Skip to main content

2019 | OriginalPaper | Buchkapitel

Integrating Peridynamics with Material Point Method for Elastoplastic Material Modeling

verfasst von : Yao Lyu, Jinglu Zhang, Jian Chang, Shihui Guo, Jian Jun Zhang

Erschienen in: Advances in Computer Graphics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a novel integral-based Material Point Method (MPM) using state based peridynamics structure for modeling elastoplastic material and fracture animation. Previous partial derivative based MPM studies face challenges of underlying instability issues of particle distribution and the complexity of modeling discontinuities. To alleviate these problems, we integrate the strain metric in the basic elastic constitutive model by using material point truss structure, which outweighs differential-based methods in both accuracy and stability. To model plasticity, we incorporate our constitutive model with deviatoric flow theory and a simple yield function. It is straightforward to handle the problem of cracking in our hybrid framework. Our method adopts two time integration ways to update crack interface and fracture inner parts, which overcome the unnecessary grid duplication. Our work can create a wide range of material phenomenon including elasticity, plasticity, and fracture. Our framework provides an attractive method for producing elastoplastic materials and fracture with visual realism and high stability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Bottcher, G., Allerkamp, D., Wolter, F.E.: Virtual reality systems modelling haptic two-finger contact with deformable physical surfaces. In: 2007 International Conference on Cyberworlds (CW 2007), pp. 292–299. IEEE (2007) Bottcher, G., Allerkamp, D., Wolter, F.E.: Virtual reality systems modelling haptic two-finger contact with deformable physical surfaces. In: 2007 International Conference on Cyberworlds (CW 2007), pp. 292–299. IEEE (2007)
3.
Zurück zum Zitat Chen, W., Zhu, F., Zhao, J., Li, S., Wang, G.: Peridynamics-based fracture animation for elastoplastic solids. In: Computer Graphics Forum, vol. 37, pp. 112–124. Wiley Online Library (2018) Chen, W., Zhu, F., Zhao, J., Li, S., Wang, G.: Peridynamics-based fracture animation for elastoplastic solids. In: Computer Graphics Forum, vol. 37, pp. 112–124. Wiley Online Library (2018)
4.
Zurück zum Zitat Gao, M., Tampubolon, A.P., Jiang, C., Sifakis, E.: An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans. Graph. (TOG) 36(6), 223 (2017) Gao, M., Tampubolon, A.P., Jiang, C., Sifakis, E.: An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans. Graph. (TOG) 36(6), 223 (2017)
5.
Zurück zum Zitat Gerszewski, D., Bhattacharya, H., Bargteil, A.W.: A point-based method for animating elastoplastic solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 133–138. ACM (2009) Gerszewski, D., Bhattacharya, H., Bargteil, A.W.: A point-based method for animating elastoplastic solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 133–138. ACM (2009)
6.
Zurück zum Zitat He, X., Wang, H., Wu, E.: Projective peridynamics for modeling versatile elastoplastic materials. IEEE Trans. Vis. Comput. Graph. 24(9), 2589–2599 (2018)CrossRef He, X., Wang, H., Wu, E.: Projective peridynamics for modeling versatile elastoplastic materials. IEEE Trans. Vis. Comput. Graph. 24(9), 2589–2599 (2018)CrossRef
7.
Zurück zum Zitat Homel, M.A., Herbold, E.B.: Field-gradient partitioning for fracture and frictional contact in the material point method. Int. J. Num. Methods Eng. 109(7), 1013–1044 (2017)MathSciNetCrossRef Homel, M.A., Herbold, E.B.: Field-gradient partitioning for fracture and frictional contact in the material point method. Int. J. Num. Methods Eng. 109(7), 1013–1044 (2017)MathSciNetCrossRef
8.
Zurück zum Zitat Jiang, C., Gast, T., Teran, J.: Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans. Graph. (TOG) 36(4), 152 (2017) Jiang, C., Gast, T., Teran, J.: Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans. Graph. (TOG) 36(4), 152 (2017)
9.
Zurück zum Zitat Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method. ACM Trans. Graph. (TOG) 34(4), 51 (2015)MATH Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method. ACM Trans. Graph. (TOG) 34(4), 51 (2015)MATH
10.
Zurück zum Zitat Jiang, C., Schroeder, C., Teran, J., Stomakhin, A., Selle, A.: The material point method for simulating continuum materials. In: ACM SIGGRAPH 2016 Courses, p. 24. ACM (2016) Jiang, C., Schroeder, C., Teran, J., Stomakhin, A., Selle, A.: The material point method for simulating continuum materials. In: ACM SIGGRAPH 2016 Courses, p. 24. ACM (2016)
11.
Zurück zum Zitat Levin, D.I., Litven, J., Jones, G.L., Sueda, S., Pai, D.K.: Eulerian solid simulation with contact. ACM Trans. Graph. (TOG) 30(4), 36 (2011)CrossRef Levin, D.I., Litven, J., Jones, G.L., Sueda, S., Pai, D.K.: Eulerian solid simulation with contact. ACM Trans. Graph. (TOG) 30(4), 36 (2011)CrossRef
12.
