Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Computational Mechanics 6/2015

01.06.2015 | Original Paper

Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion

verfasst von: Jesus Bueno, Carles Bona-Casas, Yuri Bazilevs, Hector Gomez

Erschienen in: Computational Mechanics | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

There is a large body of literature dealing with the interaction of solids and classical fluids, but the mechanical coupling of solids and complex fluids remains practically unexplored, at least from the computational point of view. Yet, complex fluids produce much richer physics than classical fluids when they interact with solids, especially at small scales. Here, we couple a nonlinear hyperelastic solid with a single-component two-phase flow, where the fluid can condensate and evaporate naturally due to temperature and/or pressure changes. We propose a fully-coupled fluid–structure interaction algorithm to solve the problem. We illustrate the viability of the theoretical framework and the effectiveness of our algorithms by solving several problems of phase-change-driven implosion, a physical process in which a thin structure collapses due to the condensation of a fluid.
Literatur
1.
Zurück zum Zitat Bazilevs Y, Beiro Da Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006a) Isogeometric Analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16(07):1031–1090 MATHMathSciNetCrossRef Bazilevs Y, Beiro Da Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006a) Isogeometric Analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16(07):1031–1090 MATHMathSciNetCrossRef
2.
Zurück zum Zitat Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006b) Isogeometric Fluid–Structure Interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322 MATHMathSciNetCrossRef Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006b) Isogeometric Fluid–Structure Interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322 MATHMathSciNetCrossRef
3.
Zurück zum Zitat Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(14):173–201 MATHMathSciNetCrossRef Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(14):173–201 MATHMathSciNetCrossRef
4.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric Fluid–Structure Interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37 MATHMathSciNetCrossRef Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric Fluid–Structure Interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37 MATHMathSciNetCrossRef
5.
Zurück zum Zitat Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device. Comput. Methods Appl Mech Eng 198(45):3534–3550 MATHMathSciNetCrossRef Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device. Comput. Methods Appl Mech Eng 198(45):3534–3550 MATHMathSciNetCrossRef
6.
Zurück zum Zitat Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric Analysis using T-splines. Comput. Methods Appl Mech Eng 199(58):229–263 MATHMathSciNetCrossRef Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric Analysis using T-splines. Comput. Methods Appl Mech Eng 199(58):229–263 MATHMathSciNetCrossRef
7.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65(1–3):236–253 MATHCrossRef Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65(1–3):236–253 MATHCrossRef
8.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013a) Challenges and directions in computational fluid–structure interaction. Math Models Methods Appl Sci 23:215–221 MATHMathSciNetCrossRef Bazilevs Y, Takizawa K, Tezduyar TE (2013a) Challenges and directions in computational fluid–structure interaction. Math Models Methods Appl Sci 23:215–221 MATHMathSciNetCrossRef
9.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013b) Computational fluid–structure interaction. Methods and applications. Wiley, Chichester MATHCrossRef Bazilevs Y, Takizawa K, Tezduyar TE (2013b) Computational fluid–structure interaction. Methods and applications. Wiley, Chichester MATHCrossRef
10.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng, published online. doi: 10.​1007/​s11831-014-9119-7 Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng, published online. doi: 10.​1007/​s11831-014-9119-7
11.
Zurück zum Zitat Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199(5):276–289 MATHMathSciNetCrossRef Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199(5):276–289 MATHMathSciNetCrossRef
12.
Zurück zum Zitat Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95 Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95
14.
Zurück zum Zitat Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32(1):113–140 CrossRef Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32(1):113–140 CrossRef
15.
Zurück zum Zitat Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized- \(\alpha \) method. J Appl Mech 60:371–375 MATHMathSciNetCrossRef Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized- \(\alpha \) method. J Appl Mech 60:371–375 MATHMathSciNetCrossRef
16.
