Skip to main content
Erschienen in:

2021 | OriginalPaper | Buchkapitel

1. Intelligent Learning and Verification of Biological Networks

verfasst von : Helen Richards, Yunge Wang, Tong Si, Hao Zhang, Haijun Gong

Erschienen in: Advances in Artificial Intelligence, Computation, and Data Science

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machine learning and model checking are two types of intelligent computing techniques that have been widely used to study different complicated systems nowadays. It is well-known that the cellular functions and biological processes are strictly regulated by different biological networks, for example, signaling pathways and gene regulatory networks. The pathogenesis of cancers is associated with the dysfunctions of some regulatory networks or signaling pathways. A comprehensive understanding of the biological networks could identify cellular signatures and uncover hidden pathological mechanisms, and help develop targeted therapies for cancers and other diseases. In order to correctly reconstruct biological networks, statisticians and computer scientists have been motivated to develop many intelligent methods, but it is still a challenging task due to the complexity of the biological system and the curse of dimensionality of the high-dimensional biological data. In this work, we will review different machine learning algorithms and formal verification (model checking) techniques that have been proposed and applied in our previous work and discuss how to integrate these computational methods together to intelligently infer and verify complex biological networks from biological data. The advantages and disadvantages of these methods are also discussed in this work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19 Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19
3.
Zurück zum Zitat Akutsu T, Miyano S, Kuhara S (2000) Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16:727–734 Akutsu T, Miyano S, Kuhara S (2000) Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16:727–734
4.
Zurück zum Zitat Arbeitman M, Furlong E, Imam F, Johnson E et al (2002) Gene expression during the life cycle of drosophila melanogaster. Science 297:2270–5 Arbeitman M, Furlong E, Imam F, Johnson E et al (2002) Gene expression during the life cycle of drosophila melanogaster. Science 297:2270–5
5.
Zurück zum Zitat Barry D, Hartigan J (1992) Product partition models for change point problems. Ann Stat 20(1):260–279CrossRef Barry D, Hartigan J (1992) Product partition models for change point problems. Ann Stat 20(1):260–279CrossRef
6.
Zurück zum Zitat Bryant R (1986) Graph-based algorithms for boolean function manipulation. IEEE Tran Comput 35(8):677–691CrossRef Bryant R (1986) Graph-based algorithms for boolean function manipulation. IEEE Tran Comput 35(8):677–691CrossRef
7.
Zurück zum Zitat Ceccarelli M, Cerulo L, Santone A (2014) De novo reconstruction of gene regulatory networks from time series data, an approach based on formal methods. Methods 69(3):298–305CrossRefPubMed Ceccarelli M, Cerulo L, Santone A (2014) De novo reconstruction of gene regulatory networks from time series data, an approach based on formal methods. Methods 69(3):298–305CrossRefPubMed
8.
Zurück zum Zitat Chow C, Liu C (1968) Approximating discrete probability distributions with dependence trees. IEEE Trans Info Theory 14 Chow C, Liu C (1968) Approximating discrete probability distributions with dependence trees. IEEE Trans Info Theory 14
9.
Zurück zum Zitat Clarke EM, Grumberg O, Peled DA (1999) Model checking. MIT Press Clarke EM, Grumberg O, Peled DA (1999) Model checking. MIT Press
10.
Zurück zum Zitat Darling D, Erdos P (1956) A limit theorem for the maximum of normalized sums of independent random variables. Duke Math J 23:143–155CrossRef Darling D, Erdos P (1956) A limit theorem for the maximum of normalized sums of independent random variables. Duke Math J 23:143–155CrossRef
11.
Zurück zum Zitat Doering T et al (2012) Network analysis reveals centrally connected genes and pathways involved in cd8+ t cell exhaustion versus memory. Immunity 37 Doering T et al (2012) Network analysis reveals centrally connected genes and pathways involved in cd8+ t cell exhaustion versus memory. Immunity 37
12.
