Skip to main content
Erschienen in: Journal of Nanoparticle Research 5/2011

01.05.2011 | Research Paper

Interaction between ultrashort laser pulses and gold nanoparticles: nanoheater and nanolens effect

verfasst von: N. N. Nedyalkov, S. Imamova, P. A. Atanasov, Y. Tanaka, M. Obara

Erschienen in: Journal of Nanoparticle Research | Ausgabe 5/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Theoretic and experimental results on the heating process and near field localization arising when gold nanoparticles are irradiated by ultrashort laser pulses are presented. The system under consideration consists of nanoparticles with radius of 20, 40, or 100 nm in vacuum or deposited on different substrates. Substrate materials with different dielectric properties are used to sense and visualize the nanoparticle heating and near electromagnetic field distribution. The theoretic analysis is based on two-temperature heat model for estimation of the nanoparticle temperature and Finite Difference Time Domain (FDTD) method for description of the near field distribution in the vicinity of the particles. It is found that at even moderate laser fluences, particle temperature can reach a value sufficient for bubble formation in biological tissues. The analysis of the near field distribution shows that when particle is deposited on substrate surface, the dielectric properties of the substrate define the localization and enhancement of the near field intensity. The efficiency of this process determines the contribution of particle heating or near field intensity enhancement in the surface modification process. The localization of the near field intensity in the vicinity of the contact point between the particle and substrate is proved experimentally for metal and silicon substrates, where the experimentally obtained surface modifications resemble the theoretically predicted intensity distribution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abe K, Hanada T, Yoshida Y, Tanigaki N, Takiguchi H, Nakamoto M, Yamaguchi T, Yasea K (1998) Two-dimensional array of silver nanoparticles. Thin Solid Films 327–329:524–527CrossRef Abe K, Hanada T, Yoshida Y, Tanigaki N, Takiguchi H, Nakamoto M, Yamaguchi T, Yasea K (1998) Two-dimensional array of silver nanoparticles. Thin Solid Films 327–329:524–527CrossRef
Zurück zum Zitat Anisimov SI, Kapeliovich BL, Perel’man TL (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Eksp Teor Fiz 66:776–781 (in Russian) Anisimov SI, Kapeliovich BL, Perel’man TL (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Eksp Teor Fiz 66:776–781 (in Russian)
Zurück zum Zitat Baker AK, Dyer PE (1993) Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation. Appl Phys A 57:543–544CrossRef Baker AK, Dyer PE (1993) Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation. Appl Phys A 57:543–544CrossRef
Zurück zum Zitat Bashevoy MV, Fedotov VA, Zheludev NI (2005) Optical whirlpool on an absorbing metallic nanoparticle. Opt Express 1:8372–8379CrossRef Bashevoy MV, Fedotov VA, Zheludev NI (2005) Optical whirlpool on an absorbing metallic nanoparticle. Opt Express 1:8372–8379CrossRef
Zurück zum Zitat Buscaglia MT, Buscaglia V, Viviani M, Dondero G, Röhrig S, Rüdiger A, Nanni P (2008) Ferroelectric hollow particles obtained by solid-state reaction. Nanotechnology 19:225602CrossRef Buscaglia MT, Buscaglia V, Viviani M, Dondero G, Röhrig S, Rüdiger A, Nanni P (2008) Ferroelectric hollow particles obtained by solid-state reaction. Nanotechnology 19:225602CrossRef
Zurück zum Zitat Chen XY, Li JR, Jiang L (2000) Two-dimensional arrangement of octadecylamine-functionalized gold nanoparticles using the LB technique. Nanotechnology 11:108–111CrossRef Chen XY, Li JR, Jiang L (2000) Two-dimensional arrangement of octadecylamine-functionalized gold nanoparticles using the LB technique. Nanotechnology 11:108–111CrossRef
Zurück zum Zitat Cho S, Chang W, Kim J, Whang K, Choi K, Sohn S (2008) In situ observation of photo-bleaching in human single living cell excited by a NIR femtosecond laser. Appl Surf Sci 254:3370–3375CrossRef Cho S, Chang W, Kim J, Whang K, Choi K, Sohn S (2008) In situ observation of photo-bleaching in human single living cell excited by a NIR femtosecond laser. Appl Surf Sci 254:3370–3375CrossRef
