Skip to main content
Erschienen in: Fluid Dynamics 4/2020

01.07.2020

Interaction of Stationary Disturbances with Tollmien—Schlichting Waves in a Supersonic Boundary Layer

verfasst von: S. A. Gaponov, N. M. Terekhova

Erschienen in: Fluid Dynamics | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The possibility of controlling unsteady disturbances, traveling Tollmien—Schlichting waves, and stationary streamwise structures is studied. The investigation is performed for the flat-plate boundary layer at the freestream Mach number M = 2. The possible enhancement and suppression of the growth of these waves by stationary streaky structures of the stability eigenproblem of supersonic boundary layer is studied. The problem is solved in the local-parallel approximation within the framework of the three-wave resonance interaction. The pumping wave is a stationary, near-streaky formation. It is shown that even in the stability domain Tollmien—Schlichting waves grow under the influence of the streamwise structures. It is established that under certain conditions the effect of stationary disturbances on these waves can be considerable also in the instability domain and the Reynolds number ranges in which the steady disturbances suppress traveling waves are determined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968).MATH H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968).MATH
2.
Zurück zum Zitat C.C. Lin, The Theory of Hydrodynamic Stability (Cambridge Univ. Press, 1955).MATH C.C. Lin, The Theory of Hydrodynamic Stability (Cambridge Univ. Press, 1955).MATH
3.
Zurück zum Zitat P.S. Klebanoff and K.D. Tidstrom, “Evolution of amplified waves leading to transition in a boundary layer with zero pressure gradient,” NASA TN D-195 (1959). P.S. Klebanoff and K.D. Tidstrom, “Evolution of amplified waves leading to transition in a boundary layer with zero pressure gradient,” NASA TN D-195 (1959).
4.
Zurück zum Zitat W.S. Saric, H.L. Reed, and E.J. Kerschen, “Boundary-layer receptivity to free stream disturbances,” Annu. Rev. Fluid Mech. 34, 291–319 (2002).ADSCrossRef W.S. Saric, H.L. Reed, and E.J. Kerschen, “Boundary-layer receptivity to free stream disturbances,” Annu. Rev. Fluid Mech. 34, 291–319 (2002).ADSCrossRef
5.
Zurück zum Zitat A.V. Boiko, G.R. Grek, A.V. Dovgal’, and V.V. Kozlov, Physical Mechanisms of Transition to Turbulence in Open Systems (Research Center “Regular and Chaotic Dynamics”, Izhevsk, 2006) [in Russian]. A.V. Boiko, G.R. Grek, A.V. Dovgal’, and V.V. Kozlov, Physical Mechanisms of Transition to Turbulence in Open Systems (Research Center “Regular and Chaotic Dynamics”, Izhevsk, 2006) [in Russian].
6.
7.
Zurück zum Zitat P. Bradshaw, “The effect of wind tunnel screens on ‘two-dimensional’ boundary layers,” Nat. Phys. Lab. Aero. Rep. No. 1085 (1963). P. Bradshaw, “The effect of wind tunnel screens on ‘two-dimensional’ boundary layers,” Nat. Phys. Lab. Aero. Rep. No. 1085 (1963).
8.
Zurück zum Zitat P.A. Libby and H. Fox, “Some perturbation solutions in laminar boundary-layer theory. Part 1. The momentum equation,” J. Fluid Mech. 17, 433–449 (1963).ADSMathSciNetCrossRef P.A. Libby and H. Fox, “Some perturbation solutions in laminar boundary-layer theory. Part 1. The momentum equation,” J. Fluid Mech. 17, 433–449 (1963).ADSMathSciNetCrossRef
9.
Zurück zum Zitat F.P. Bertolotti, “Response of the Blasius boundary layer to free-stream vorticity,” Phys. Fluids9(8), 2286–2299 (1997).ADSCrossRef F.P. Bertolotti, “Response of the Blasius boundary layer to free-stream vorticity,” Phys. Fluids9(8), 2286–2299 (1997).ADSCrossRef
10.
Zurück zum Zitat M.V. Ustinov, “Receptivity of the flat-plate boundary layer to free-stream turbulence,” FluidDynamics38(3), 397–408 (2003).MathSciNetCrossRef M.V. Ustinov, “Receptivity of the flat-plate boundary layer to free-stream turbulence,” FluidDynamics38(3), 397–408 (2003).MathSciNetCrossRef
11.
