2020 | OriginalPaper | Buchkapitel
Interaction and influence of HVO-based fuels on diesel combustion
verfasst von : Daniel Erforth, Paul Lagaly, Thomas Koch
Erschienen in: Internationaler Motorenkongress 2020
Verlag: Springer Fachmedien Wiesbaden
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
With a share of more than 20% of the total CO2 emissions of the European Union, both individual and freight traffic contribute significantly to climate change. Against the backdrop of the Paris agreement and global commitment to tackle climate change, new ways towards a CO2-neutral mobility have to be identified. Most stakeholders in business, science and politics agree that no single key technology will be sufficient to address this issue but a range of technologies will be needed to develop the mobility of the future. One way to achieve CO2 neutrality within the stock fleet is a symbiosis of conventional internal combustion engines and regenerative reFuels.Especially with regard to the commercial vehicle market and the established diesel technology, the regenerative fuel named R33 (26% Hydrotreated Vegetable Oil (HVO), 7% Fatty Acid Methyl Ester (FAME), 67% diesel fuel) offers an adequate alternative to the conventional B7 as it fully complies with the requirements of the fuel standard DIN EN590. In addition to the sustainable production chain, one of the most important requirements for a regenerative fuel is its compatibility with the existing transport fleet (technical and emissions).Against this backdrop we engaged in a holistic comparison between a conventional B7 winter diesel and a R33 regenerative fuel. The effects on the resulting emissions of a single-cylinder diesel engine for heavy commercial vehicle applications were analyzed at six stationary operating points, varying load and engine speed. Besides charting common combustion and emission parameters, we closely analyzed the resulting particulate emissions.