Zum Inhalt

Integrating BP and MGWR-SL Model to Estimate Village-Level Poor Population: An Experimental Study from Qianjiang, China

  • 08.07.2017
  • Original Research
Erschienen in:

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spatially-explicit, fine-scale mapping of poor population distribution at a village level is a necessary prerequisite for developing precise anti-poverty strategies in rural China. To address the data missing of poor population at a village scale, we proposed a modeling methodology from the perspective of spatial poverty, integrating BP and MGWR-SL (Mixed Geographically Weighted Regression model with Spatially Lagged dependent variable) that correspond to population estimation and poverty incidence estimation, respectively, to explore a more accurate and detailed village-level poor population distribution. Furthermore, we justified the accuracy, reliability, and scale effects of the model by using GIS spatial analysis and cross-validation. From the case test, we found that, the proposed model could characterize poor population distribution more accurately than other existing methods, resulting in that the errors of both population spatialization and poverty incidence for each village are less than 5% at a 500 * 500 m grid scale. It can also be inferred that the spatialization of socioeconomic data at a fine scale should take into full account of spatial heterogeneity and spatial autocorrelation for both dependent and independent variables, so as to improve the modeling accuracy. This study may provide a perspective for better understanding the detailed and accurate poverty status of data–scarce village in poverty-stricken rural areas, and serves as a scientific reference regarding decision-making in both promoting “entire-village advancement” anti-poverty harmonious development and constructing the new countryside of China.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Titel
Integrating BP and MGWR-SL Model to Estimate Village-Level Poor Population: An Experimental Study from Qianjiang, China
Verfasst von
Yanhui Wang
Jianchen Zhang
Publikationsdatum
08.07.2017
Verlag
Springer Netherlands
Erschienen in
Social Indicators Research / Ausgabe 2/2018
Print ISSN: 0303-8300
Elektronische ISSN: 1573-0921
DOI
https://doi.org/10.1007/s11205-017-1681-6
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.
Bildnachweise
Schmalkalden/© Schmalkalden, NTT Data/© NTT Data, Verlagsgruppe Beltz/© Verlagsgruppe Beltz, EGYM Wellpass GmbH/© EGYM Wellpass GmbH, rku.it GmbH/© rku.it GmbH, zfm/© zfm, ibo Software GmbH/© ibo Software GmbH, Lorenz GmbH/© Lorenz GmbH, Axians Infoma GmbH/© Axians Infoma GmbH, genua GmbH/© genua GmbH, Prosoz Herten GmbH/© Prosoz Herten GmbH, Stormshield/© Stormshield, MACH AG/© MACH AG, OEDIV KG/© OEDIV KG, Rundstedt & Partner GmbH/© Rundstedt & Partner GmbH