Skip to main content

2020 | OriginalPaper | Buchkapitel

4. Intelligent Modelling of Hard Materials Machining

verfasst von : Manjunath Patel G. C., Ganesh R. Chate, Mahesh B. Parappagoudar, Kapil Gupta

Erschienen in: Machining of Hard Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the Mid of 1950s, artificial intelligence was emerged to solve practical problems in engineering domain by using tools, developed based on human intelligence. Genetic algorithm ‘GA’, artificial neural network ‘ANN’, and fuzzy logic are some AI-based soft computing tools used to predict and assist in the control of manufacturing processes. Today, huge money is spent throughout the globe on the development of AI technology to assist manufacturing industries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.T. Pham, P.T.N. Pham, Artificial intelligence in engineering. Int. J. Mach. Tools Manuf. 39(6), 937–949 (1999)CrossRef D.T. Pham, P.T.N. Pham, Artificial intelligence in engineering. Int. J. Mach. Tools Manuf. 39(6), 937–949 (1999)CrossRef
2.
Zurück zum Zitat R.P. Cherian, L.N. Smith, P.S. Midha, A neural network approach for selection of powder metallurgy materials and process parameters. Artif. Intell. Eng. 14(1), 39–44 (2000)CrossRef R.P. Cherian, L.N. Smith, P.S. Midha, A neural network approach for selection of powder metallurgy materials and process parameters. Artif. Intell. Eng. 14(1), 39–44 (2000)CrossRef
3.
Zurück zum Zitat D.F. Hesser, B. Markert, Tool wear monitoring of a retrofitted CNC milling machine using artificial neural networks. Manuf. lett. 19, 1–4 (2019)CrossRef D.F. Hesser, B. Markert, Tool wear monitoring of a retrofitted CNC milling machine using artificial neural networks. Manuf. lett. 19, 1–4 (2019)CrossRef
4.
Zurück zum Zitat W.Y. Chang, C.C. Chen, S.J. Wu, Chatter analysis and stability prediction of milling tool based on zero-order and envelope methods for real-time monitoring and compensation. Int. J. Precis. Eng. Manuf. 20, 1–8 (2019)CrossRef W.Y. Chang, C.C. Chen, S.J. Wu, Chatter analysis and stability prediction of milling tool based on zero-order and envelope methods for real-time monitoring and compensation. Int. J. Precis. Eng. Manuf. 20, 1–8 (2019)CrossRef
5.
Zurück zum Zitat D. Luzeaux, Process control and machine learning: Rule-based incremental control. IEEE Trans. Autom. Control 39(6), 1166–1171 (1994)MathSciNetMATHCrossRef D. Luzeaux, Process control and machine learning: Rule-based incremental control. IEEE Trans. Autom. Control 39(6), 1166–1171 (1994)MathSciNetMATHCrossRef
6.
Zurück zum Zitat R. Liu, B. Yang, E. Zio, X. Chen, Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 108, 33–47 (2018)CrossRef R. Liu, B. Yang, E. Zio, X. Chen, Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 108, 33–47 (2018)CrossRef
7.
Zurück zum Zitat W. Kacalak, M. Majewski, New intelligent interactive automated systems for design of machine elements and assemblies, in International Conference on Neural Information Processing (Springer Berlin Heidelberg, 2012), pp. 115–122CrossRef W. Kacalak, M. Majewski, New intelligent interactive automated systems for design of machine elements and assemblies, in International Conference on Neural Information Processing (Springer Berlin Heidelberg, 2012), pp. 115–122CrossRef
8.
Zurück zum Zitat S. Nguyen, Y. Mei, M. Zhang, Genetic programming for production scheduling: A survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017)CrossRef S. Nguyen, Y. Mei, M. Zhang, Genetic programming for production scheduling: A survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017)CrossRef
9.
Zurück zum Zitat B. Çaliş, S. Bulkan, A research survey: Review of AI solution strategies of job shop scheduling problem. J. Intell. Manuf. 26(5), 961–973 (2015)CrossRef B. Çaliş, S. Bulkan, A research survey: Review of AI solution strategies of job shop scheduling problem. J. Intell. Manuf. 26(5), 961–973 (2015)CrossRef
10.
