Skip to main content
Erschienen in: Journal of Materials Science 13/2018

09.04.2018 | Metals

Interaction between primary dendrite arm spacing and velocity of fluid flow during solidification of Al–Si binary alloys

verfasst von: Hongda Wang, Mohamed S. Hamed, Sumanth Shankar

Erschienen in: Journal of Materials Science | Ausgabe 13/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new and more efficient numerical algorithm to simulate the solidification of binary metallic alloys, wherein for the first time, the undercooling of the liquidus temperature prior to solidification event and optimized thermo-physical properties was incorporated, has been recently developed and validated by various experiments. Subsequently, experiments were carried out to evaluate the validity of various theoretical models in the literature used to predict the dendrite arm spacing (DAS) and quantify the critical interaction between fluid flow and transient DAS during unsteady state solidification. Typically, models of solidification processes such as casting, welding and galvanizing assume a constant value of fluid flow to predict the DAS and in many cases unable to obtain validation. This practice is erroneous and the transient fluid flow developed during solidification has a significant effect on the transient DAS, thermal gradient (G), solidification velocity (R) and morphology of the mushy zone. The Bouchard–Kirkaldy model (DAS prediction) coupled with the Lehmann model to incorporate fluid flow velocity was the only valid theoretical model in binary alloy solidification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat JMatPro, version 4.1, Sente Software Ltd., Surrey Technology Centre, Surrey, UK JMatPro, version 4.1, Sente Software Ltd., Surrey Technology Centre, Surrey, UK
2.
Zurück zum Zitat Sekulic DP, Galenko PK, Krivilyov MD, Walker L, Gao F (2005) Dendritic growth in Al–Si alloys during brazing. Part 2: computational modeling. Int J Heat Mass Transf 48:2385–2396CrossRef Sekulic DP, Galenko PK, Krivilyov MD, Walker L, Gao F (2005) Dendritic growth in Al–Si alloys during brazing. Part 2: computational modeling. Int J Heat Mass Transf 48:2385–2396CrossRef
3.
Zurück zum Zitat Bale CW et al (2016) FactSage thermochemical software and databases—2010-2016. Calphad 54:35-53CrossRef Bale CW et al (2016) FactSage thermochemical software and databases—2010-2016. Calphad 54:35-53CrossRef
4.
Zurück zum Zitat Gunduz M, Hunt JD (1985) The measurement of solid–liquid surface energies in the Al–Cu, Al–Si and Pb–Sn systems. Acta Metall 33:1651–1672CrossRef Gunduz M, Hunt JD (1985) The measurement of solid–liquid surface energies in the Al–Cu, Al–Si and Pb–Sn systems. Acta Metall 33:1651–1672CrossRef
5.
Zurück zum Zitat Quaresma JMV, Santos CA, Garcia A (2000) Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al–Cu alloys. Metall Mater Trans A 31:3167–3178CrossRef Quaresma JMV, Santos CA, Garcia A (2000) Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al–Cu alloys. Metall Mater Trans A 31:3167–3178CrossRef
6.
Zurück zum Zitat Shabestari SG, Shahri F (2004) Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy. J Mater Sci Lett 39:2023–2032CrossRef Shabestari SG, Shahri F (2004) Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy. J Mater Sci Lett 39:2023–2032CrossRef
7.
Zurück zum Zitat Bennon WD, Incropera FP (1987) A continuum model for momentum, heat and species transport in binary solid–liquid phase change systems—I. Model formulation. Int J Heat Mass Transf 30:2161–2170CrossRef Bennon WD, Incropera FP (1987) A continuum model for momentum, heat and species transport in binary solid–liquid phase change systems—I. Model formulation. Int J Heat Mass Transf 30:2161–2170CrossRef
8.
Zurück zum Zitat Bennon WD, Incropera FP (1987) A continuum model for momentum, heat and species transport in binary solid—liquid phase change systems—II. Application to solidification in a rectangular cavity. Int J Heat Mass Transf 30:2171–2178CrossRef Bennon WD, Incropera FP (1987) A continuum model for momentum, heat and species transport in binary solid—liquid phase change systems—II. Application to solidification in a rectangular cavity. Int J Heat Mass Transf 30:2171–2178CrossRef
9.
