Skip to main content

2025 | OriginalPaper | Buchkapitel

Integrating the Bees Algorithm with WSAR for Search Direction Determination and Application to Constrained Design Optimisation Problems

verfasst von : Adil Baykasoglu, Mumin Emre Senol

Erschienen in: Intelligent Engineering Optimisation with the Bees Algorithm

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The bees algorithm (BA) is a novel swarm-based intelligent metaheuristic search algorithm that was proposed by Pham et al. in 2005. It has been applied to several complex optimisation problems successfully. One of the main mechanisms in BA is to direct search agents (bees) to the search sites that were discovered by the best-performing bees (elite bees). In the original BA, this mechanism is realised by generating random bees in the close neighbourhood of elite bees. In this chapter, a different approach borrowed from the weighted superposition attraction–repulsion algorithm (WSAR) is incorporated into BA for search direction determination. In this approach, attractive and repulsive superpositions are determined by considering “elite bees” and “nonselected site bees” (the worst performing bees), similar to WSAR. The performance of this new approach is tested on four different constrained engineering design optimisation problems. The obtained results are compared with the basic BA and some other metaheuristic algorithms from the literature. The performance of BA can be further improved by utilising such an approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The Bees Algorithm. Manufacturing Engineering Centre, Cardiff University, UK, Technical Note Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The Bees Algorithm. Manufacturing Engineering Centre, Cardiff University, UK, Technical Note
2.
Zurück zum Zitat Baykasoglu A (2021) Optimizing cutting conditions for minimizing cutting time in multi-pass milling via weighted superposition attraction-repulsion (WSAR) algorithm. Int J Prod Res 59(15):4633–4648CrossRef Baykasoglu A (2021) Optimizing cutting conditions for minimizing cutting time in multi-pass milling via weighted superposition attraction-repulsion (WSAR) algorithm. Int J Prod Res 59(15):4633–4648CrossRef
3.
Zurück zum Zitat Ezugwu AE, Shukla AK, Nath R, Akinyelu AA, Agushaka JO, Chiroma H, Muhuri PK (2021) Metaheuristics: a comprehensive overview and classification along with bibliometric analysis. Artif Intell Rev 54(6):4237–4316CrossRef Ezugwu AE, Shukla AK, Nath R, Akinyelu AA, Agushaka JO, Chiroma H, Muhuri PK (2021) Metaheuristics: a comprehensive overview and classification along with bibliometric analysis. Artif Intell Rev 54(6):4237–4316CrossRef
4.
Zurück zum Zitat Pham DT, Darwish AH (2010) Using the bees algorithm with Kalman filtering to train an artificial neural network for pattern classification. J Syst Control Eng 224(7):885–892 Pham DT, Darwish AH (2010) Using the bees algorithm with Kalman filtering to train an artificial neural network for pattern classification. J Syst Control Eng 224(7):885–892
5.
Zurück zum Zitat Moradi S, Razi P, Fatahi L (2011) On the application of bees algorithm to the problem of crack detection of beam-type structures. Comput Struct 89:2169–2175CrossRef Moradi S, Razi P, Fatahi L (2011) On the application of bees algorithm to the problem of crack detection of beam-type structures. Comput Struct 89:2169–2175CrossRef
6.
Zurück zum Zitat Baykasoglu A, Özbakir L, Tapkan P (2009) The bees algorithm for workload balancing in examination job assignment. Eur J Ind Eng 3(4):424–435CrossRef Baykasoglu A, Özbakir L, Tapkan P (2009) The bees algorithm for workload balancing in examination job assignment. Eur J Ind Eng 3(4):424–435CrossRef
7.
Zurück zum Zitat Fahmy AA, Kalyoncu M, Castellani M (2012) Automatic design of control systems for robot manipulators using the bees algorithm, proceedings of the institution of mechanical engineers. Part I: J Syst Control Eng 226(4):497–508 Fahmy AA, Kalyoncu M, Castellani M (2012) Automatic design of control systems for robot manipulators using the bees algorithm, proceedings of the institution of mechanical engineers. Part I: J Syst Control Eng 226(4):497–508
8.
Zurück zum Zitat Guney K, Onay M (2010) Bees algorithm for interference suppression of linear antenna arrays. Expert Syst Appl 37:3129–3135CrossRef Guney K, Onay M (2010) Bees algorithm for interference suppression of linear antenna arrays. Expert Syst Appl 37:3129–3135CrossRef
9.
Zurück zum Zitat Pham DT, Koç E (2011) Design of a two-dimensional recursive filter using the bees algorithm. Int J Autom Comput 7(3):399–402CrossRef Pham DT, Koç E (2011) Design of a two-dimensional recursive filter using the bees algorithm. Int J Autom Comput 7(3):399–402CrossRef