Zurück zum Zitat S. Sambath, P. Nagaraj, N. Selvakumar, Automatic defect classification in ultrasonic NDT using artificial intelligence. J. Non-destr. Eval. 30(1), 20–28 (2011)CrossRef S. Sambath, P. Nagaraj, N. Selvakumar, Automatic defect classification in ultrasonic NDT using artificial intelligence. J. Non-destr. Eval. 30(1), 20–28 (2011)CrossRef
11.
Zurück zum Zitat H. Yano, T. Akashi, N. Matsuoka, K. Nakanishi, O. Takata, N. Horinouchi, An expert system to assist automatic remeshing in rigid plastic analysis. Toyota Tech. Rev. 46, 87–92 (1997) H. Yano, T. Akashi, N. Matsuoka, K. Nakanishi, O. Takata, N. Horinouchi, An expert system to assist automatic remeshing in rigid plastic analysis. Toyota Tech. Rev. 46, 87–92 (1997)
12.
Zurück zum Zitat V. Dey, D.K. Pratihar, G.L. Datta, M.N. Jha, T.K. Saha, A.V. Bapat, Optimization of bead geometry in electron beam welding using a Genetic algorithm. J. Mater. Process. Technol. 209(3), 1151–1157 (2009)CrossRef V. Dey, D.K. Pratihar, G.L. Datta, M.N. Jha, T.K. Saha, A.V. Bapat, Optimization of bead geometry in electron beam welding using a Genetic algorithm. J. Mater. Process. Technol. 209(3), 1151–1157 (2009)CrossRef
13.
Zurück zum Zitat P. Dutta, D.K. Pratihar, Modeling of TIG welding process using conventional regression analysis and neural network-based approaches. J. Mater. Process. Technol. 184(1–3), 56–68 (2007)CrossRef P. Dutta, D.K. Pratihar, Modeling of TIG welding process using conventional regression analysis and neural network-based approaches. J. Mater. Process. Technol. 184(1–3), 56–68 (2007)CrossRef
14.
Zurück zum Zitat A.V. Goncharenko, Several models of artificial intelligence elements for airctaft control, in 2016 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) (IEEE), pp. 224–227 (2016) A.V. Goncharenko, Several models of artificial intelligence elements for airctaft control, in 2016 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) (IEEE), pp. 224–227 (2016)
15.
Zurück zum Zitat L. Gonzalez, G. Montes, E. Puig, S. Johnson, K. Mengersen, K. Gaston, Unmanned Aerial Vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors 16(1), 97 (2016)CrossRef L. Gonzalez, G. Montes, E. Puig, S. Johnson, K. Mengersen, K. Gaston, Unmanned Aerial Vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors 16(1), 97 (2016)CrossRef
16.
Zurück zum Zitat D.K. Pratihar, K. Deb, A. Ghosh, A genetic-fuzzy approach for mobile robot navigation among moving obstacles. Int. J. Approximate Reasoning 20(2), 145–172 (1999)MATHCrossRef D.K. Pratihar, K. Deb, A. Ghosh, A genetic-fuzzy approach for mobile robot navigation among moving obstacles. Int. J. Approximate Reasoning 20(2), 145–172 (1999)MATHCrossRef
17.
Zurück zum Zitat T.V. Sibalija, S.Z. Petronic, V.D. Majstorovic, R. Prokic-Cvetkovic, A. Milosavljevic, Multi-response design of Nd: YAG laser drilling of Ni-based superalloy sheets using Taguchi’s quality loss function, multivariate statistical methods and artificial intelligence. Int. J. Adv. Manuf. Technol. 54(5–8), 537–552 (2011)CrossRef T.V. Sibalija, S.Z. Petronic, V.D. Majstorovic, R. Prokic-Cvetkovic, A. Milosavljevic, Multi-response design of Nd: YAG laser drilling of Ni-based superalloy sheets using Taguchi’s quality loss function, multivariate statistical methods and artificial intelligence. Int. J. Adv. Manuf. Technol. 54(5–8), 537–552 (2011)CrossRef
18.