Zurück zum Zitat Levine, J.A., Bargteil, A.W., Corsi, C., Tessendorf, J., Geist, R.: A peridynamic perspective on spring-mass fracture. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 47–55. Eurographics Association (2014) Levine, J.A., Bargteil, A.W., Corsi, C., Tessendorf, J., Geist, R.: A peridynamic perspective on spring-mass fracture. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 47–55. Eurographics Association (2014)
13.
Zurück zum Zitat Liang, Y., Benedek, T., Zhang, X., Liu, Y.: Material point method with enriched shape function for crack problems. Comput. Methods Appl. Mech. Eng. 322, 541–562 (2017)MathSciNetCrossRef Liang, Y., Benedek, T., Zhang, X., Liu, Y.: Material point method with enriched shape function for crack problems. Comput. Methods Appl. Mech. Eng. 322, 541–562 (2017)MathSciNetCrossRef
14.
Zurück zum Zitat O’brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. ACM Trans. Graph. (TOG) 21, 291–294 (2002) O’brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. ACM Trans. Graph. (TOG) 21, 291–294 (2002)
15.
Zurück zum Zitat Salsedo, F., et al.: Architectural design of the HAPTEX system. In: submitted to the Proceedings of this Conference (2005) Salsedo, F., et al.: Architectural design of the HAPTEX system. In: submitted to the Proceedings of this Conference (2005)
16.
Zurück zum Zitat Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRef Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRef
17.
Zurück zum Zitat Silling, S.A., Askari, A.: Peridynamic model for fatigue cracking. SAND2014-18590. Sandia National Laboratories, Albuquerque (2014) Silling, S.A., Askari, A.: Peridynamic model for fatigue cracking. SAND2014-18590. Sandia National Laboratories, Albuquerque (2014)
18.
Zurück zum Zitat Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)MathSciNetCrossRef Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)MathSciNetCrossRef
19.
Zurück zum Zitat Silling, S.A., Askari, A.: Practical peridynamics. Technical report, Sandia National Lab. (SNL-NM), Albuquerque, NM, United States (2014) Silling, S.A., Askari, A.: Practical peridynamics. Technical report, Sandia National Lab. (SNL-NM), Albuquerque, NM, United States (2014)
20.
Zurück zum Zitat Stomakhin, A., Howes, R., Schroeder, C., Teran, J.M.: Energetically consistent invertible elasticity. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32. Eurographics Association (2012) Stomakhin, A., Howes, R., Schroeder, C., Teran, J.M.: Energetically consistent invertible elasticity. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32. Eurographics Association (2012)
21.
Zurück zum Zitat Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. (TOG) 32(4), 102 (2013)CrossRef Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. (TOG) 32(4), 102 (2013)CrossRef
22.
Zurück zum Zitat Stomakhin, A., Teran, J., Selle, A.: Augmented material point method for simulating phase changes and varied materials, 2 Jul 2015. US Patent App. 14/323,798 Stomakhin, A., Teran, J., Selle, A.: Augmented material point method for simulating phase changes and varied materials, 2 Jul 2015. US Patent App. 14/323,798
23.
Zurück zum Zitat Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)MathSciNetCrossRef Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)MathSciNetCrossRef
24.
Zurück zum Zitat Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87(1–2), 236–252 (1995)CrossRef Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87(1–2), 236–252 (1995)CrossRef
25.
Zurück zum Zitat Tampubolon, A.P., Gast, T., Klár, G., Fu, C., Teran, J., Jiang, C., Museth, K.: Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. (TOG) 36(4), 105 (2017)CrossRef Tampubolon, A.P., Gast, T., Klár, G., Fu, C., Teran, J., Jiang, C., Museth, K.: Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. (TOG) 36(4), 105 (2017)CrossRef
26.
Zurück zum Zitat Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In: ACM SIGGRAPH Computer Graphics, vol. 22, pp. 269–278. ACM (1988) Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In: ACM SIGGRAPH Computer Graphics, vol. 22, pp. 269–278. ACM (1988)
27.
Zurück zum Zitat Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. ACM SIGGRAPH Comput. Graph. 21(4), 205–214 (1987)CrossRef Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. ACM SIGGRAPH Comput. Graph. 21(4), 205–214 (1987)CrossRef
28.
Zurück zum Zitat Xu, L., He, X., Chen, W., Li, S., Wang, G.: Reformulating hyperelastic materials with peridynamic modeling. In: Computer Graphics Forum, vol. 37, pp. 121–130. Wiley Online Library (2018) Xu, L., He, X., Chen, W., Li, S., Wang, G.: Reformulating hyperelastic materials with peridynamic modeling. In: Computer Graphics Forum, vol. 37, pp. 121–130. Wiley Online Library (2018)
29.
Zurück zum Zitat Zhu, B., Lee, M., Quigley, E., Fedkiw, R.: Codimensional non-Newtonian fluids. ACM Trans. Graph. (TOG) 34(4), 115 (2015)MATH Zhu, B., Lee, M., Quigley, E., Fedkiw, R.: Codimensional non-Newtonian fluids. ACM Trans. Graph. (TOG) 34(4), 115 (2015)MATH
Metadaten
Titel
Integrating Peridynamics with Material Point Method for Elastoplastic Material Modeling
verfasst von
Yao Lyu
Jinglu Zhang
Jian Chang
Shihui Guo
Jian Jun Zhang
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-22514-8_19