Skip to main content

2025 | OriginalPaper | Buchkapitel

Intelligence Approach for Road Crack Detection Based on Real-World Measurement

verfasst von : Jia Meng, Weixing Hong, Abdoul Fatakhou Ba, Ahmed Silik, Mohammad Noori, Wael A. Altabey

Erschienen in: Proceedings of the 4th International Civil Engineering and Architecture Conference

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Road crack detection and measurement is one of the most important challenges for driving safety. Although the problem has been studied for a long time, few researchers have been investigating the road crack real-world measurements. Here, we develop an intelligence approach that detects the road crack then applies image processing techniques for the segmentation and real-world measurements. Our method demonstrates to be able to detect and measure the crack real-world area. The present intelligence approach including improved architecture CNN-YOLOv5 (Convolutional Neural Network-You Only Look Once version5), YOLO-crack were proposed to improve the ability of the network to detect multiple cracks. On the one hand, YOLO-crack realizes cracks detection on images. In CNN-YOLOv5, a hybrid module is proposed, which combines CNN and YOLOv5 to extract sparse the multi-scale features expressed can avoid the loss of local information caused by dilated convolution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat Silik A, Wang X, Mei C, Jin X, Zhou X, Zhou W, Chen C, Hong W, Li J, Mao M, Liu Y, Noori M, Altabey WA (2023) Development of features for early detection of defects and assessment of bridge decks. SDHM Struct Durability Health Monit 17(4):257–281. https://doi.org/10.32604/sdhm.2023.023617 Silik A, Wang X, Mei C, Jin X, Zhou X, Zhou W, Chen C, Hong W, Li J, Mao M, Liu Y, Noori M, Altabey WA (2023) Development of features for early detection of defects and assessment of bridge decks. SDHM Struct Durability Health Monit 17(4):257–281. https://​doi.​org/​10.​32604/​sdhm.​2023.​023617
6.
Zurück zum Zitat Yanliang X, Chuanyue Z, Gongzuo S, Ye J, Yujin Q, Xueshun M, Jingtao X, Noori M, Altabey WA (2023) Research of pavement crack detection system based on image processing. In: Proceedings of SPIE 12590, third international conference on computer vision and information technology (CVIT 2022), p 1259007. https://doi.org/10.1117/12.2669715 Yanliang X, Chuanyue Z, Gongzuo S, Ye J, Yujin Q, Xueshun M, Jingtao X, Noori M, Altabey WA (2023) Research of pavement crack detection system based on image processing. In: Proceedings of SPIE 12590, third international conference on computer vision and information technology (CVIT 2022), p 1259007. https://​doi.​org/​10.​1117/​12.​2669715
15.
Zurück zum Zitat Altabey WA, Noori M, Wu Z, Silik A, Vasilis S (2023) Enhancement of structural health monitoring framework on beams based on k-nearest neighbor algorithm. In: Proceedings of the 14th international workshop on structural health monitoring (IWSHM 2023): statistical methods and machine learning. Stanford University, California, USA, paper No. 2926. ISBN 978-1-60595-693-0 Altabey WA, Noori M, Wu Z, Silik A, Vasilis S (2023) Enhancement of structural health monitoring framework on beams based on k-nearest neighbor algorithm. In: Proceedings of the 14th international workshop on structural health monitoring (IWSHM 2023): statistical methods and machine learning. Stanford University, California, USA, paper No. 2926. ISBN 978-1-60595-693-0
16.
Zurück zum Zitat Silik A, Noori M, Altabey WA, Ji D, Ghiasi R (2022) A new denoising technique via wavelet analysis of structural vibration response for structural health monitoring applications. In: Lifeline 2022: advancing lifeline engineering for community resilience, ASCE library, pp 691–706. https://doi.org/10.1061/9780784484449.063 Silik A, Noori M, Altabey WA, Ji D, Ghiasi R (2022) A new denoising technique via wavelet analysis of structural vibration response for structural health monitoring applications. In: Lifeline 2022: advancing lifeline engineering for community resilience, ASCE library, pp 691–706. https://​doi.​org/​10.​1061/​9780784484449.​063