Zurück zum Zitat Dondelinger F, Lebre S, Husmeier D (2013) Non-homogeneous dynamic bayesian networks with bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Mach Learn 90 Dondelinger F, Lebre S, Husmeier D (2013) Non-homogeneous dynamic bayesian networks with bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Mach Learn 90
13.
Zurück zum Zitat Fearnhead P (2006) Exact and efficient Bayesian inference for multiple change point problems. Stat Comput 16(2):203–213CrossRef Fearnhead P (2006) Exact and efficient Bayesian inference for multiple change point problems. Stat Comput 16(2):203–213CrossRef
14.
Zurück zum Zitat Feuz K, Cook D, Rosasco C, Robertson K, Schmitter-Edgecombe M (2014) Automated detection of activity transitions for prompting. IEEE Trans Human-Mach Syst 45(5):1–11 Feuz K, Cook D, Rosasco C, Robertson K, Schmitter-Edgecombe M (2014) Automated detection of activity transitions for prompting. IEEE Trans Human-Mach Syst 45(5):1–11
15.
Zurück zum Zitat Friedman J, Hastie T, Tibshirani R (2007) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, pp 1–10 Friedman J, Hastie T, Tibshirani R (2007) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, pp 1–10
16.
Zurück zum Zitat Friedman N, Linial M, Nachman I, Pe’er D (2000) Using bn to analyze expression data. J Comput Biol 7:601–620CrossRefPubMed Friedman N, Linial M, Nachman I, Pe’er D (2000) Using bn to analyze expression data. J Comput Biol 7:601–620CrossRefPubMed
17.
Zurück zum Zitat Friedman N, Murphy K, Russell S (1998) Learning the structure of dynamic probabilistic networks. In: Proceedings of the 14th conference on the uncertainty in artificial intelligence Friedman N, Murphy K, Russell S (1998) Learning the structure of dynamic probabilistic networks. In: Proceedings of the 14th conference on the uncertainty in artificial intelligence
18.
Zurück zum Zitat Fujita A, Sato J et al (2007) Time varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics 23(13):1623–1630CrossRefPubMed Fujita A, Sato J et al (2007) Time varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics 23(13):1623–1630CrossRefPubMed
19.
Zurück zum Zitat Gong H (2013) Analysis of intercellular signal transduction in the tumor microenvironment. BMC Syst Biol 7:S5 Gong H (2013) Analysis of intercellular signal transduction in the tumor microenvironment. BMC Syst Biol 7:S5
20.
Zurück zum Zitat Gong H, Feng L (2014) Computational analysis of the roles of er-golgi network in the cell cycle. BMC Syst Biol 8:S4 Gong H, Feng L (2014) Computational analysis of the roles of er-golgi network in the cell cycle. BMC Syst Biol 8:S4
21.
Zurück zum Zitat Gong H, Feng L (2014) Probabilistic verification of er stress-induced signaling pathways. In: Proceedings of IEEE international conference on bioinformatics and biomedicine Gong H, Feng L (2014) Probabilistic verification of er stress-induced signaling pathways. In: Proceedings of IEEE international conference on bioinformatics and biomedicine
22.
Zurück zum Zitat Gong H, Klinger J, Damazyn K, Li X, Huang S (2015) A novel procedure for statistical inference and verification of gene regulatory subnetwork. BMC Bioinform V16:S7 Gong H, Klinger J, Damazyn K, Li X, Huang S (2015) A novel procedure for statistical inference and verification of gene regulatory subnetwork. BMC Bioinform V16:S7
23.
Zurück zum Zitat Gong H, Wang Q, Zuliani P, Clarke E (2011) Formal analysis for logical models of pancreatic cancer. In: 50th IEEE conference on decision and control and European control conference Gong H, Wang Q, Zuliani P, Clarke E (2011) Formal analysis for logical models of pancreatic cancer. In: 50th IEEE conference on decision and control and European control conference
24.
Zurück zum Zitat Gong H, Zuliani P, Komuravelli A, Faeder J, Clarke E (2012) Computational modeling and verification of signaling pathways in cancer. Proceedings of algebraic and numeric biology, LNCS 6479 Gong H, Zuliani P, Komuravelli A, Faeder J, Clarke E (2012) Computational modeling and verification of signaling pathways in cancer. Proceedings of algebraic and numeric biology, LNCS 6479
25.