Zurück zum Zitat Bennon WD, Incropera FP (1988) Numerical analysis of binary solid—liquid phase change using a continuum model. Numer Heat Transf 13:277–296CrossRef Bennon WD, Incropera FP (1988) Numerical analysis of binary solid—liquid phase change using a continuum model. Numer Heat Transf 13:277–296CrossRef
10.
Zurück zum Zitat Heinrich JC, Poirier DR (2004) The effect of volume change during directional solidification of binary alloys. Model Simul Mater Sci Eng 12:881–899CrossRef Heinrich JC, Poirier DR (2004) The effect of volume change during directional solidification of binary alloys. Model Simul Mater Sci Eng 12:881–899CrossRef
11.
Zurück zum Zitat Ho C-J, Viskanta R (1984) Heat transfer during inward melting in a horizontal tube. Int J Heat Mass Transf 27:705–716CrossRef Ho C-J, Viskanta R (1984) Heat transfer during inward melting in a horizontal tube. Int J Heat Mass Transf 27:705–716CrossRef
12.
Zurück zum Zitat Krane MJM, Incropera FP (1995) Analysis of the effect of shrinkage on macrosegregation in alloy solidification. Metall Mater Trans A 26A:2329–2339CrossRef Krane MJM, Incropera FP (1995) Analysis of the effect of shrinkage on macrosegregation in alloy solidification. Metall Mater Trans A 26A:2329–2339CrossRef
13.
Zurück zum Zitat Magnusson T, Arnberg L (2001) Density and solidification shrinkage of hypoeutectic aluminum–silicon alloys. Metall Mater Trans A 32:2605–2613CrossRef Magnusson T, Arnberg L (2001) Density and solidification shrinkage of hypoeutectic aluminum–silicon alloys. Metall Mater Trans A 32:2605–2613CrossRef
14.
Zurück zum Zitat McBride E, Heinrich JC, Poirier DR (1999) Numerical simulation of incompressible flow driven by density variations during phase change. Int J Numer Meth Fluids 31:787–800CrossRef McBride E, Heinrich JC, Poirier DR (1999) Numerical simulation of incompressible flow driven by density variations during phase change. Int J Numer Meth Fluids 31:787–800CrossRef
15.
Zurück zum Zitat Voller VR, Prakash C (1987) Fixed grid numerical modeling methodology for convection—diffusion mushy region phase—change problems. Int J Heat Mass Transf 30:1709–1719CrossRef Voller VR, Prakash C (1987) Fixed grid numerical modeling methodology for convection—diffusion mushy region phase—change problems. Int J Heat Mass Transf 30:1709–1719CrossRef
16.
Zurück zum Zitat Wang H, Shankar S, Hamed MS (2007) Numerical model for binary alloy solidification. In: 5th international conference on computational heat and mass transfer, Canmore. pp 345–351 Wang H, Shankar S, Hamed MS (2007) Numerical model for binary alloy solidification. In: 5th international conference on computational heat and mass transfer, Canmore. pp 345–351
17.
Zurück zum Zitat Xu D, Li Q (1991) Gravity- and solidification-shrinkage-induced liquid flow in a horizontally solidified alloy ingot. Numer Heat Transf Int J Comput Methodol A Appl 20:203–221CrossRef Xu D, Li Q (1991) Gravity- and solidification-shrinkage-induced liquid flow in a horizontally solidified alloy ingot. Numer Heat Transf Int J Comput Methodol A Appl 20:203–221CrossRef
18.
Zurück zum Zitat Yao LS (1984) Natural convection effects in the continuous casting of a horizontal cylinder. Int J Heat Mass Transf 27:697–704CrossRef Yao LS (1984) Natural convection effects in the continuous casting of a horizontal cylinder. Int J Heat Mass Transf 27:697–704CrossRef
19.
Zurück zum Zitat Ramirez JC, Beckermann C, Karma A, Diepers H-J (2004) Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Phys Rev E 69:051607-1–051607-16CrossRef Ramirez JC, Beckermann C, Karma A, Diepers H-J (2004) Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Phys Rev E 69:051607-1–051607-16CrossRef
20.
Zurück zum Zitat Warren JA, Boettinger WJ, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Annu Rev Mater Sci 32:163–194CrossRef Warren JA, Boettinger WJ, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Annu Rev Mater Sci 32:163–194CrossRef
21.