Zurück zum Zitat Chowdhury IH, Numer X (2003) Heat transfer in femtosecond laser processing of metal. Heat Transf A 44:219–232CrossRef Chowdhury IH, Numer X (2003) Heat transfer in femtosecond laser processing of metal. Heat Transf A 44:219–232CrossRef
Zurück zum Zitat Chu T, Liu W-C, Tsai D (2005) Enhanced resolution induced by random silver nanoparticles in near-field optical disks. Opt Commun 246:561–567CrossRef Chu T, Liu W-C, Tsai D (2005) Enhanced resolution induced by random silver nanoparticles in near-field optical disks. Opt Commun 246:561–567CrossRef
Zurück zum Zitat Eversole D, Luk’yanchuk B, Ben-yakar A (2007) Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres. Appl Phys A 89:283–291CrossRef Eversole D, Luk’yanchuk B, Ben-yakar A (2007) Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres. Appl Phys A 89:283–291CrossRef
Zurück zum Zitat Habash RWY (2007) Bioeffects and therapeutic applications of electromagnetic energy. CRC Press, New YorkCrossRef Habash RWY (2007) Bioeffects and therapeutic applications of electromagnetic energy. CRC Press, New YorkCrossRef
Zurück zum Zitat Hodak JH, Martini I, Hartland GV (1998) Spectroscopy and dynamics of nanometer-sized noble metal particles. J Phys Chem B 102(36):6958–6967CrossRef Hodak JH, Martini I, Hartland GV (1998) Spectroscopy and dynamics of nanometer-sized noble metal particles. J Phys Chem B 102(36):6958–6967CrossRef
Zurück zum Zitat Huang SM, Hong MH, Luk’yanchuk BS, Chong TC (2003) Direct and subdiffraction-limit laser nanofabrication in silicon. Appl Phys Lett 82:4809–4811CrossRef Huang SM, Hong MH, Luk’yanchuk BS, Chong TC (2003) Direct and subdiffraction-limit laser nanofabrication in silicon. Appl Phys Lett 82:4809–4811CrossRef
Zurück zum Zitat Jain PK, Huang X, El-Sayed I, El-Sayed M (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine. Acc Chem Res 41:1578–1586CrossRef Jain PK, Huang X, El-Sayed I, El-Sayed M (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine. Acc Chem Res 41:1578–1586CrossRef
Zurück zum Zitat Jerisch J, Dickmann K (1996) Nanostructure fabrication using laser field enhancement in the near field of a scanning tunneling microscope tip. Appl Phys Lett 68:868–870CrossRef Jerisch J, Dickmann K (1996) Nanostructure fabrication using laser field enhancement in the near field of a scanning tunneling microscope tip. Appl Phys Lett 68:868–870CrossRef
Zurück zum Zitat Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRef Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRef
Zurück zum Zitat Kelly K, Coronado E, Zhao L, Schatz G (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRef Kelly K, Coronado E, Zhao L, Schatz G (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRef
Zurück zum Zitat Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic Press, New York Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic Press, New York
Zurück zum Zitat Khlebtsov B, Zharov Vl, Melnikov A, Tuchin V, Khlebtsov N (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17:5167–5179CrossRef Khlebtsov B, Zharov Vl, Melnikov A, Tuchin V, Khlebtsov N (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17:5167–5179CrossRef
Zurück zum Zitat Kik PG, Martin AL, Maier SA, Atwater HA (2002) Metal nanoparticle arrays for near-field optical lithography. Proc SPIE 4810:7–14CrossRef Kik PG, Martin AL, Maier SA, Atwater HA (2002) Metal nanoparticle arrays for near-field optical lithography. Proc SPIE 4810:7–14CrossRef
Zurück zum Zitat Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin
Zurück zum Zitat Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842–1851CrossRef Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842–1851CrossRef
Zurück zum Zitat Leiderer P, Bartels C, König-Birk J, Mosbacher M, Boneberg J (2004) Imaging optical near-fields of nanostructures. Appl Phys Lett 85:5370–5372CrossRef Leiderer P, Bartels C, König-Birk J, Mosbacher M, Boneberg J (2004) Imaging optical near-fields of nanostructures. Appl Phys Lett 85:5370–5372CrossRef
Zurück zum Zitat Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRef Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRef
Zurück zum Zitat Liu H, Chen D, Tang F, Du G, Li L, Meng X, Liang W, Zhang Y, Teng Xu, Li Y (2008) Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres. Nanotechnology 19:455101CrossRef Liu H, Chen D, Tang F, Du G, Li L, Meng X, Liang W, Zhang Y, Teng Xu, Li Y (2008) Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres. Nanotechnology 19:455101CrossRef