Zurück zum Zitat M.E. Goldstein, “Effect of free-stream turbulence on boundary layer transition,” Phil. Trans. Roy. Soc. A 372, 372 (2014).MathSciNetCrossRef M.E. Goldstein, “Effect of free-stream turbulence on boundary layer transition,” Phil. Trans. Roy. Soc. A 372, 372 (2014).MathSciNetCrossRef
12.
Zurück zum Zitat S.A. Gaponov and A.V. Yudin, “Interaction of hydrodynamic external disturbances with the boundary layer,” J. Appl. Mech. Techn. Phys.43(1), 83—89 (2002).ADSCrossRef S.A. Gaponov and A.V. Yudin, “Interaction of hydrodynamic external disturbances with the boundary layer,” J. Appl. Mech. Techn. Phys.43(1), 83—89 (2002).ADSCrossRef
13.
Zurück zum Zitat S.A. Gaponov, “Interaction of external vortical and thermal disturbances with boundary layer,” Intern. J. Mech. 1(1), 15–20 (2007). S.A. Gaponov, “Interaction of external vortical and thermal disturbances with boundary layer,” Intern. J. Mech. 1(1), 15–20 (2007).
14.
Zurück zum Zitat S.A. Gaponov, “Interaction between a supersonic boundary layer and acoustic disturbances,” Fluid Dynamics12(6), 858–862 (1977).ADSCrossRef S.A. Gaponov, “Interaction between a supersonic boundary layer and acoustic disturbances,” Fluid Dynamics12(6), 858–862 (1977).ADSCrossRef
15.
Zurück zum Zitat C.E. Grosch and H. Salwen, “The continuous spectrum of the Orr-Sommerfeld equation. Part 1. The spectrum and the eigenfunctions,” J. Fluid Mech.87, 33–54 (1978).ADSMathSciNetCrossRef C.E. Grosch and H. Salwen, “The continuous spectrum of the Orr-Sommerfeld equation. Part 1. The spectrum and the eigenfunctions,” J. Fluid Mech.87, 33–54 (1978).ADSMathSciNetCrossRef
16.
Zurück zum Zitat C.E. Grosch and H. Salwen, “The continuous spectrum of the Orr-Sommerfeld equation. Part 2. Eigenfunction expansions,” J. Fluid Mech.104, 445–465 (1981).ADSMathSciNetCrossRef C.E. Grosch and H. Salwen, “The continuous spectrum of the Orr-Sommerfeld equation. Part 2. Eigenfunction expansions,” J. Fluid Mech.104, 445–465 (1981).ADSMathSciNetCrossRef
17.
Zurück zum Zitat M. Dong and X. Wu, “On continuous spectra of the Orr-Sommerfeld/Squire equations and entrainment of free-stream vortical disturbances,” J. Fluid Mech. 732, 616–659 (2013).ADSMathSciNetCrossRef M. Dong and X. Wu, “On continuous spectra of the Orr-Sommerfeld/Squire equations and entrainment of free-stream vortical disturbances,” J. Fluid Mech. 732, 616–659 (2013).ADSMathSciNetCrossRef
18.
Zurück zum Zitat P. Luchini, “Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations,” J. Fluid Mech. 404, 289–309 (2000).ADSMathSciNetCrossRef P. Luchini, “Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations,” J. Fluid Mech. 404, 289–309 (2000).ADSMathSciNetCrossRef
19.
Zurück zum Zitat P. Andersson, M. Berggren, and D.S. Henningson, “Optimal disturbances in boundary layers,” in: Proc. AFOSR Workshop on Optimal Design and Control, Ed. by J.T. Borggaard, J. Burns, E. Cliff, and S. Schreck (Boston, 1998). P. Andersson, M. Berggren, and D.S. Henningson, “Optimal disturbances in boundary layers,” in: Proc. AFOSR Workshop on Optimal Design and Control, Ed. by J.T. Borggaard, J. Burns, E. Cliff, and S. Schreck (Boston, 1998).
20.
Zurück zum Zitat P. Andersson, M. Berggren, and D.S. Henningson, “Optimal disturbances and bypass transition in boundary layers,” Phys. Fluids11, 134–150 (1999).ADSMathSciNetCrossRef P. Andersson, M. Berggren, and D.S. Henningson, “Optimal disturbances and bypass transition in boundary layers,” Phys. Fluids11, 134–150 (1999).ADSMathSciNetCrossRef
21.
