Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.11.2019 | Methodologies and Application | Ausgabe 13/2020

Soft Computing 13/2020

Integration of nonparametric fuzzy classification with an evolutionary-developmental framework to perform music sentiment-based analysis and composition

Zeitschrift:
Soft Computing > Ausgabe 13/2020
Autoren:
Ralph Abboud, Joe Tekli
Wichtige Hinweise
Communicated by V. Loia.
Ralph Abboud is currently completing his Master’s and has been accepted in the Ph.D. program of the Computer Science Dept., Univ. of Oxford, UK.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Over the past years, several approaches have been developed to create algorithmic music composers. Most existing solutions focus on composing music that appears theoretically correct or interesting to the listener. However, few methods have targeted sentiment-based music composition: generating music that expresses human emotions. The few existing methods are restricted in the spectrum of emotions they can express (usually to two dimensions: valence and arousal) as well as the level of sophistication of the music they compose (usually monophonic, following translation-based, predefined templates or heuristic textures). In this paper, we introduce a new algorithmic framework for autonomous music sentiment-based expression and composition, titled MUSEC, that perceives an extensible set of six primary human emotions (e.g., anger, fear, joy, love, sadness, and surprise) expressed by a MIDI musical file and then composes (creates) new polyphonic (pseudo) thematic, and diversified musical pieces that express these emotions. Unlike existing solutions, MUSEC is: (i) a hybrid crossover between supervised learning (SL, to learn sentiments from music) and evolutionary computation (for music composition, MC), where SL serves at the fitness function of MC to compose music that expresses target sentiments, (ii) extensible in the panel of emotions it can convey, producing pieces that reflect a target crisp sentiment (e.g., love) or a collection of fuzzy sentiments (e.g., 65% happy, 20% sad, and 15% angry), compared with crisp-only or two-dimensional (valence/arousal) sentiment models used in existing solutions, (iii) adopts the evolutionary-developmental model, using an extensive set of specially designed music-theoretic mutation operators (trille, staccato, repeat, compress, etc.), stochastically orchestrated to add atomic (individual chord-level) and thematic (chord pattern-level) variability to the composed polyphonic pieces, compared with traditional evolutionary solutions producing monophonic and non-thematic music. We conducted a large battery of tests to evaluate MUSEC’s effectiveness and efficiency in both sentiment analysis and composition. It was trained on a specially constructed set of 120 MIDI pieces, including 70 sentiment-annotated pieces: the first significant dataset of sentiment-labeled MIDI music made available online as a benchmark for future research in this area. Results are encouraging and highlight the potential of our approach in different application domains, ranging over music information retrieval, music composition, assistive music therapy, and emotional intelligence.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 13/2020

Soft Computing 13/2020 Zur Ausgabe

Premium Partner

    Bildnachweise