Zurück zum Zitat Gong H, Zuliani P, Komuravelli A, Faeder JR, Clarke EM (2010) Analysis and verification of the HMGB1 signaling pathway. BMC Bioinform 11(7) Gong H, Zuliani P, Komuravelli A, Faeder JR, Clarke EM (2010) Analysis and verification of the HMGB1 signaling pathway. BMC Bioinform 11(7)
26.
Zurück zum Zitat Green P (1995) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732CrossRef Green P (1995) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732CrossRef
27.
Zurück zum Zitat Grzegorczyk M, Husmeier D (2009) Nonstationary continuous dynamic bayesian networks. Adv Neural Inf Process Syst (NIPS) 22:682–690 Grzegorczyk M, Husmeier D (2009) Nonstationary continuous dynamic bayesian networks. Adv Neural Inf Process Syst (NIPS) 22:682–690
28.
Zurück zum Zitat Heckerman D, Geiger D, Chickering D (1995) Learning bayesian networks: the combination of knowledge and statistical data. Mach Learn 20(3) Heckerman D, Geiger D, Chickering D (1995) Learning bayesian networks: the combination of knowledge and statistical data. Mach Learn 20(3)
29.
30.
Zurück zum Zitat Kawahara Y, Sugiyama M (2009) Sequential change-point detection based on direct density-ratio estimation. In: SIAM international conference on data mining, pp 389–400 Kawahara Y, Sugiyama M (2009) Sequential change-point detection based on direct density-ratio estimation. In: SIAM international conference on data mining, pp 389–400
31.
Zurück zum Zitat Kim S, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic bayesian networks. Brief Bioinform 4:228–235CrossRefPubMed Kim S, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic bayesian networks. Brief Bioinform 4:228–235CrossRefPubMed
32.
Zurück zum Zitat Kim S, Imoto S, Miyano S (2004) Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. BioSystems 75:57–65CrossRefPubMed Kim S, Imoto S, Miyano S (2004) Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. BioSystems 75:57–65CrossRefPubMed
33.
Zurück zum Zitat Lebre S, Becq J, Devaux F, Stumpf M, Lelandais G (2010) Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst Biol 4:130CrossRefPubMedPubMedCentral Lebre S, Becq J, Devaux F, Stumpf M, Lelandais G (2010) Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst Biol 4:130CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Luscombe N et al (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–312CrossRefPubMed Luscombe N et al (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–312CrossRefPubMed
35.
Zurück zum Zitat Ma Y, Damazyn K, Klinger J, Gong H (2015) Inference and verification of probabilistic graphical models from high-dimensional data. Lect Notes Bioinform 9162 Ma Y, Damazyn K, Klinger J, Gong H (2015) Inference and verification of probabilistic graphical models from high-dimensional data. Lect Notes Bioinform 9162
36.
Zurück zum Zitat Mazumder R, Hastie T (2012) The graphical lasso: new insights and alternatives. Electron J Stat 6:2125 Mazumder R, Hastie T (2012) The graphical lasso: new insights and alternatives. Electron J Stat 6:2125
37.
Zurück zum Zitat Ong I, Glasner J, Page D (2002) Modelling regulatoruypathways in e. coli from time series expression profiles. Bioinformatics 18:S241–S248 Ong I, Glasner J, Page D (2002) Modelling regulatoruypathways in e. coli from time series expression profiles. Bioinformatics 18:S241–S248
38.
Zurück zum Zitat Parvu O, Gilbert D (2016) A novel method to verify multilevel computational models of biological systems using multiscale spatio-temporal meta model checking. PLOS One Parvu O, Gilbert D (2016) A novel method to verify multilevel computational models of biological systems using multiscale spatio-temporal meta model checking. PLOS One
39.