Zurück zum Zitat Loo Ch, Hirsch L, Lee M, Chang E, West J, Halas N, Drezek R (2005) Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 30:1012–1014CrossRef Loo Ch, Hirsch L, Lee M, Chang E, West J, Halas N, Drezek R (2005) Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 30:1012–1014CrossRef
Zurück zum Zitat Matsui I (2005) Nanoparticles for electronic device applications: a brief review. J Chem Eng Jpn 38:535–546CrossRef Matsui I (2005) Nanoparticles for electronic device applications: a brief review. J Chem Eng Jpn 38:535–546CrossRef
Zurück zum Zitat Messinger BJ, Ulrich von Raben K, Chang RK (1981) Local fields at the surface of noble-metal microspheres. Phys Rev B 24:649–657CrossRef Messinger BJ, Ulrich von Raben K, Chang RK (1981) Local fields at the surface of noble-metal microspheres. Phys Rev B 24:649–657CrossRef
Zurück zum Zitat Mie G (1908) Beitrige zur Optik trUber Medien, speziell kolloidaler Metallosungen. Ann Phys (Leipzig) 25:376–445 (in German) Mie G (1908) Beitrige zur Optik trUber Medien, speziell kolloidaler Metallosungen. Ann Phys (Leipzig) 25:376–445 (in German)
Zurück zum Zitat Miyanishi T, Sakai T, Nedyalkov NN, Obara M (2009) Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation. App Phys A 96:843–850CrossRef Miyanishi T, Sakai T, Nedyalkov NN, Obara M (2009) Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation. App Phys A 96:843–850CrossRef
Zurück zum Zitat Nedyalkov N, Sakai T, Miyanishi T, Obara M (2006a) Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring. J Phys D 39:5037–5042CrossRef Nedyalkov N, Sakai T, Miyanishi T, Obara M (2006a) Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring. J Phys D 39:5037–5042CrossRef
Zurück zum Zitat Nedyalkov N, Takada H, Obara M (2006b) Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles. Appl Phys A 85:163–168CrossRef Nedyalkov N, Takada H, Obara M (2006b) Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles. Appl Phys A 85:163–168CrossRef
Zurück zum Zitat Nedyalkov NN, Atanasov PA, Obara M (2007a) Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser. Nanotechnology 18:305703CrossRef Nedyalkov NN, Atanasov PA, Obara M (2007a) Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser. Nanotechnology 18:305703CrossRef
Zurück zum Zitat Nedyalkov N, Miyanishi T, Obara M (2007b) Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse. Appl Surf Sci 253:6558–6562CrossRef Nedyalkov N, Miyanishi T, Obara M (2007b) Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse. Appl Surf Sci 253:6558–6562CrossRef
Zurück zum Zitat Palik ED (1998) Handbook of optical constants of solids. Academic Press, San Diego Palik ED (1998) Handbook of optical constants of solids. Academic Press, San Diego
Zurück zum Zitat Papavassiliou GC (1979) Optical properties of small inorganic and organic metal particles. Prog Solid State Chem 12:185–271CrossRef Papavassiliou GC (1979) Optical properties of small inorganic and organic metal particles. Prog Solid State Chem 12:185–271CrossRef
Zurück zum Zitat Park JB, Jaeckel B, Parkinson BA (2006) Fabrication and investigation of nanostructures on transition metal dichalcogenide surfaces using a scanning tunneling microscope. Langmuir 22:5334–5340CrossRef Park JB, Jaeckel B, Parkinson BA (2006) Fabrication and investigation of nanostructures on transition metal dichalcogenide surfaces using a scanning tunneling microscope. Langmuir 22:5334–5340CrossRef
Zurück zum Zitat Plech A, Leiderer P, Boneberg J (2008) Femtosecond laser near field ablation. Laser Photon Rev 2:1–17CrossRef Plech A, Leiderer P, Boneberg J (2008) Femtosecond laser near field ablation. Laser Photon Rev 2:1–17CrossRef
Zurück zum Zitat Prodan E, Nordlander P, Halas NJ (2003) Electronic structure and optical properties of gold nanoshells. Nano Lett 3:1411–1415CrossRef Prodan E, Nordlander P, Halas NJ (2003) Electronic structure and optical properties of gold nanoshells. Nano Lett 3:1411–1415CrossRef
Zurück zum Zitat Pustovalov VK (2005) Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chem Phys 308:103–108CrossRef Pustovalov VK (2005) Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chem Phys 308:103–108CrossRef