10.
Zurück zum Zitat Baykasoglu A, Akpinar Ş (2017) Weighted superposition attraction (WSA): a swarm intelligence algorithm for optimization problems–Part 1: unconstrained optimization. Appl Soft Comput 56:520–540CrossRef Baykasoglu A, Akpinar Ş (2017) Weighted superposition attraction (WSA): a swarm intelligence algorithm for optimization problems–Part 1: unconstrained optimization. Appl Soft Comput 56:520–540CrossRef
11.
Zurück zum Zitat Baykasoglu A, Akpinar Ş (2015) Weighted superposition attraction (WSA): a swarm intelligence algorithm for optimization problems–part 2: constrained optimization. Appl Soft Comput 37:396–415CrossRef Baykasoglu A, Akpinar Ş (2015) Weighted superposition attraction (WSA): a swarm intelligence algorithm for optimization problems–part 2: constrained optimization. Appl Soft Comput 37:396–415CrossRef
12.
Zurück zum Zitat Baykasoglu A (2022) Multiple objective optimization with weighted superposition attraction-repulsion algorithm (moWSAR). In: Book: modeling and advanced techniques in modern economics (1st ed), World Scientific Publishing. https://doi.org/10.1142/q0346 Baykasoglu A (2022) Multiple objective optimization with weighted superposition attraction-repulsion algorithm (moWSAR). In: Book: modeling and advanced techniques in modern economics (1st ed), World Scientific Publishing. https://​doi.​org/​10.​1142/​q0346
13.
Zurück zum Zitat Baykasoglu A, Senol ME (2022) Parallel WSAR for solving permutation flow shop scheduling problem. Comput Sci Math Forum 2(1):10 Baykasoglu A, Senol ME (2022) Parallel WSAR for solving permutation flow shop scheduling problem. Comput Sci Math Forum 2(1):10
14.
Zurück zum Zitat Baykasoglu A, Senol ME (2022) WSAR with levy flight for constrained optimization. In: 7th International conference on harmony search, soft computing and applications (ICHSA 2022), Virtual Conference, Seoul, South Korea Baykasoglu A, Senol ME (2022) WSAR with levy flight for constrained optimization. In: 7th International conference on harmony search, soft computing and applications (ICHSA 2022), Virtual Conference, Seoul, South Korea
15.
Zurück zum Zitat Baykasoglu A, Baykasoglu C (2021) Weighted superposition attraction-repulsion (WSAR) algorithm for truss optimization with multiple frequency constraints. Structures 30:253–264CrossRef Baykasoglu A, Baykasoglu C (2021) Weighted superposition attraction-repulsion (WSAR) algorithm for truss optimization with multiple frequency constraints. Structures 30:253–264CrossRef
16.
Zurück zum Zitat Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRef Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82CrossRef
17.
Zurück zum Zitat Zachariadis EE, Tarantilis CD, Kiranoudis CT (2009) A hybrid metaheuristic algorithm for the vehicle routing problem with simultaneous delivery and pick-up service. Expert Syst Appl 36(2):1070–1081CrossRef Zachariadis EE, Tarantilis CD, Kiranoudis CT (2009) A hybrid metaheuristic algorithm for the vehicle routing problem with simultaneous delivery and pick-up service. Expert Syst Appl 36(2):1070–1081CrossRef
18.
Zurück zum Zitat Morasaei A, Ghabussi A, Aghlmand S, Yazdani M, Baharom S, Assilzadeh H (2021) Simulation of steel–concrete composite floor system behavior at elevated temperatures via multi-hybrid metaheuristic framework. Eng Comput 1–16 (article in press) Morasaei A, Ghabussi A, Aghlmand S, Yazdani M, Baharom S, Assilzadeh H (2021) Simulation of steel–concrete composite floor system behavior at elevated temperatures via multi-hybrid metaheuristic framework. Eng Comput 1–16 (article in press)
19.
Zurück zum Zitat Kalayci CB, Polat O, Akbay MA (2020) An efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimization. Swarm Evol Comput 54:100662CrossRef Kalayci CB, Polat O, Akbay MA (2020) An efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimization. Swarm Evol Comput 54:100662CrossRef
20.
Zurück zum Zitat Blum C, Roli A, Sampels M (Eds) (2008) Hybrid metaheuristics: an emerging approach to optimization, vol 114. Springer Blum C, Roli A, Sampels M (Eds) (2008) Hybrid metaheuristics: an emerging approach to optimization, vol 114. Springer
22.
Zurück zum Zitat Pellerin R, Perrier N, Berthaut F (2020) A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. Eur J Oper Res 280(2):395–416MathSciNetCrossRef Pellerin R, Perrier N, Berthaut F (2020) A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. Eur J Oper Res 280(2):395–416MathSciNetCrossRef
23.