Zurück zum Zitat R. Teti, G. Caprino, Prediction of composite laminate residual strength based on a neural network approach. WIT Trans. Inf. Commun. Technol. 6, WIT Press. www.witpress.com. ISSN 1743-3517 R. Teti, G. Caprino, Prediction of composite laminate residual strength based on a neural network approach. WIT Trans. Inf. Commun. Technol. 6, WIT Press. www.​witpress.​com. ISSN 1743-3517
19.
Zurück zum Zitat P.G. Manjunath, P. Krishna, Prediction and optimization of dimensional shrinkage variations in injection molded parts using forward and reverse mapping of artificial neural networks. Adv. Mater. Res. 463, 674–678 (2012)CrossRef P.G. Manjunath, P. Krishna, Prediction and optimization of dimensional shrinkage variations in injection molded parts using forward and reverse mapping of artificial neural networks. Adv. Mater. Res. 463, 674–678 (2012)CrossRef
20.
Zurück zum Zitat M. Patel, P. Krishna, A review on application of artificial neural networks for injection moulding and casting processes. Int. J. Adv. Eng. Sci. 3(1), 1–12 (2013) M. Patel, P. Krishna, A review on application of artificial neural networks for injection moulding and casting processes. Int. J. Adv. Eng. Sci. 3(1), 1–12 (2013)
21.
Zurück zum Zitat M.G. Patel, P. Krishna, M.B. Parappagoudar, Prediction of squeeze cast density using fuzzy logic based approaches. J. Manuf. Sci. Prod. 14(2), 125–140 (2014) M.G. Patel, P. Krishna, M.B. Parappagoudar, Prediction of squeeze cast density using fuzzy logic based approaches. J. Manuf. Sci. Prod. 14(2), 125–140 (2014)
22.
Zurück zum Zitat M.G.C. Patel, P. Krishna, M.B. Parappagoudar, Prediction of secondary dendrite arm spacing in squeeze casting using fuzzy logic based approaches. Arch. Foundry Eng. 15(1), 51–68 (2015)CrossRef M.G.C. Patel, P. Krishna, M.B. Parappagoudar, Prediction of secondary dendrite arm spacing in squeeze casting using fuzzy logic based approaches. Arch. Foundry Eng. 15(1), 51–68 (2015)CrossRef
23.
Zurück zum Zitat I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50(1–2), 15–34 (2006)CrossRef I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50(1–2), 15–34 (2006)CrossRef
24.
Zurück zum Zitat D.K. Pratihar, Soft computing. Alpha Science International, Ltd. (2007) D.K. Pratihar, Soft computing. Alpha Science International, Ltd. (2007)
25.
Zurück zum Zitat S. Shanmuganathan, Artificial neural network modelling: An introduction, in Artificial neural network modelling (Springer Cham, 2016), pp. 1–14 S. Shanmuganathan, Artificial neural network modelling: An introduction, in Artificial neural network modelling (Springer Cham, 2016), pp. 1–14
26.
Zurück zum Zitat K. Shanmukhi, P.R. Vundavilli, B. Surekha, Modeling of ECDM micro-drilling process using GA-and PSO-trained radial basis function neural network. Soft. Comput. 19(8), 2193–2202 (2015)CrossRef K. Shanmukhi, P.R. Vundavilli, B. Surekha, Modeling of ECDM micro-drilling process using GA-and PSO-trained radial basis function neural network. Soft. Comput. 19(8), 2193–2202 (2015)CrossRef
27.
Zurück zum Zitat R.H.L. Da Silva, M.B. da Silva, A. Hassui, A probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signals. Machining Sci. Technol. 20(3), 386–405 (2016)CrossRef R.H.L. Da Silva, M.B. da Silva, A. Hassui, A probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signals. Machining Sci. Technol. 20(3), 386–405 (2016)CrossRef
28.