Zurück zum Zitat Pustovalov VK, Babenko VA (2005) Computer modeling of optical properties of gold ellipsoidal nanoparticles at laser radiation wavelengths. Laser Phys Lett 2:84–88CrossRef Pustovalov VK, Babenko VA (2005) Computer modeling of optical properties of gold ellipsoidal nanoparticles at laser radiation wavelengths. Laser Phys Lett 2:84–88CrossRef
Zurück zum Zitat Quinten M (1995) Local fields and Poynting vectors in the vicinity of the surface of small spherical particles. Z Phys D 35:217–224CrossRef Quinten M (1995) Local fields and Poynting vectors in the vicinity of the surface of small spherical particles. Z Phys D 35:217–224CrossRef
Zurück zum Zitat Schleunitz A, Steffes H, Chabicovsky R, Obermeier E (2007) Optical gas sensitivity of a metaloxide multilayer system with gold-nano-clusters. Sens Actuators B 127:210–216CrossRef Schleunitz A, Steffes H, Chabicovsky R, Obermeier E (2007) Optical gas sensitivity of a metaloxide multilayer system with gold-nano-clusters. Sens Actuators B 127:210–216CrossRef
Zurück zum Zitat Shirma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interf Sci 123:471–485CrossRef Shirma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interf Sci 123:471–485CrossRef
Zurück zum Zitat Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston
Zurück zum Zitat Vial A, Grimault AS, Macias D, Barchiesi D, Chapelle MI (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71:085416CrossRef Vial A, Grimault AS, Macias D, Barchiesi D, Chapelle MI (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71:085416CrossRef
Zurück zum Zitat Vogel A, Noack J, Hüttmann G, Paltauf G (2007) Mechanisms of femtosecond laser nanoprocessing of biological cells and tissues. J Phys Conf Ser 59:249–254CrossRef Vogel A, Noack J, Hüttmann G, Paltauf G (2007) Mechanisms of femtosecond laser nanoprocessing of biological cells and tissues. J Phys Conf Ser 59:249–254CrossRef
Zurück zum Zitat Volkov AN, Sevilla C, Zhigilei LV (2007) Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water. Appl Surf Sci 253:6394–6399CrossRef Volkov AN, Sevilla C, Zhigilei LV (2007) Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water. Appl Surf Sci 253:6394–6399CrossRef
Zurück zum Zitat von Allmen M (1987) Laser-beam interactions with materials. Physical principles and applications. Springer, Berlin von Allmen M (1987) Laser-beam interactions with materials. Physical principles and applications. Springer, Berlin
Zurück zum Zitat Wang ZB, Luk’yanchuk BS, Hong MH, Lin Y, Chong TC (2004) Energy flow around a small particle investigated by classical Mie theory. Phys Rev B 70:035418CrossRef Wang ZB, Luk’yanchuk BS, Hong MH, Lin Y, Chong TC (2004) Energy flow around a small particle investigated by classical Mie theory. Phys Rev B 70:035418CrossRef
Zurück zum Zitat Wellershoff S, Hohlfeld J, Güdde J, Matthias E (1999) The role of electron–phonon coupling in femtosecond laser damage of metals. Appl Phys A 69:S99–S107 Wellershoff S, Hohlfeld J, Güdde J, Matthias E (1999) The role of electron–phonon coupling in femtosecond laser damage of metals. Appl Phys A 69:S99–S107
Zurück zum Zitat Zharov VP, Kim J, Curiel DT, Everts M (2005a) Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 1:326–345 Zharov VP, Kim J, Curiel DT, Everts M (2005a) Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 1:326–345
Zurück zum Zitat Zharov VP, Letfullin RR, Galitovskaya EN (2005b) Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. J Phys D 38:2571–2581CrossRef Zharov VP, Letfullin RR, Galitovskaya EN (2005b) Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. J Phys D 38:2571–2581CrossRef
Zurück zum Zitat Zheng X, Xu W, Corredor Ch, Sh Xu, An J, Zhao B, Lombardi JR (2007) Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. J Phys Chem C 111(41):14962–14967CrossRef Zheng X, Xu W, Corredor Ch, Sh Xu, An J, Zhao B, Lombardi JR (2007) Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. J Phys Chem C 111(41):14962–14967CrossRef
Metadaten
Titel
Interaction between ultrashort laser pulses and gold nanoparticles: nanoheater and nanolens effect
verfasst von
N. N. Nedyalkov
S. Imamova
P. A. Atanasov
Y. Tanaka
M. Obara
Publikationsdatum
01.05.2011
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 5/2011
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-010-9976-4

Weitere Artikel der Ausgabe 5/2011

Journal of Nanoparticle Research 5/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.