Zurück zum Zitat Gu L, Yang RJ, Tho CH, Makowskit M, Faruquet O, Y Li YL (2001) Optimisation and robustness for crashworthiness of side impact. Int J Veh Des 26(4):348–360 Gu L, Yang RJ, Tho CH, Makowskit M, Faruquet O, Y Li YL (2001) Optimisation and robustness for crashworthiness of side impact. Int J Veh Des 26(4):348–360
24.
Zurück zum Zitat Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223–229CrossRef Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223–229CrossRef
25.
Zurück zum Zitat Kim TH, Maruta I, Sugie T (2010) A simple and efficient constrained particle swarm optimization and its application to engineering design problems. Proc Inst Mech Eng C J Mech Eng Sci 224(2):389–400CrossRef Kim TH, Maruta I, Sugie T (2010) A simple and efficient constrained particle swarm optimization and its application to engineering design problems. Proc Inst Mech Eng C J Mech Eng Sci 224(2):389–400CrossRef
26.
Zurück zum Zitat Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89:2325–2336CrossRef Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89:2325–2336CrossRef
27.
Zurück zum Zitat Dimopoulos GG (2007) Mixed-variable engineering optimization based on evolutionary and social metaphors. Comput Methods Appl Mech Eng 196:803–817 Dimopoulos GG (2007) Mixed-variable engineering optimization based on evolutionary and social metaphors. Comput Methods Appl Mech Eng 196:803–817
28.
Zurück zum Zitat Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188:1567–1579 Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188:1567–1579
29.
Zurück zum Zitat Hedar AR, Fukushima M (2005) Derivative-free filter simulated annealing method for constrained continuous global optimization. J Global Optim 35:521–649MathSciNetCrossRef Hedar AR, Fukushima M (2005) Derivative-free filter simulated annealing method for constrained continuous global optimization. J Global Optim 35:521–649MathSciNetCrossRef
30.
Zurück zum Zitat Pulido GT, Coello CAC (2004) A constraint-handling mechanism for particle swarm optimization In: Proceedings of the 2004 congress on evolutionary computation, Portland, OR, USA, pp 1396–1403 Pulido GT, Coello CAC (2004) A constraint-handling mechanism for particle swarm optimization In: Proceedings of the 2004 congress on evolutionary computation, Portland, OR, USA, pp 1396–1403
31.
Zurück zum Zitat Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133CrossRef Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133CrossRef
32.
Zurück zum Zitat Baykasoglu A, Ozsoydan FB (2015) Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl Soft Comput 36:152–164CrossRef Baykasoglu A, Ozsoydan FB (2015) Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl Soft Comput 36:152–164CrossRef
33.
Zurück zum Zitat Czerniak JM, Zarzycki H, Ewald D (2017) Aao as a new strategy in modeling and simulation of constructional problems optimization. Simul Model Pract Theory 76:22–33CrossRef Czerniak JM, Zarzycki H, Ewald D (2017) Aao as a new strategy in modeling and simulation of constructional problems optimization. Simul Model Pract Theory 76:22–33CrossRef
34.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef
35.
Zurück zum Zitat Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249CrossRef Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249CrossRef
36.
Zurück zum Zitat Mohamed AW (2018) A novel differential evolution algorithm for solving constrained engineering optimization problems. J Intell Manuf 29(3):659–692CrossRef Mohamed AW (2018) A novel differential evolution algorithm for solving constrained engineering optimization problems. J Intell Manuf 29(3):659–692CrossRef
37.
Zurück zum Zitat Nadimi-Shahraki MH, Taghian S, Mirjalili S, Faris H (2020) Mtde: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Appl Soft Comput 97:106761CrossRef Nadimi-Shahraki MH, Taghian S, Mirjalili S, Faris H (2020) Mtde: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Appl Soft Comput 97:106761CrossRef
38.
Zurück zum Zitat He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99CrossRef He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99CrossRef
39.
Zurück zum Zitat Abualigah L, Diabat A, Mirjalili S, Abd EM, Gandomi AH (2021) The arithmetic optimization algorithm, computational methods applied. Mech Eng 376:113609 Abualigah L, Diabat A, Mirjalili S, Abd EM, Gandomi AH (2021) The arithmetic optimization algorithm, computational methods applied. Mech Eng 376:113609
Metadaten
Titel
Integrating the Bees Algorithm with WSAR for Search Direction Determination and Application to Constrained Design Optimisation Problems
verfasst von
Adil Baykasoglu
Mumin Emre Senol
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-64936-3_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.