Zurück zum Zitat P.R. Vundavilli, M.B. Parappagoudar, S.P. Kodali, S. Benguluri, Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process. Knowl.-Based Syst. 27, 456–464 (2012)CrossRef P.R. Vundavilli, M.B. Parappagoudar, S.P. Kodali, S. Benguluri, Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process. Knowl.-Based Syst. 27, 456–464 (2012)CrossRef
29.
Zurück zum Zitat B. Surekha, P.R. Vundavilli, M.B. Parappagoudar, A. Srinath, Design of genetic fuzzy system for forward and reverse mapping of green sand mould system. Int. J. Cast Met. Res. 24(1), 53–64 (2011)CrossRef B. Surekha, P.R. Vundavilli, M.B. Parappagoudar, A. Srinath, Design of genetic fuzzy system for forward and reverse mapping of green sand mould system. Int. J. Cast Met. Res. 24(1), 53–64 (2011)CrossRef
30.
Zurück zum Zitat B. Surekha, P.R. Vundavilli, M.B. Parappagoudar, Forward and reverse mappings of the cement-bonded sand mould system using fuzzy logic. Int. J. Adv. Manuf. Technol. 61(9–12), 843–854 (2012)CrossRef B. Surekha, P.R. Vundavilli, M.B. Parappagoudar, Forward and reverse mappings of the cement-bonded sand mould system using fuzzy logic. Int. J. Adv. Manuf. Technol. 61(9–12), 843–854 (2012)CrossRef
31.
Zurück zum Zitat G.C.M. Patel, A.K. Shettigar, P. Krishna, M.B. Parappagoudar, Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process. Appl. Soft Comput. 59, 418–437 (2017)CrossRef G.C.M. Patel, A.K. Shettigar, P. Krishna, M.B. Parappagoudar, Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process. Appl. Soft Comput. 59, 418–437 (2017)CrossRef
32.
Zurück zum Zitat G.C.M. Patel, A.K. Shettigar, M.B. Parappagoudar, A systematic approach to model and optimize wear behaviour of castings produced by squeeze casting process. J. Manuf. Process. 32, 199–212 (2018)CrossRef G.C.M. Patel, A.K. Shettigar, M.B. Parappagoudar, A systematic approach to model and optimize wear behaviour of castings produced by squeeze casting process. J. Manuf. Process. 32, 199–212 (2018)CrossRef
33.
Zurück zum Zitat J. Wang, Y. Ma, L. Zhang, R.X. Gao, D. Wu, Deep learning for smart manufacturing: Methods and applications. J. Manuf. Syst. 48, 144–156 (2018)CrossRef J. Wang, Y. Ma, L. Zhang, R.X. Gao, D. Wu, Deep learning for smart manufacturing: Methods and applications. J. Manuf. Syst. 48, 144–156 (2018)CrossRef
34.
Zurück zum Zitat D. Weimer, B. Scholz-Reiter, M. Shpitalni, Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann. 65(1), 417–420 (2016)CrossRef D. Weimer, B. Scholz-Reiter, M. Shpitalni, Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann. 65(1), 417–420 (2016)CrossRef
35.
Zurück zum Zitat M. Rahman, Q. Zhou, G.S. Hong, On-line cutting state recognition in turning using a neural network. Int. J. Adv. Manuf. Technol. 10(2), 87–92 (1995)CrossRef M. Rahman, Q. Zhou, G.S. Hong, On-line cutting state recognition in turning using a neural network. Int. J. Adv. Manuf. Technol. 10(2), 87–92 (1995)CrossRef
36.
Zurück zum Zitat J.D. Thiele, S.N. Melkote, Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. J. Mater. Process. Technol. 94, 216–226 (1999)CrossRef J.D. Thiele, S.N. Melkote, Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. J. Mater. Process. Technol. 94, 216–226 (1999)CrossRef
37.