Zurück zum Zitat Beckermann C, Li Q, Tong X (2001) Microstructure evolution in equiaxed dendritic growth. Sci Technol Adv Mater 2:117–126CrossRef Beckermann C, Li Q, Tong X (2001) Microstructure evolution in equiaxed dendritic growth. Sci Technol Adv Mater 2:117–126CrossRef
22.
Zurück zum Zitat Elder KR, Grant M, Provatas N, Kosterlitz JM (2001) Sharp interface limits of phase-field models. Phys Rev E (Stat Nonlinear Soft Matter Phys) 64:021604/1–021604/18 Elder KR, Grant M, Provatas N, Kosterlitz JM (2001) Sharp interface limits of phase-field models. Phys Rev E (Stat Nonlinear Soft Matter Phys) 64:021604/1–021604/18
23.
Zurück zum Zitat Provatas N, Goldenfeld N, Dantzig J (1999) Modeling solidification using a phase-field model and adaptive mesh refinement. Solidification 1999. Proceedings. pp 151–160 Provatas N, Goldenfeld N, Dantzig J (1999) Modeling solidification using a phase-field model and adaptive mesh refinement. Solidification 1999. Proceedings. pp 151–160
24.
Zurück zum Zitat Karma A, Rappel W-J (1996) Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys Rev E (Stat Phys Plasmas Fluids Related Interdiscip Top) 53:R3017–R3020 Karma A, Rappel W-J (1996) Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys Rev E (Stat Phys Plasmas Fluids Related Interdiscip Top) 53:R3017–R3020
25.
Zurück zum Zitat Jeong JH, Goldenfield N, Dantzig JA (2001) Phase field model for three-dimensional growth with fluid flow. Phys Rev E 64:041602-1-14CrossRef Jeong JH, Goldenfield N, Dantzig JA (2001) Phase field model for three-dimensional growth with fluid flow. Phys Rev E 64:041602-1-14CrossRef
26.
Zurück zum Zitat Lan CW, Shih CJ (2004) Efficient phase field simulation of a binary dendritic growth in a forced flow. Phys Rev E (Stat Nonlinear Soft Matter Phys) 69:31601-1–31601-10 Lan CW, Shih CJ (2004) Efficient phase field simulation of a binary dendritic growth in a forced flow. Phys Rev E (Stat Nonlinear Soft Matter Phys) 69:31601-1–31601-10
27.
Zurück zum Zitat Bouchard D, Kirkaldy JS (1997) Prediction of dendrite arm spacings in unsteady- and steady-state heat flow of unidirectionally solidified binary alloys. Metall Mater Trans B (Process Metall Mater Process Sci) 28B:651–663CrossRef Bouchard D, Kirkaldy JS (1997) Prediction of dendrite arm spacings in unsteady- and steady-state heat flow of unidirectionally solidified binary alloys. Metall Mater Trans B (Process Metall Mater Process Sci) 28B:651–663CrossRef
28.
Zurück zum Zitat Lehmann P, Moreaub R, Camela D, Bolcatob R (1998) A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal Bridgman solidification. Comparison with experimental results. J Cryst Growth 183:690–704CrossRef Lehmann P, Moreaub R, Camela D, Bolcatob R (1998) A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal Bridgman solidification. Comparison with experimental results. J Cryst Growth 183:690–704CrossRef
29.
Zurück zum Zitat Peres MD, Siqueira CA, Garcia A (2004) Macrostructural and microstructural development in Al–Si alloys directionally solidified under unsteady-state conditions. J Alloys Compd 381:168–181CrossRef Peres MD, Siqueira CA, Garcia A (2004) Macrostructural and microstructural development in Al–Si alloys directionally solidified under unsteady-state conditions. J Alloys Compd 381:168–181CrossRef
30.
Zurück zum Zitat Spinelli JE, Peres MD, Garcia A (2005) Thermosolutal convective effects on dendritic array spacings in downward transient directional solidification of Al–Si alloys. J Alloys Compd 403:228–238CrossRef Spinelli JE, Peres MD, Garcia A (2005) Thermosolutal convective effects on dendritic array spacings in downward transient directional solidification of Al–Si alloys. J Alloys Compd 403:228–238CrossRef
31.
