Skip to main content

2025 | OriginalPaper | Buchkapitel

Intelligent Monitoring and Warning System for College Students’ Mental Health Based on Big Data Technology

verfasst von : Xueshen Chen

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to correctly observe and report the incidence of mental disorders among college students, an intelligent monitoring and warning system for college students’ mental health based on big data technology was proposed. This study investigated the mental health, learning, and behavior patterns of college students and found the differences in their mental health status between different learning styles and lifestyles. Using sleep, staying up late, socializing with classmates, academic performance, absenteeism, and sudden illness as information collection indicators, establish a psychological crisis monitoring and warning system based on big data technology, conduct two-level monitoring and warning, achieve dynamic tracking and accurate monitoring and warning of college students’ mental health status, and improve the level of mental health education in universities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen M, Shen K, Wang R, Miao Y, Jiang Y, Hwang K et al (2022) Negative information measurement at AI edge: a new perspective for mental health monitoring. ACM Trans Internet Technol (TOIT) 22(3):1–16CrossRef Chen M, Shen K, Wang R, Miao Y, Jiang Y, Hwang K et al (2022) Negative information measurement at AI edge: a new perspective for mental health monitoring. ACM Trans Internet Technol (TOIT) 22(3):1–16CrossRef
2.
Zurück zum Zitat Humayun M, Jhanjhi NZ, Almotilag A, Almufareh MF (2022) Agent-based medical health monitoring system. Sensors 22(8):2820CrossRef Humayun M, Jhanjhi NZ, Almotilag A, Almufareh MF (2022) Agent-based medical health monitoring system. Sensors 22(8):2820CrossRef
3.
Zurück zum Zitat Sujith AVLN, Sajja GS, Mahalakshmi V, Nuhmani S, Prasanalakshmi B (2022) Systematic review of smart health monitoring using deep learning and artificial intelligence. Neurosci Inform 2(3):100028CrossRef Sujith AVLN, Sajja GS, Mahalakshmi V, Nuhmani S, Prasanalakshmi B (2022) Systematic review of smart health monitoring using deep learning and artificial intelligence. Neurosci Inform 2(3):100028CrossRef
4.
Zurück zum Zitat Anikwe CV, Nweke HF, Ikegwu AC, Egwuonwu CA, Onu FU, Alo UR, Teh YW (2022) Mobile and wearable sensors for data-driven health monitoring system: state-of-the-art and future prospect. Expert Syst Appl 202:117362CrossRef Anikwe CV, Nweke HF, Ikegwu AC, Egwuonwu CA, Onu FU, Alo UR, Teh YW (2022) Mobile and wearable sensors for data-driven health monitoring system: state-of-the-art and future prospect. Expert Syst Appl 202:117362CrossRef
5.
Zurück zum Zitat Rajavel R, Ravichandran SK, Harimoorthy K, Nagappan P, Gobichettipalayam KR (2022) IoT-based smart healthcare video surveillance system using edge computing. J Ambient Intell Humaniz Comput 1–13 Rajavel R, Ravichandran SK, Harimoorthy K, Nagappan P, Gobichettipalayam KR (2022) IoT-based smart healthcare video surveillance system using edge computing. J Ambient Intell Humaniz Comput 1–13
6.
Zurück zum Zitat Johri A, Bhadula S, Sharma S, Shukla AS (2022) Assessment of factors affecting implementation of IoT based smart skin monitoring systems. Technol Soc 68:101908CrossRef Johri A, Bhadula S, Sharma S, Shukla AS (2022) Assessment of factors affecting implementation of IoT based smart skin monitoring systems. Technol Soc 68:101908CrossRef
7.
Zurück zum Zitat Rajan Jeyaraj P, Nadar ERS (2022) Smart-monitor: patient monitoring system for IoT-based healthcare system using deep learning. IETE J Res 68(2):1435–1442 Rajan Jeyaraj P, Nadar ERS (2022) Smart-monitor: patient monitoring system for IoT-based healthcare system using deep learning. IETE J Res 68(2):1435–1442
8.
Zurück zum Zitat Awotunde JB, Jimoh RG, Ogundokun RO, Misra S, Abikoye OC (2022) Big data analytics of IoT-based cloud system framework: smart healthcare monitoring systems. In: Artificial intelligence for cloud and edge computing. Springer International Publishing, Cham, pp 181–208CrossRef Awotunde JB, Jimoh RG, Ogundokun RO, Misra S, Abikoye OC (2022) Big data analytics of IoT-based cloud system framework: smart healthcare monitoring systems. In: Artificial intelligence for cloud and edge computing. Springer International Publishing, Cham, pp 181–208CrossRef
9.
Zurück zum Zitat Rathnayaka P, Mills N, Burnett D, De Silva D, Alahakoon D, Gray R (2022) A mental health chatbot with cognitive skills for personalised behavioural activation and remote health monitoring. Sensors 22(10):3653CrossRef Rathnayaka P, Mills N, Burnett D, De Silva D, Alahakoon D, Gray R (2022) A mental health chatbot with cognitive skills for personalised behavioural activation and remote health monitoring. Sensors 22(10):3653CrossRef
10.
Zurück zum Zitat Antoniou G, Papadakis E, Baryannis G (2022) Mental health diagnosis: a case for explainable artificial intelligence. Int J Artif Intell Tools 31(03):2241003CrossRef Antoniou G, Papadakis E, Baryannis G (2022) Mental health diagnosis: a case for explainable artificial intelligence. Int J Artif Intell Tools 31(03):2241003CrossRef
Metadaten
Titel
Intelligent Monitoring and Warning System for College Students’ Mental Health Based on Big Data Technology
verfasst von
Xueshen Chen
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_38