
Zurück zum Zitat Callahan KJ, Weeks GE (1992) Optimum design of composite laminates using genetic algorithms. Compos Eng 2(3):149–160CrossRef Callahan KJ, Weeks GE (1992) Optimum design of composite laminates using genetic algorithms. Compos Eng 2(3):149–160CrossRef
Zurück zum Zitat Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38CrossRefMathSciNet Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38CrossRefMathSciNet
Zurück zum Zitat Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures a review. Am Soc Mech Eng 54(4):331–390 Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures a review. Am Soc Mech Eng 54(4):331–390
Zurück zum Zitat Ferreira HTL, Rodrigues HC, Guedes JM, Hernandes JA (2013) Hierarchical optimization of laminated fiber reinforced composites. In: Proceedings of 10th word congress on structural and multidisciplinary optimization Orlando, Florida, USA, May 19–24 Ferreira HTL, Rodrigues HC, Guedes JM, Hernandes JA (2013) Hierarchical optimization of laminated fiber reinforced composites. In: Proceedings of 10th word congress on structural and multidisciplinary optimization Orlando, Florida, USA, May 19–24
Zurück zum Zitat Froes FH, Suryanarayana C, Eliezer D (1992) Synthesis, properties and applications of titanium aluminides. J Mater Sci 27(19):5113–5140CrossRef Froes FH, Suryanarayana C, Eliezer D (1992) Synthesis, properties and applications of titanium aluminides. J Mater Sci 27(19):5113–5140CrossRef
Zurück zum Zitat Gao T, Zhang W (2011) A mass constraint formulation for structural topology optimization with multiphase materials[J]. Int J Numer Methods Eng 88(8):774–796CrossRefMATH Gao T, Zhang W (2011) A mass constraint formulation for structural topology optimization with multiphase materials[J]. Int J Numer Methods Eng 88(8):774–796CrossRefMATH
Zurück zum Zitat Gao T, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114CrossRefMATH Gao T, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114CrossRefMATH
Zurück zum Zitat Graesser DL, Zabinsky ZB, Tuttle ME, Kim GI (1991) Designing laminated composites using random search techniques. Compos Struct 18(4):311–325CrossRef Graesser DL, Zabinsky ZB, Tuttle ME, Kim GI (1991) Designing laminated composites using random search techniques. Compos Struct 18(4):311–325CrossRef
Zurück zum Zitat Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254CrossRefMATHMathSciNet Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254CrossRefMATHMathSciNet
Zurück zum Zitat Guest JK, Asadpoure A, Ha SH (2011) Eliminating beta-continuation from Heaviside projection and density filter algorithms. Struct Multidiscip Optim 44(4):443–453CrossRefMATHMathSciNet Guest JK, Asadpoure A, Ha SH (2011) Eliminating beta-continuation from Heaviside projection and density filter algorithms. Struct Multidiscip Optim 44(4):443–453CrossRefMATHMathSciNet
Zurück zum Zitat Hao Z (2002) Applications and prospects of magnesium and its alloys in aerospace. Aviat Eng Maint 04:41–42 Hao Z (2002) Applications and prospects of magnesium and its alloys in aerospace. Aviat Eng Maint 04:41–42
Zurück zum Zitat Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825CrossRefMATH Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825CrossRefMATH
Zurück zum Zitat Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91(2):158–167CrossRef Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91(2):158–167CrossRef
Zurück zum Zitat Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRef Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRef
Zurück zum Zitat Nagendra S, Jestin D, Gurdal Z, Haftka RT, Watson LT (1996) Improved genetic algorithm for the design of stiffened composite panels. Comput Struct 58(3):543–555CrossRefMATH Nagendra S, Jestin D, Gurdal Z, Haftka RT, Watson LT (1996) Improved genetic algorithm for the design of stiffened composite panels. Comput Struct 58(3):543–555CrossRefMATH
Zurück zum Zitat Niu B, Olhoff N, Lund E, Cheng G (2010) Discrete material optimization of vibrating laminated composite plates for minimum sound radiation. Int J Solids Struct 47(16):2097–2114CrossRefMATH Niu B, Olhoff N, Lund E, Cheng G (2010) Discrete material optimization of vibrating laminated composite plates for minimum sound radiation. Int J Solids Struct 47(16):2097–2114CrossRefMATH
Zurück zum Zitat Park JH, Hwang JH, Lee CS, Hwang W (2001) Stacking sequence design of composite laminates for maximum strength using genetic algorithms. Compos Struct 52(2):217–231CrossRef Park JH, Hwang JH, Lee CS, Hwang W (2001) Stacking sequence design of composite laminates for maximum strength using genetic algorithms. Compos Struct 52(2):217–231CrossRef
Zurück zum Zitat Pelletier JL, Vel SS (2006) Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass. Comput Struct 84(29–30):2065–2080CrossRef Pelletier JL, Vel SS (2006) Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass. Comput Struct 84(29–30):2065–2080CrossRef
Zurück zum Zitat Powell MJD (1978) Algorithms for non-linear constraints that use lagrangian functions. Math Program 14(2):224–248CrossRefMATH Powell MJD (1978) Algorithms for non-linear constraints that use lagrangian functions. Math Program 14(2):224–248CrossRefMATH
Zurück zum Zitat Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252CrossRef Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252CrossRef
Zurück zum Zitat Du S (2007) Advanced composite materials and aerospace engineering. Acta Mater Compositae Sin 1(24):1–12 Du S (2007) Advanced composite materials and aerospace engineering. Acta Mater Compositae Sin 1(24):1–12
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424CrossRef
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 1–25 Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 1–25
Zurück zum Zitat Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRefMATH Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRefMATH
Zurück zum Zitat Weck M, Steinke P (1983) An efficient technique in shape optimization. J Struct Mech 11(4):433–449CrossRef Weck M, Steinke P (1983) An efficient technique in shape optimization. J Struct Mech 11(4):433–449CrossRef
Zurück zum Zitat Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on Heaviside functions. Struct Multidiscip Optim 41(4):495–505CrossRefMATHMathSciNet Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on Heaviside functions. Struct Multidiscip Optim 41(4):495–505CrossRefMATHMathSciNet
Metadaten
Titel
Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model
verfasst von
Zunyi Duan
Jun Yan
Guozhong Zhao
Publikationsdatum
01.03.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 3/2015
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-014-1168-x

Weitere Artikel der Ausgabe 3/2015

Structural and Multidisciplinary Optimization 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.