Zurück zum Zitat D.E. Dimla Sr., Application of perceptron neural networks to tool state classification in a metal turning operation. Eng. Appl. Artif. Intell. 12, 471–477 (1999)CrossRef D.E. Dimla Sr., Application of perceptron neural networks to tool state classification in a metal turning operation. Eng. Appl. Artif. Intell. 12, 471–477 (1999)CrossRef
38.
Zurück zum Zitat Y.K. Chou, C.J. Evans, M.M. Barash, Experimental investigation on CBN turning of hardened AISI 52100 steel. J. Mater. Process. Technol. 124, 274–283 (2002)CrossRef Y.K. Chou, C.J. Evans, M.M. Barash, Experimental investigation on CBN turning of hardened AISI 52100 steel. J. Mater. Process. Technol. 124, 274–283 (2002)CrossRef
39.
Zurück zum Zitat T. Özel, Y. Karpat, Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. Int. J. Mach. Tools Manuf. 45(4–5), 467–479 (2005)CrossRef T. Özel, Y. Karpat, Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. Int. J. Mach. Tools Manuf. 45(4–5), 467–479 (2005)CrossRef
40.
Zurück zum Zitat V.N. Gaitonde, S.R. Karnik, L. Figueira, J.P. Davim, Performance comparison of conventional and wiper ceramic inserts in hard turning through artificial neural network modeling. Int. J. Adv. Manuf. Technol. 52(1–4), 101–114 (2011)CrossRef V.N. Gaitonde, S.R. Karnik, L. Figueira, J.P. Davim, Performance comparison of conventional and wiper ceramic inserts in hard turning through artificial neural network modeling. Int. J. Adv. Manuf. Technol. 52(1–4), 101–114 (2011)CrossRef
41.
Zurück zum Zitat K.L. Petri, R.E. Billo, B. Bidanda, A neural network process model for abrasive flow machining operations. J. Manuf. Syst. 17(1), 52–64 (1998)CrossRef K.L. Petri, R.E. Billo, B. Bidanda, A neural network process model for abrasive flow machining operations. J. Manuf. Syst. 17(1), 52–64 (1998)CrossRef
42.
Zurück zum Zitat H.C. Zhang, S.H. Huang, Applications of neural networks in manufacturing: a state-of-the-art survey. Int. J. Product. Res. 33(3), 705–728 (1995)MATHCrossRef H.C. Zhang, S.H. Huang, Applications of neural networks in manufacturing: a state-of-the-art survey. Int. J. Product. Res. 33(3), 705–728 (1995)MATHCrossRef
43.
Zurück zum Zitat V.S. Sharma, S. Dhiman, R. Sehgal, S.K. Sharma, Estimation of cutting forces and surface roughness for hard turning using neural networks. J. Intell. Manuf. 19(4), 473–483 (2008)CrossRef V.S. Sharma, S. Dhiman, R. Sehgal, S.K. Sharma, Estimation of cutting forces and surface roughness for hard turning using neural networks. J. Intell. Manuf. 19(4), 473–483 (2008)CrossRef
44.
Zurück zum Zitat M. Mia, N.R. Dhar, Prediction of surface roughness in hard turning under high pressure coolant using Artificial Neural Network. Measurement 92, 464–474 (2016)CrossRef M. Mia, N.R. Dhar, Prediction of surface roughness in hard turning under high pressure coolant using Artificial Neural Network. Measurement 92, 464–474 (2016)CrossRef
45.
Zurück zum Zitat F.J. Pontes, A.P. de Paiva, P.P. Balestrassi, J.R. Ferreira, M.B. da Silva, Optimization of Radial Basis Function neural network employed for prediction of surface roughness in hard turning process using Taguchi’s orthogonal arrays. Expert Syst. Appl. 39(9), 7776–7787 (2012)CrossRef F.J. Pontes, A.P. de Paiva, P.P. Balestrassi, J.R. Ferreira, M.B. da Silva, Optimization of Radial Basis Function neural network employed for prediction of surface roughness in hard turning process using Taguchi’s orthogonal arrays. Expert Syst. Appl. 39(9), 7776–7787 (2012)CrossRef
46.