Zurück zum Zitat Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric Analysis of structural vibrations. Comput Methods Appl Mech Eng 195(4143):5257–5296 MATHMathSciNetCrossRef Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric Analysis of structural vibrations. Comput Methods Appl Mech Eng 195(4143):5257–5296 MATHMathSciNetCrossRef
17.
Zurück zum Zitat Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in Isogeometric structural analysis. Comput Methods Appl Mech Eng 196(4144):4160–4183 MATHMathSciNetCrossRef Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in Isogeometric structural analysis. Comput Methods Appl Mech Eng 196(4144):4160–4183 MATHMathSciNetCrossRef
18.
Zurück zum Zitat Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester CrossRef Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester CrossRef
19.
Zurück zum Zitat Cueto-Felgueroso L, Juanes R (2008) Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Phys Rev Lett 101:244504 CrossRef Cueto-Felgueroso L, Juanes R (2008) Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Phys Rev Lett 101:244504 CrossRef
20.
Zurück zum Zitat Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43:81–90 MATHCrossRef Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43:81–90 MATHCrossRef
21.
Zurück zum Zitat Diehl D (2007) Higher order schemes for simulation of compressible liquid–vapor flows with phase change. PhD Thesis, Albert-Ludwigs-Universitat Diehl D (2007) Higher order schemes for simulation of compressible liquid–vapor flows with phase change. PhD Thesis, Albert-Ludwigs-Universitat
22.
Zurück zum Zitat Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, Chichester CrossRef Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, Chichester CrossRef
23.
Zurück zum Zitat Donea J, Huerta A, Ponthot J-Ph, Rodrguez-Ferran A (2004) Encyclopedia of computational mechanics. Arbitrary Lagrangian–Eulerian methods, vol 1, Chapter 14. Wiley, New York Donea J, Huerta A, Ponthot J-Ph, Rodrguez-Ferran A (2004) Encyclopedia of computational mechanics. Arbitrary Lagrangian–Eulerian methods, vol 1, Chapter 14. Wiley, New York
25.
Zurück zum Zitat Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) \(\bar{B}\) and \(\bar{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput Methods Appl Mech Eng 197(3340):2732–2762 MATHCrossRef Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) \(\bar{B}\) and \(\bar{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput Methods Appl Mech Eng 197(3340):2732–2762 MATHCrossRef
26.
Zurück zum Zitat Farhat C, Rallu A, Shankaran S (2008) A higher-order generalized Ghost Fluid Method for the Poor for the three-dimensional two-phase flow computation of underwater implosions. J Comput Phys 227(16):7674–7700 MATHCrossRef Farhat C, Rallu A, Shankaran S (2008) A higher-order generalized Ghost Fluid Method for the Poor for the three-dimensional two-phase flow computation of underwater implosions. J Comput Phys 227(16):7674–7700 MATHCrossRef
27.
Zurück zum Zitat Farhat C, Rallu A, Wang K, Belytschko T (2010) Robust and provably second-order explicit–explicit and implicit–explicit staggered time-integrators for highly non-linear compressible Fluid–Structure Interaction problems. Int J Numer Methods Eng 84(1):73–107 MATHMathSciNetCrossRef Farhat C, Rallu A, Wang K, Belytschko T (2010) Robust and provably second-order explicit–explicit and implicit–explicit staggered time-integrators for highly non-linear compressible Fluid–Structure Interaction problems. Int J Numer Methods Eng 84(1):73–107 MATHMathSciNetCrossRef
28.
Zurück zum Zitat Galenko PK, Gomez H, Kropotin NV, Elder KR (2013) Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation. Phys Rev E 88(1):013310 CrossRef Galenko PK, Gomez H, Kropotin NV, Elder KR (2013) Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation. Phys Rev E 88(1):013310 CrossRef
29.
Zurück zum Zitat Gelbart WM, Ben-Shaul A (1996) The new science of complex fluids. J Phys Chem 100(31):13169–13189 CrossRef Gelbart WM, Ben-Shaul A (1996) The new science of complex fluids. J Phys Chem 100(31):13169–13189 CrossRef
30.