Zurück zum Zitat Wang H (2009) Solidification simulation of binary Al–Si alloys: prediction of primary dendrite arm spacing with macro-scale simulations (~ 1 mm length scale). Ph.D. Thesis, Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada, Publication A Wang H (2009) Solidification simulation of binary Al–Si alloys: prediction of primary dendrite arm spacing with macro-scale simulations (~ 1 mm length scale). Ph.D. Thesis, Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada, Publication A
32.
Zurück zum Zitat Wang H (2009) Solidification simulation of binary Al–Si alloys: prediction of primary dendrite arm spacing with macro-scale simulations (~ 1 mm length scale). Ph.D. Thesis, Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada, Publication C Wang H (2009) Solidification simulation of binary Al–Si alloys: prediction of primary dendrite arm spacing with macro-scale simulations (~ 1 mm length scale). Ph.D. Thesis, Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada, Publication C
33.
Zurück zum Zitat Hunt JD (1979) Solidification and casting of metals. In: Proceedings of the international conference on solidification and casting of metals. The Metals Society, London. pp 3–9 Hunt JD (1979) Solidification and casting of metals. In: Proceedings of the international conference on solidification and casting of metals. The Metals Society, London. pp 3–9
34.
Zurück zum Zitat Kurz W, Fisher DJ (1981) Dendritic growth and limit of stability tip radius and spacing. Acta Metall 29:11–20CrossRef Kurz W, Fisher DJ (1981) Dendritic growth and limit of stability tip radius and spacing. Acta Metall 29:11–20CrossRef
35.
Zurück zum Zitat Trivedi R (1984) Interdendritic spacing: part II. A. Comparison of theory and experiment. Metall Trans A (Phys Metall Mater Sci) 15A:977–982CrossRef Trivedi R (1984) Interdendritic spacing: part II. A. Comparison of theory and experiment. Metall Trans A (Phys Metall Mater Sci) 15A:977–982CrossRef
36.
Zurück zum Zitat Steinbach S, Ratke L (2005) The effect of rotating magnetic fields on the microstructure of directionally solidified Al–Si–Mg alloys. Mater Sci Eng A 413–414:200–204CrossRef Steinbach S, Ratke L (2005) The effect of rotating magnetic fields on the microstructure of directionally solidified Al–Si–Mg alloys. Mater Sci Eng A 413–414:200–204CrossRef
37.
Zurück zum Zitat Flemings MC (1974) Solidification processing. McGraw-hill Book Co, New York Flemings MC (1974) Solidification processing. McGraw-hill Book Co, New York
38.
Zurück zum Zitat Felicelli SD, Heinrich JC, Poirier DR (1991) Simulation of freckles during vertical solidification of binary alloys. Metall Trans B (Process Metall) 22:847–859CrossRef Felicelli SD, Heinrich JC, Poirier DR (1991) Simulation of freckles during vertical solidification of binary alloys. Metall Trans B (Process Metall) 22:847–859CrossRef
39.
Zurück zum Zitat Burden MH, Hunt JD (1974) Cellular and dendritic growth. I. J Cryst Growth 22:99–108CrossRef Burden MH, Hunt JD (1974) Cellular and dendritic growth. I. J Cryst Growth 22:99–108CrossRef
40.
Zurück zum Zitat Burden MH, Hunt JD (1974) Cellular and dendritic growth. II. J Cryst Growth 22:109–116CrossRef Burden MH, Hunt JD (1974) Cellular and dendritic growth. II. J Cryst Growth 22:109–116CrossRef
41.
Zurück zum Zitat Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–156 Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–156
42.
Zurück zum Zitat Carman PC (1938) The determination of the specific surface of powders. I. J Soc Chem Ind 57:225–234 Carman PC (1938) The determination of the specific surface of powders. I. J Soc Chem Ind 57:225–234
43.
Zurück zum Zitat Asai S, Muchi I (1978) Theoretical analysis and model experiments of the formation mechanism of channel—type segregation. Trans Iron Steel Inst Jpn 18:290–298 Asai S, Muchi I (1978) Theoretical analysis and model experiments of the formation mechanism of channel—type segregation. Trans Iron Steel Inst Jpn 18:290–298
Metadaten
Titel
Interaction between primary dendrite arm spacing and velocity of fluid flow during solidification of Al–Si binary alloys
verfasst von
Hongda Wang
Mohamed S. Hamed
Sumanth Shankar
Publikationsdatum
09.04.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2239-y

Weitere Artikel der Ausgabe 13/2018

Journal of Materials Science 13/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.