Zurück zum Zitat M. Mia, N.R. Dhar, Response surface and neural network based predictive models of cutting temperature in hard turning. J. Adv. Res. 7(6), 1035–1044 (2016)CrossRef M. Mia, N.R. Dhar, Response surface and neural network based predictive models of cutting temperature in hard turning. J. Adv. Res. 7(6), 1035–1044 (2016)CrossRef
47.
Zurück zum Zitat M. Mia, M.H. Razi, I. Ahmad, R. Mostafa, S.M. Rahman, D.H. Ahmed, P.R. Dey, N.R. Dhar, Effect of time-controlled MQL pulsing on surface roughness in hard turning by statistical analysis and artificial neural network. Int. J. Adv. Manuf. Technol. 91(9–12), 3211–3223 (2017)CrossRef M. Mia, M.H. Razi, I. Ahmad, R. Mostafa, S.M. Rahman, D.H. Ahmed, P.R. Dey, N.R. Dhar, Effect of time-controlled MQL pulsing on surface roughness in hard turning by statistical analysis and artificial neural network. Int. J. Adv. Manuf. Technol. 91(9–12), 3211–3223 (2017)CrossRef
48.
Zurück zum Zitat X. Wang, W. Wang, Y. Huang, N. Nguyen, K. Krishnakumar, Design of neural network-based estimator for tool wear modeling in hard turning. J. Intell. Manuf. 19(4), 383–396 (2008)CrossRef X. Wang, W. Wang, Y. Huang, N. Nguyen, K. Krishnakumar, Design of neural network-based estimator for tool wear modeling in hard turning. J. Intell. Manuf. 19(4), 383–396 (2008)CrossRef
49.
Zurück zum Zitat I. Asiltürk, M. Çunkaş, Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Syst. Appl. 38(5), 5826–5832 (2011)CrossRef I. Asiltürk, M. Çunkaş, Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Syst. Appl. 38(5), 5826–5832 (2011)CrossRef
50.
Zurück zum Zitat B.A. Beatrice, E. Kirubakaran, P.R.J. Thangaiah, K.L.D. Wins, Surface roughness prediction using artificial neural network in hard turning of AISI H13 steel with minimal cutting fluid application. Procedia Eng. 97, 205–211 (2014)CrossRef B.A. Beatrice, E. Kirubakaran, P.R.J. Thangaiah, K.L.D. Wins, Surface roughness prediction using artificial neural network in hard turning of AISI H13 steel with minimal cutting fluid application. Procedia Eng. 97, 205–211 (2014)CrossRef
51.
Zurück zum Zitat S.N. Sivanandam, S.N. Deepa, Principles of Soft Computing (Wiley, 2007) S.N. Sivanandam, S.N. Deepa, Principles of Soft Computing (Wiley, 2007)
52.
Zurück zum Zitat H. Kurtaran, B. Ozcelik, T. Erzurumlu, Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm. J. Mater. Process. Technol. 169(2), 314–319 (2005)CrossRef H. Kurtaran, B. Ozcelik, T. Erzurumlu, Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm. J. Mater. Process. Technol. 169(2), 314–319 (2005)CrossRef
53.
Zurück zum Zitat P.K. Yarlagadda, E.C.W. Chiang, A neural network system for the prediction of process parameters in pressure die casting. J. Mater. Process. Technol. 89, 583–590 (1999)CrossRef P.K. Yarlagadda, E.C.W. Chiang, A neural network system for the prediction of process parameters in pressure die casting. J. Mater. Process. Technol. 89, 583–590 (1999)CrossRef
54.
Zurück zum Zitat S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall PTR, 1994) S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall PTR, 1994)
55.
Zurück zum Zitat S. Rajasekaran, G.V. Pai, Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications (with cd) (PHI Learning Pvt. Ltd., 2003) S. Rajasekaran, G.V. Pai, Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications (with cd) (PHI Learning Pvt. Ltd., 2003)
56.
