Skip to main content

2014 | OriginalPaper | Buchkapitel

8. Integration of Microcomponents

verfasst von : Koji Sugioka, Ya Cheng

Erschienen in: Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Various microcomponents, including microelectrodes and micro-optic and microfluidic components, can be fabricated in transparent materials by femtosecond laser direct writing. This chapter describes in detail techniques for integrating different types of microcomponents on a single substrate for constructing highly functional microfluidic, photonic, and optofluidic systems and devices. Several examples are described, including integration of microlenses and waveguides for beam collimation and focusing, integration of a micro-optical ring cavity and a microfluidic chamber for creating 3D microfluidic dye lasers, integration of microelectrodes and waveguide-based Mach–Zehnder interferometer in a lithium niobate (LiNbO3) crystal for constructing an optical modulator, and integration of micro-optic and microfluidic components in glass for optofluidic applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRef Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRef
2.
Zurück zum Zitat Osellame R, Hoekstra HJWM, Cerullo1 G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev 5:442–463 Osellame R, Hoekstra HJWM, Cerullo1 G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev 5:442–463
3.
Zurück zum Zitat Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 12:1527–1532CrossRef Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 12:1527–1532CrossRef
4.
Zurück zum Zitat Xu J, Liao Y, Zeng HD et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748CrossRef Xu J, Liao Y, Zeng HD et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748CrossRef
5.
Zurück zum Zitat Hanada Y, Sugioka K, Midorikawa K (2008) Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application. Appl Phys A 90:603–607CrossRef Hanada Y, Sugioka K, Midorikawa K (2008) Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application. Appl Phys A 90:603–607CrossRef
6.
Zurück zum Zitat Camou S, Fujita H, Fujii T (2003) PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45CrossRef Camou S, Fujita H, Fujii T (2003) PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45CrossRef
7.
Zurück zum Zitat Wang Z, El-Ali J, Engelund M (2004) Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip 4:372–377CrossRef Wang Z, El-Ali J, Engelund M (2004) Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip 4:372–377CrossRef
8.
Zurück zum Zitat Wang Z, Sugioka K, Hanada Y et al (2007) Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 88:699–704CrossRef Wang Z, Sugioka K, Hanada Y et al (2007) Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 88:699–704CrossRef
9.
Zurück zum Zitat Wang Z, Sugioka K, Hanada Y et al (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955CrossRef Wang Z, Sugioka K, Hanada Y et al (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955CrossRef
10.
Zurück zum Zitat Cheng Y, Sugioka K, Midorikawa K (2006) Freestanding optical fibers fabricated in a glass chip by femtosecond laser micromachining for lab-on-a-chip application: erratum. Opt Express 14:11910CrossRef Cheng Y, Sugioka K, Midorikawa K (2006) Freestanding optical fibers fabricated in a glass chip by femtosecond laser micromachining for lab-on-a-chip application: erratum. Opt Express 14:11910CrossRef
11.
Zurück zum Zitat Li LX, Nordin G, English J et al (2003) Small-area bends and beamsplitters for lowindex-contrast waveguides. Opt Express 11:282–290CrossRef Li LX, Nordin G, English J et al (2003) Small-area bends and beamsplitters for lowindex-contrast waveguides. Opt Express 11:282–290CrossRef
12.
Zurück zum Zitat Cheng Y, Sugioka K, Midorikawa K et al (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29:2007–2009CrossRef Cheng Y, Sugioka K, Midorikawa K et al (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29:2007–2009CrossRef
13.
Zurück zum Zitat Helbo B, Kristensen A, Menon A (2003) A micro-cavity fluidic dye laser. J Micromech Microeng 13:307–311CrossRef Helbo B, Kristensen A, Menon A (2003) A micro-cavity fluidic dye laser. J Micromech Microeng 13:307–311CrossRef
14.
Zurück zum Zitat Li ZY, Zhang ZY, Emery T et al (2006) Single mode optofluidic distributed feedback dye laser. Opt Express 14:696–701CrossRef Li ZY, Zhang ZY, Emery T et al (2006) Single mode optofluidic distributed feedback dye laser. Opt Express 14:696–701CrossRef
15.
Zurück zum Zitat Cheng Y, Sugioka K, Midorikawa K (2005) Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications. Appl Surf Sci 248:172–176CrossRef Cheng Y, Sugioka K, Midorikawa K (2005) Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications. Appl Surf Sci 248:172–176CrossRef
16.