19.
20.
Zurück zum Zitat Weixing H, Ju W, Dangui G, Xiaodong W, Gongzuo S, Yan-Liang X, Chuanyue Z, Noori M, Altabey WA (2022) Artificial intelligence technique for pavement diseases identification, ACM digital library. In: Proceedings of the 4th international conference on intelligent science and technology (ICIST ‘22), pp 66–72. https://doi.org/10.1145/3568923.3570515 Weixing H, Ju W, Dangui G, Xiaodong W, Gongzuo S, Yan-Liang X, Chuanyue Z, Noori M, Altabey WA (2022) Artificial intelligence technique for pavement diseases identification, ACM digital library. In: Proceedings of the 4th international conference on intelligent science and technology (ICIST ‘22), pp 66–72. https://​doi.​org/​10.​1145/​3568923.​3570515
23.
Zurück zum Zitat Zhang C, Xu Y, Silik A, Li H, Noori M, Altabey WA (2023) Analysis of instantaneous frequency for structure condition tracking using time-frequency representation: comparative study. In: 22nd international scientific conference engineering for rural development, ERD 2023 Jelgava, vol 22, pp 1045–1051, 191585. https://doi.org/10.22616/ERDev.2023.22.TF212 Zhang C, Xu Y, Silik A, Li H, Noori M, Altabey WA (2023) Analysis of instantaneous frequency for structure condition tracking using time-frequency representation: comparative study. In: 22nd international scientific conference engineering for rural development, ERD 2023 Jelgava, vol 22, pp 1045–1051, 191585. https://​doi.​org/​10.​22616/​ERDev.​2023.​22.​TF212
24.
Zurück zum Zitat Ghiasi R, Noori M, Altabey WA, Wang T, Wu Z (2022) Structural damage detection under uncertain parameters using non-probabilistic meta-model and interval mathematics. In: Lifeline 2022: advancing lifeline engineering for community resilience, ASCE library, pp 670–679. https://doi.org/10.1061/9780784484449.061 Ghiasi R, Noori M, Altabey WA, Wang T, Wu Z (2022) Structural damage detection under uncertain parameters using non-probabilistic meta-model and interval mathematics. In: Lifeline 2022: advancing lifeline engineering for community resilience, ASCE library, pp 670–679. https://​doi.​org/​10.​1061/​9780784484449.​061
25.
Zurück zum Zitat Altabey WA, Noori M, Wu Z, Silik A, Farhan NSD (2023) Effective technique for structures damage detection based on the structural frequency maps. In: 5th ECCOMAS thematic conference on uncertainty quantification in computational sciences and engineering (UNCECOMP 2023). Athens, Greece Altabey WA, Noori M, Wu Z, Silik A, Farhan NSD (2023) Effective technique for structures damage detection based on the structural frequency maps. In: 5th ECCOMAS thematic conference on uncertainty quantification in computational sciences and engineering (UNCECOMP 2023). Athens, Greece
26.
Zurück zum Zitat Altabey WA, Noori M, Wu Z (2023) Deep learning-based crack, location and area identification for a pipeline by the convolutional neural network based on crack contour network method. In: 5th ECCOMAS thematic conference on uncertainty quantification in computational sciences and engineering (UNCECOMP 2023). Athens, Greece Altabey WA, Noori M, Wu Z (2023) Deep learning-based crack, location and area identification for a pipeline by the convolutional neural network based on crack contour network method. In: 5th ECCOMAS thematic conference on uncertainty quantification in computational sciences and engineering (UNCECOMP 2023). Athens, Greece
Metadaten
Titel
Intelligence Approach for Road Crack Detection Based on Real-World Measurement
verfasst von
Jia Meng
Weixing Hong
Abdoul Fatakhou Ba
Ahmed Silik
Mohammad Noori
Wael A. Altabey
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-5477-9_7