Zurück zum Zitat Gibbs JW (1876) On the equilibrium of heterogeneous substances. Trans Conn Acad 3:108–248 Gibbs JW (1876) On the equilibrium of heterogeneous substances. Trans Conn Acad 3:108–248
31.
Zurück zum Zitat Gomez H, Hughes TJR (2011) Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J Comput Phys 230(13):5310–5327 MATHMathSciNetCrossRef Gomez H, Hughes TJR (2011) Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J Comput Phys 230(13):5310–5327 MATHMathSciNetCrossRef
32.
Zurück zum Zitat Gomez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric Analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197:4333–4352 MATHMathSciNetCrossRef Gomez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric Analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197:4333–4352 MATHMathSciNetCrossRef
33.
Zurück zum Zitat Gomez H, Hughes TJR, Nogueira X, Calo VM (2010) Isogeometric Analysis of the isothermal Navier–Stokes–Korteweg equations. Comput Methods Appl Mech Eng 199(25–28):1828–1840 MATHMathSciNetCrossRef Gomez H, Hughes TJR, Nogueira X, Calo VM (2010) Isogeometric Analysis of the isothermal Navier–Stokes–Korteweg equations. Comput Methods Appl Mech Eng 199(25–28):1828–1840 MATHMathSciNetCrossRef
34.
Zurück zum Zitat Gomez H, Cueto-Felgueroso L, Juanes R (2013) Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium. J Comput Phys 238:217–239 MathSciNetCrossRef Gomez H, Cueto-Felgueroso L, Juanes R (2013) Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium. J Comput Phys 238:217–239 MathSciNetCrossRef
35.
Zurück zum Zitat Gomez H, Reali A, Sangalli G (2014) Accurate, efficient, and (iso) geometrically flexible collocation methods for phase-field models. J Comput Phys 262:153–171 MathSciNetCrossRef Gomez H, Reali A, Sangalli G (2014) Accurate, efficient, and (iso) geometrically flexible collocation methods for phase-field models. J Comput Phys 262:153–171 MathSciNetCrossRef
36.
Zurück zum Zitat Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian Finite Element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349 MATHMathSciNetCrossRef Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian Finite Element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349 MATHMathSciNetCrossRef
37.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric Analysis: CAD, Finite Elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl Mech Eng 194(3941):4135–4195 MATHMathSciNetCrossRef Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric Analysis: CAD, Finite Elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl Mech Eng 194(3941):4135–4195 MATHMathSciNetCrossRef
38.
Zurück zum Zitat Ikeda CM (2012) Fluid–Structure Interactions. Implosions of shell structures and wave impact on a flat plate. PhD Thesis, University of Maryland Ikeda CM (2012) Fluid–Structure Interactions. Implosions of shell structures and wave impact on a flat plate. PhD Thesis, University of Maryland
39.
Zurück zum Zitat Jansen KE, Whiting CH, Hulbert GM (2000) A generalized- \(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized Finite Element Method. Comput Methods Appl Mech Eng 190(34):305–319 MATHMathSciNetCrossRef Jansen KE, Whiting CH, Hulbert GM (2000) A generalized- \(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized Finite Element Method. Comput Methods Appl Mech Eng 190(34):305–319 MATHMathSciNetCrossRef
40.
Zurück zum Zitat Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94 MATHCrossRef Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94 MATHCrossRef
41.
Zurück zum Zitat Kamran K, Rossi R, Oñate E, Idelshon SR (2013a) A compressible Lagrangian framework for modeling the fluid–structure interaction in the underwater implosion of an aluminum cylinder. Math Models Methods Appl Sci 23(02):339–367 MATHMathSciNetCrossRef Kamran K, Rossi R, Oñate E, Idelshon SR (2013a) A compressible Lagrangian framework for modeling the fluid–structure interaction in the underwater implosion of an aluminum cylinder. Math Models Methods Appl Sci 23(02):339–367 MATHMathSciNetCrossRef
42.
