Skip to main content
Erschienen in:

01.07.2024 | Original Paper

Intelligent regional subsurface prediction based on limited borehole data and interpretability stacking technique of ensemble learning

verfasst von: Jun Bai, Sheng Wang, Qiang Xu, Junsheng Zhu, Zhaoqi Li, Kun Lai, Xingyi Liu, Zongjie Chen

Erschienen in: Bulletin of Engineering Geology and the Environment | Ausgabe 7/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study introduces an intelligent method for regional subsurface prediction using a Stacking ensemble learning approach, which incorporates K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), Gradient Boosted Decision Trees (GBDT), and Xgboost as base classifiers, with Logistic Regression (LR) serving as the meta-classifier. Leveraging data from 1119 boreholes in Zigong City, China, this method achieves a prediction accuracy of 93%, and notably improves the prediction of weak layers, with accuracy rates ranging from 71.4% to 81.5%. This enhancement is particularly significant in areas with a random distribution of excavation and backfill. Furthermore, this study employs the SHAP method (SHapley Additive explanations) to interpret the Stacking ensemble learning model, revealing that the outputs of the base classifiers enhance the feature set for the meta-classifier, effectively addressing the insensitivity of the spatial coordinates x, y, and z as input features for lithology prediction. The findings demonstrate that the expansion of effective feature dimensions is key to the superior performance of the Stacking ensemble learning method in regional subsurface lithology prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Miao C, Wang Y (2024) Interpolation of non-stationary geo-data using Kriging with sparse representation of covariance function. Comput Geotech 169:106183CrossRef Miao C, Wang Y (2024) Interpolation of non-stationary geo-data using Kriging with sparse representation of covariance function. Comput Geotech 169:106183CrossRef
Zurück zum Zitat Zhang Y, Wang Y, Zhang C, Qiao X, Ge Y, Li X, Peng T, Nazir MS (2024) State-of-health estimation for lithium-ion battery via an evolutionary Stacking ensemble learning paradigm of random vector functional link and active-state-tracking long–short-term memory neural network. Appl Energy 356:122417. https://doi.org/10.1016/j.apenergy.2023.122417CrossRef Zhang Y, Wang Y, Zhang C, Qiao X, Ge Y, Li X, Peng T, Nazir MS (2024) State-of-health estimation for lithium-ion battery via an evolutionary Stacking ensemble learning paradigm of random vector functional link and active-state-tracking long–short-term memory neural network. Appl Energy 356:122417. https://​doi.​org/​10.​1016/​j.​apenergy.​2023.​122417CrossRef
Metadaten
Titel
Intelligent regional subsurface prediction based on limited borehole data and interpretability stacking technique of ensemble learning
verfasst von
Jun Bai
Sheng Wang
Qiang Xu
Junsheng Zhu
Zhaoqi Li
Kun Lai
Xingyi Liu
Zongjie Chen
Publikationsdatum
01.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Bulletin of Engineering Geology and the Environment / Ausgabe 7/2024
Print ISSN: 1435-9529
Elektronische ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-024-03758-y