Zurück zum Zitat J.Y. Yu, Q. Li, J. Tang, X.D. Sun, Predicting model on ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter based on BP neural network. China Foundry 8(3), 286–289 (2011) J.Y. Yu, Q. Li, J. Tang, X.D. Sun, Predicting model on ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter based on BP neural network. China Foundry 8(3), 286–289 (2011)
57.
Zurück zum Zitat L.H. Jiang, A.G. Wang, N.Y. Tian, W.C. Zhang, Q.L. Fan, BP neural network of continuous casting technological parameters and secondary dendrite arm spacing of spring steel. J. Iron. Steel Res. Int. 18(8), 25–29 (2011)CrossRef L.H. Jiang, A.G. Wang, N.Y. Tian, W.C. Zhang, Q.L. Fan, BP neural network of continuous casting technological parameters and secondary dendrite arm spacing of spring steel. J. Iron. Steel Res. Int. 18(8), 25–29 (2011)CrossRef
58.
Zurück zum Zitat M.S. Ozerdem, S. Kolukisa, Artificial neural network approach to predict the mechanical properties of Cu–Sn–Pb–Zn–Ni cast alloys. Mater. Des. 30(3), 764–769 (2009)CrossRef M.S. Ozerdem, S. Kolukisa, Artificial neural network approach to predict the mechanical properties of Cu–Sn–Pb–Zn–Ni cast alloys. Mater. Des. 30(3), 764–769 (2009)CrossRef
59.
Zurück zum Zitat M.P.G. Chandrashekarappa, P. Krishna, M.B. Parappagoudar, Forward and reverse process models for the squeeze casting process using neural network based approaches. Appl. Comput. Intel. Soft Comput. 2014, 12 (2014) M.P.G. Chandrashekarappa, P. Krishna, M.B. Parappagoudar, Forward and reverse process models for the squeeze casting process using neural network based approaches. Appl. Comput. Intel. Soft Comput. 2014, 12 (2014)
60.
Zurück zum Zitat J.K. Kittur, G.M. Patel, M.B. Parappagoudar, Modeling of pressure die casting process: an artificial intelligence approach. Int. J. Metalcast. 10(1), 70–87 (2016)CrossRef J.K. Kittur, G.M. Patel, M.B. Parappagoudar, Modeling of pressure die casting process: an artificial intelligence approach. Int. J. Metalcast. 10(1), 70–87 (2016)CrossRef
61.
Zurück zum Zitat G.C.M. Patel, P. Krishna, M.B. Parappagoudar, An intelligent system for squeeze casting process—soft computing based approach. Int. J. Adv. Manuf. Technol. 86(9–12), 3051–3065 (2016) G.C.M. Patel, P. Krishna, M.B. Parappagoudar, An intelligent system for squeeze casting process—soft computing based approach. Int. J. Adv. Manuf. Technol. 86(9–12), 3051–3065 (2016)
62.
Zurück zum Zitat E. Abhilash, M.A. Joseph, P. Krishna, Prediction of dendritic parameters and macro hardness variation in permanent mould casting of Al-12% Si alloys using artificial neural networks. Fluid Dyn. Mater. Process. 2, 211–220 (2006) E. Abhilash, M.A. Joseph, P. Krishna, Prediction of dendritic parameters and macro hardness variation in permanent mould casting of Al-12% Si alloys using artificial neural networks. Fluid Dyn. Mater. Process. 2, 211–220 (2006)
63.
Zurück zum Zitat L. Zhang, L. Li, H. Ju, B. Zhu, Inverse identification of interfacial heat transfer coefficient between the casting and metal mold using neural network. Energy Convers. Manag. 51(10), 1898–1904 (2010)CrossRef L. Zhang, L. Li, H. Ju, B. Zhu, Inverse identification of interfacial heat transfer coefficient between the casting and metal mold using neural network. Energy Convers. Manag. 51(10), 1898–1904 (2010)CrossRef
Metadaten
Titel
Intelligent Modelling of Hard Materials Machining
verfasst von
Manjunath Patel G. C.
Ganesh R. Chate
Mahesh B. Parappagoudar
Kapil Gupta
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-40102-3_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.