Zurück zum Zitat Kamran K, Rossi R, Oñate E, Idelsohn SR (2013b) A compressible Lagrangian framework for the simulation of the underwater implosion of large air bubbles. Comput Methods Appl Mech Eng 255:210–225 MATHCrossRef Kamran K, Rossi R, Oñate E, Idelsohn SR (2013b) A compressible Lagrangian framework for the simulation of the underwater implosion of large air bubbles. Comput Methods Appl Mech Eng 255:210–225 MATHCrossRef
43.
Zurück zum Zitat Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199(5):357–373 MATHCrossRef Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199(5):357–373 MATHCrossRef
44.
Zurück zum Zitat Liu J (2014) Thermodynamically consistent modeling and simulation of multiphase flows. PhD Thesis, The University of Texas at Austin Liu J (2014) Thermodynamically consistent modeling and simulation of multiphase flows. PhD Thesis, The University of Texas at Austin
45.
Zurück zum Zitat Liu J, Gomez H, Evans JA, Hughes TJR, Landis CM (2013) Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations. J Comput Phys 248:47–86 MathSciNetCrossRef Liu J, Gomez H, Evans JA, Hughes TJR, Landis CM (2013) Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations. J Comput Phys 248:47–86 MathSciNetCrossRef
46.
Zurück zum Zitat Long CC, Marsden AL, Bazilevs Y (2013) Fluid–structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971–981 MATHCrossRef Long CC, Marsden AL, Bazilevs Y (2013) Fluid–structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971–981 MATHCrossRef
47.
Zurück zum Zitat Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2014a) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech 54:911–919 MATHMathSciNetCrossRef Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2014a) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech 54:911–919 MATHMathSciNetCrossRef
48.
Zurück zum Zitat Long CC, Marsden AL, Bazilevs Y (2014b) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921–932 MATHMathSciNetCrossRef Long CC, Marsden AL, Bazilevs Y (2014b) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921–932 MATHMathSciNetCrossRef
49.
Zurück zum Zitat Penrose O, Fife PC (1990) Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D 43(1):44–62 MATHMathSciNetCrossRef Penrose O, Fife PC (1990) Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D 43(1):44–62 MATHMathSciNetCrossRef
50.
Zurück zum Zitat Rallu ASD (2009) A multiphase fluid–structure computational framework for underwater implosion problems. PhD Thesis, Stanford University Rallu ASD (2009) A multiphase fluid–structure computational framework for underwater implosion problems. PhD Thesis, Stanford University
51.
Zurück zum Zitat Sedzinski J, Biro M, Oswald A, Tinevez J-Y, Salbreux G, Paluch E (2011) Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476(7361):462–466 CrossRef Sedzinski J, Biro M, Oswald A, Tinevez J-Y, Salbreux G, Paluch E (2011) Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476(7361):462–466 CrossRef
52.
Zurück zum Zitat Shao D, Levine H, Rappel W-J (2012) Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc Natl Acad Sci USA 109(18):6851–6856 CrossRef Shao D, Levine H, Rappel W-J (2012) Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc Natl Acad Sci USA 109(18):6851–6856 CrossRef
53.
Zurück zum Zitat Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York MATH Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York MATH
54.
Zurück zum Zitat Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63 MATHCrossRef Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63 MATHCrossRef
55.
56.
Zurück zum Zitat Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T (2014) FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Comput Mech 54:1035–1045 MATHCrossRef Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T (2014) FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Comput Mech 54:1035–1045 MATHCrossRef
57.
58.