Zurück zum Zitat Reddy S, Fun M, Burke J, Estrin D, Hansen M, Srivastava M (2010) Using mobile phones to determine transportation modes. ACM Trans Sens Netw 6(2):1–27CrossRef Reddy S, Fun M, Burke J, Estrin D, Hansen M, Srivastava M (2010) Using mobile phones to determine transportation modes. ACM Trans Sens Netw 6(2):1–27CrossRef
40.
Zurück zum Zitat Robinson J, Hartemink R (2010) Learning non-stationary dynamic bayesian networks. J Mach Learn Res 11:3647–3680 Robinson J, Hartemink R (2010) Learning non-stationary dynamic bayesian networks. J Mach Learn Res 11:3647–3680
41.
Zurück zum Zitat Schwaller L, Robin S (2016) Exact bayesian inference for off-line change-point detection in tree-structured graphical models. Stat Comput 27(5) Schwaller L, Robin S (2016) Exact bayesian inference for off-line change-point detection in tree-structured graphical models. Stat Comput 27(5)
42.
Zurück zum Zitat Wang T, Samworth R (2017) High dimensional change point estimation via sparse projection. In: Statistical Methodology Wang T, Samworth R (2017) High dimensional change point estimation via sparse projection. In: Statistical Methodology
43.
Zurück zum Zitat Wang Z, Guo Y, Gong H (2019) An integrative analysis of time-varying regulatory networks from high-dimensional data. In: IEEE international conference on big data, pp 3798–3807 Wang Z, Guo Y, Gong H (2019) An integrative analysis of time-varying regulatory networks from high-dimensional data. In: IEEE international conference on big data, pp 3798–3807
44.
Zurück zum Zitat Yoshida R, Imoto S, Higuchi T (2005) Estimating time-dependent gene networks form time series microarray data by dynamic linear models with markov switching. CSB05, IEEE CSBC Yoshida R, Imoto S, Higuchi T (2005) Estimating time-dependent gene networks form time series microarray data by dynamic linear models with markov switching. CSB05, IEEE CSBC
45.
Zurück zum Zitat You J, Starr D, Wu X, Parkhurst S, Zhuang Y, Xu T, Xu R, Han M (2006) The kash domain protein msp-300 plays an essential role in nuclear anchoring during drosophila oogenesis. Deve Biol 289(2):336–45CrossRef You J, Starr D, Wu X, Parkhurst S, Zhuang Y, Xu T, Xu R, Han M (2006) The kash domain protein msp-300 plays an essential role in nuclear anchoring during drosophila oogenesis. Deve Biol 289(2):336–45CrossRef
46.
Zurück zum Zitat You Y, Wang T, Samworth R (2015) A useful variant of the davis-kahan theorem for statisticians. Biometrika 102:315–323CrossRef You Y, Wang T, Samworth R (2015) A useful variant of the davis-kahan theorem for statisticians. Biometrika 102:315–323CrossRef
47.
Zurück zum Zitat Younes HLS, Simmons RG (2002) Probabilistic verification of discrete event systems using acceptance sampling. CAV, LNCS 2404:223–235 Younes HLS, Simmons RG (2002) Probabilistic verification of discrete event systems using acceptance sampling. CAV, LNCS 2404:223–235
48.
Zurück zum Zitat Younes HLS, Simmons RG (2006) Statistical probabilistic model checking with a focus on time-bounded properties. Inf Comput 204(9):1368–1409 Younes HLS, Simmons RG (2006) Statistical probabilistic model checking with a focus on time-bounded properties. Inf Comput 204(9):1368–1409
49.
Zurück zum Zitat Yu J, Smith V, Wang P, Hartemink A, Jarvis E (2004) Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20:3594–3603 Yu J, Smith V, Wang P, Hartemink A, Jarvis E (2004) Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20:3594–3603
50.
Zurück zum Zitat Zhao W, Serpedin E, Dougherty E (2006) Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22 Zhao W, Serpedin E, Dougherty E (2006) Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22
Metadaten
Titel
Intelligent Learning and Verification of Biological Networks
verfasst von
Helen Richards
Yunge Wang
Tong Si
Hao Zhang
Haijun Gong
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-69951-2_1