Zurück zum Zitat Moon HJ, Chough YT, An K (2000) Cylindrical microcavity laser based on the evanescent-wave-coupled gain. Phys Rev Lett 85:3161–3164CrossRef Moon HJ, Chough YT, An K (2000) Cylindrical microcavity laser based on the evanescent-wave-coupled gain. Phys Rev Lett 85:3161–3164CrossRef
17.
Zurück zum Zitat Ramer OG (1982) Integrated optic electrooptic modulator electrode analysis. IEEE J Quant Electron 18:386–392CrossRef Ramer OG (1982) Integrated optic electrooptic modulator electrode analysis. IEEE J Quant Electron 18:386–392CrossRef
18.
Zurück zum Zitat Wooten EL, Kissa KM, Yi-Yan A et al (2000) A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quant 6:69–82CrossRef Wooten EL, Kissa KM, Yi-Yan A et al (2000) A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quant 6:69–82CrossRef
19.
Zurück zum Zitat Lu YQ, Wan ZL, Wang Q et al (2000) Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications. Appl Phys Lett 77:3719–3721CrossRef Lu YQ, Wan ZL, Wang Q et al (2000) Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications. Appl Phys Lett 77:3719–3721CrossRef
20.
Zurück zum Zitat Liao Y, Xu J, Cheng Y et al (2008) Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett 33:2281–2283CrossRef Liao Y, Xu J, Cheng Y et al (2008) Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett 33:2281–2283CrossRef
21.
Zurück zum Zitat Burghoff J, Grebing C, Nolte S et al (2006) Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate. Appl Phys Lett 89(3):081108 Burghoff J, Grebing C, Nolte S et al (2006) Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate. Appl Phys Lett 89(3):081108
22.
Zurück zum Zitat Thomas J, Heinrich M, Burghoff J et al (2007) Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate. Appl Phys Lett 91(3):151108 Thomas J, Heinrich M, Burghoff J et al (2007) Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate. Appl Phys Lett 91(3):151108
23.
Zurück zum Zitat Binh LN (2006) Lithium niobate optical modulators Devices and applications. J Cryst Growth 288:180–187CrossRef Binh LN (2006) Lithium niobate optical modulators Devices and applications. J Cryst Growth 288:180–187CrossRef
24.
Zurück zum Zitat Crespi A, Gu Y, Ngamsom B et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173CrossRef Crespi A, Gu Y, Ngamsom B et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173CrossRef
25.
Zurück zum Zitat Applegate RW, Squier J, Vested T et al (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip 6:422–426CrossRef Applegate RW, Squier J, Vested T et al (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip 6:422–426CrossRef
26.
Zurück zum Zitat Bellouard Y, Said AA, Dugan M et al (2003) Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica. Proc Mater Res Soc Fall Meet Symp A (Mater Res Soc) 782:63–68 Bellouard Y, Said AA, Dugan M et al (2003) Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica. Proc Mater Res Soc Fall Meet Symp A (Mater Res Soc) 782:63–68
27.
Zurück zum Zitat Maselli V, Grenier JR, Ho S et al (2009) Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel. Opt Express 17:11719–11729CrossRef Maselli V, Grenier JR, Ho S et al (2009) Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel. Opt Express 17:11719–11729CrossRef
28.
Zurück zum Zitat Vazquez RM, Osellame R, Nolli D et al (2009) Integration of femtosecond laser written optical waveguides in a lab-on-chip. Lab Chip 9:91–96CrossRef Vazquez RM, Osellame R, Nolli D et al (2009) Integration of femtosecond laser written optical waveguides in a lab-on-chip. Lab Chip 9:91–96CrossRef
29.
Zurück zum Zitat Kim M, Hwang DJ, Jeon H et al (2009) Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9:311–318CrossRef Kim M, Hwang DJ, Jeon H et al (2009) Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9:311–318CrossRef
30.
Zurück zum Zitat Schaap A, Bellouard Y, Rohrlack T et al (2011) Optofluidic lab-on-a-chip for rapid algae population screening. Biomed Opt Express 2:658–664CrossRef Schaap A, Bellouard Y, Rohrlack T et al (2011) Optofluidic lab-on-a-chip for rapid algae population screening. Biomed Opt Express 2:658–664CrossRef
31.
Zurück zum Zitat Bragheri F, Ferrara L, Bellini N et al (2010) Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. J Biophotonics 3:234–243CrossRef Bragheri F, Ferrara L, Bellini N et al (2010) Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. J Biophotonics 3:234–243CrossRef
32.
Zurück zum Zitat Bellini N, Vishnubhatla KC, Bragheri F et al (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18:4679–4688CrossRef Bellini N, Vishnubhatla KC, Bragheri F et al (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18:4679–4688CrossRef
33.
Zurück zum Zitat Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sens Actuat B 61:100–127CrossRef Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sens Actuat B 61:100–127CrossRef
Metadaten
Titel
Integration of Microcomponents
verfasst von
Koji Sugioka
Ya Cheng
Copyright-Jahr
2014
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5541-6_8

Neuer Inhalt