Zurück zum Zitat Takizawa K, Tezduyar TE (2014) Space–time computation techniques with continuous representation in time (ST-C). Comput Mech 53(1):91–99 MATHMathSciNetCrossRef Takizawa K, Tezduyar TE (2014) Space–time computation techniques with continuous representation in time (ST-C). Comput Mech 53(1):91–99 MATHMathSciNetCrossRef
59.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–Time and ALE-VMS techniques for patient-specific cardiovascular Fluid–Structure Interaction modeling. Arch Comput Methods Eng 19(2):171–225 MathSciNetCrossRef Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–Time and ALE-VMS techniques for patient-specific cardiovascular Fluid–Structure Interaction modeling. Arch Comput Methods Eng 19(2):171–225 MathSciNetCrossRef
60.
Zurück zum Zitat Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013a) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338 MATHMathSciNetCrossRef Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013a) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338 MATHMathSciNetCrossRef
61.
Zurück zum Zitat Takizawa K, Montes D, McIntyre S, Tezduyar TE (2013b) Space–time VMS methods for modeling of incompressible flows at high Reynolds numbers. Math Models Methods Appl Sci 23:223–248 Takizawa K, Montes D, McIntyre S, Tezduyar TE (2013b) Space–time VMS methods for modeling of incompressible flows at high Reynolds numbers. Math Models Methods Appl Sci 23:223–248
62.
Zurück zum Zitat Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013c) Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52(6):1351–1364 MATHCrossRef Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013c) Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52(6):1351–1364 MATHCrossRef
63.
Zurück zum Zitat Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013d) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073 MATHMathSciNetCrossRef Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013d) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073 MATHMathSciNetCrossRef
64.
Zurück zum Zitat Takizawa K, Takagi H, Tezduyar TE, Torii R (2014a) Estimation of element-based zero-stress state for arterial FSI computations. Comput Mech 54:895–910 MATHMathSciNetCrossRef Takizawa K, Takagi H, Tezduyar TE, Torii R (2014a) Estimation of element-based zero-stress state for arterial FSI computations. Comput Mech 54:895–910 MATHMathSciNetCrossRef
65.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014b) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486 MATHMathSciNetCrossRef Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014b) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486 MATHMathSciNetCrossRef
66.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Oiseth O, Mathisen KM, Kostov N, McIntyre S (2014c) Engineering analysis and design with ALE-VMS and space–time methods. Arch Comput Methods Eng, published online. doi: 10.​1007/​s11831-014-9113-0 Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Oiseth O, Mathisen KM, Kostov N, McIntyre S (2014c) Engineering analysis and design with ALE-VMS and space–time methods. Arch Comput Methods Eng, published online. doi: 10.​1007/​s11831-014-9113-0
67.
Zurück zum Zitat Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014d) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech, published online. doi: 10.​1007/​s00466-014-1069-2 Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014d) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech, published online. doi: 10.​1007/​s00466-014-1069-2
68.
Zurück zum Zitat Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014e) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54(5):1203–1220 MATHMathSciNetCrossRef Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014e) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54(5):1203–1220 MATHMathSciNetCrossRef
69.
Zurück zum Zitat Takizawa K, Tezduyar TE, Buscher A, Asada S (2014f) Space–time fluid mechanics computation of heart valve models. Comput Mech 54:973–986 MATHMathSciNetCrossRef Takizawa K, Tezduyar TE, Buscher A, Asada S (2014f) Space–time fluid mechanics computation of heart valve models. Comput Mech 54:973–986 MATHMathSciNetCrossRef
70.
Zurück zum Zitat Takizawa K, Tezduyar TE, Buscher A, Asada S (2014g) Space–time interface-tracking with topology change (ST-TC). Comput Mech 54(4):955–971 MATHMathSciNetCrossRef Takizawa K, Tezduyar TE, Buscher A, Asada S (2014g) Space–time interface-tracking with topology change (ST-TC). Comput Mech 54(4):955–971 MATHMathSciNetCrossRef
71.
Zurück zum Zitat Takizawa K, Tezduyar TE, Kostov N (2014h) Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech 54:213–233 MATHMathSciNetCrossRef Takizawa K, Tezduyar TE, Kostov N (2014h) Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech 54:213–233 MATHMathSciNetCrossRef
72.
Zurück zum Zitat Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014i) Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53(1):1–15 MATHCrossRef Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014i) Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53(1):1–15 MATHCrossRef
73.
Zurück zum Zitat Takizawa K, Torii R, Takagi H, Tezduyar TE, Xu XY (2014j) Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. Comput Mech 54:1047–1053 MATHCrossRef Takizawa K, Torii R, Takagi H, Tezduyar TE, Xu XY (2014j) Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. Comput Mech 54:1047–1053 MATHCrossRef
74.
Zurück zum Zitat Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130 MATHCrossRef Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130 MATHCrossRef
75.
Zurück zum Zitat Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900 MATHMathSciNetCrossRef Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900 MATHMathSciNetCrossRef
76.
Zurück zum Zitat Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods-space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol. 246/AMD-Vol. 143. ASME, New York, pp 7–24 Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods-space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol. 246/AMD-Vol. 143. ASME, New York, pp 7–24
77.
Zurück zum Zitat Tezduyar TE, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36 Tezduyar TE, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36
78.
Zurück zum Zitat Tezduyar TE, Sathe S, Keedy R, Stein K (2006a) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195(17–18):2002–2027 MATHMathSciNetCrossRef Tezduyar TE, Sathe S, Keedy R, Stein K (2006a) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195(17–18):2002–2027 MATHMathSciNetCrossRef
79.
Zurück zum Zitat Tezduyar TE, Sathe S, Stein K (2006b) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195:5743–5753 MATHMathSciNetCrossRef Tezduyar TE, Sathe S, Stein K (2006b) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195:5743–5753 MATHMathSciNetCrossRef
80.
Zurück zum Zitat Thiele U, Archer AJ, Robbins MJ, Gomez H, Knobloch E (2013) Localized states in the conserved Swift–Hohenberg equation with cubic nonlinearity. Phys Rev E 87(4):042915 CrossRef Thiele U, Archer AJ, Robbins MJ, Gomez H, Knobloch E (2013) Localized states in the conserved Swift–Hohenberg equation with cubic nonlinearity. Phys Rev E 87(4):042915 CrossRef
81.
Zurück zum Zitat Turner SE (2007) Underwater implosion of glass spheres. J Acoust Soc Am 121(2):844–852 CrossRef Turner SE (2007) Underwater implosion of glass spheres. J Acoust Soc Am 121(2):844–852 CrossRef
82.
Zurück zum Zitat van der Waals JD (1979) The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J Stat Phys 20(2):200–244 CrossRef van der Waals JD (1979) The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J Stat Phys 20(2):200–244 CrossRef
83.
Zurück zum Zitat Vilanova G, Colominas I, Gomez H (2013) Capillary networks in tumor angiogenesis: from discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. Int J Numer Methods Biomed Eng 29(10):1015–1037 MathSciNetCrossRef Vilanova G, Colominas I, Gomez H (2013) Capillary networks in tumor angiogenesis: from discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. Int J Numer Methods Biomed Eng 29(10):1015–1037 MathSciNetCrossRef
84.
Zurück zum Zitat Zhang Y, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJR (2007) Patient-specific vascular NURBS modeling for Isogeometric Analysis of blood flow. Comput Methods Appl Mech Eng 196(2930):2943–2959 MATHMathSciNetCrossRef Zhang Y, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJR (2007) Patient-specific vascular NURBS modeling for Isogeometric Analysis of blood flow. Comput Methods Appl Mech Eng 196(2930):2943–2959 MATHMathSciNetCrossRef
Metadaten
Titel
Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion
verfasst von
Jesus Bueno
Carles Bona-Casas
Yuri Bazilevs
Hector Gomez
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1098-x

Weitere Artikel der Ausgabe 6/2015

Computational Mechanics 6/2015 Zur Ausgabe