Zurück zum Zitat M.T. Landahl, “A note on an algebraic instability of inviscid parallel shear flows,” J. Fluid Mech. 98, 243–251 (1980).ADSMathSciNetCrossRef M.T. Landahl, “A note on an algebraic instability of inviscid parallel shear flows,” J. Fluid Mech. 98, 243–251 (1980).ADSMathSciNetCrossRef
22.
Zurück zum Zitat H. Hultgren and Gustavsson, “Algebraic growth of disturbances in a laminar boundary layer,” Phys. Fluids24, 1000–1004 (1981).ADSCrossRef H. Hultgren and Gustavsson, “Algebraic growth of disturbances in a laminar boundary layer,” Phys. Fluids24, 1000–1004 (1981).ADSCrossRef
23.
Zurück zum Zitat D. S. Henningson, “An eigenfunction expansion of localized disturbances,” in: Advances in Turbulence 3, Ed. by A.V. Johansson and P.H. Alfredsson (1991), pp. 162–169. D. S. Henningson, “An eigenfunction expansion of localized disturbances,” in: Advances in Turbulence 3, Ed. by A.V. Johansson and P.H. Alfredsson (1991), pp. 162–169.
24.
Zurück zum Zitat S.A. Gaponov, “Quasi-resonance excitation of stationary disturbances in compressible boundary layer,” Intern. J. Mech. 11, 120–127 (2017). S.A. Gaponov, “Quasi-resonance excitation of stationary disturbances in compressible boundary layer,” Intern. J. Mech. 11, 120–127 (2017).
25.
Zurück zum Zitat S.A. Gaponov, G.V. Petrov, and B.V. Smorodskii, “Linear and nonlinear interaction of acoustic waves with a supersonic boundary layer,” Aeromekhanika Gazovaya Dinamika, No. 3, 21–30 (2002). S.A. Gaponov, G.V. Petrov, and B.V. Smorodskii, “Linear and nonlinear interaction of acoustic waves with a supersonic boundary layer,” Aeromekhanika Gazovaya Dinamika, No. 3, 21–30 (2002).
26.
Zurück zum Zitat S.A. Gaponov, “Growth of disturbances in a supersonic boundary layer,” J. Appl. Mech. Techn. Phys. 32(6), 910–913 (1991).ADSCrossRef S.A. Gaponov, “Growth of disturbances in a supersonic boundary layer,” J. Appl. Mech. Techn. Phys. 32(6), 910–913 (1991).ADSCrossRef
27.
Zurück zum Zitat S.A. Gaponov and N.M. Terekhova, “Stationary disturbances in a a supersonic boundary layer,” AeromekhanikaGazovayaDinamika No. 4, 35–42 (2002). S.A. Gaponov and N.M. Terekhova, “Stationary disturbances in a a supersonic boundary layer,” AeromekhanikaGazovayaDinamika No. 4, 35–42 (2002).
28.
Zurück zum Zitat A. Thumm, W. Wolz, and H. Fasel, “Numerical simulation of spatially growing three-dimensional disturbance waves in compressible boundary layers,” in: Proc. IUTAM Symp. Toulouse, France, 1990, pp. 303–308. A. Thumm, W. Wolz, and H. Fasel, “Numerical simulation of spatially growing three-dimensional disturbance waves in compressible boundary layers,” in: Proc. IUTAM Symp. Toulouse, France, 1990, pp. 303–308.
29.
Zurück zum Zitat P.J. Schmid and D.S. Henningson, “A new mechanism for rapid transition involving a pair of oblique waves,” Phys. Fluids A 4, 1986–1989 (1992).ADSMathSciNetCrossRef P.J. Schmid and D.S. Henningson, “A new mechanism for rapid transition involving a pair of oblique waves,” Phys. Fluids A 4, 1986–1989 (1992).ADSMathSciNetCrossRef
30.
Zurück zum Zitat C.-L. Chang and M.R. Malik, “Oblique-mode breakdown and secondary instability in supersonic boundary layers,” J. Fluid Mech.273, 323–360 (1994).ADSCrossRef C.-L. Chang and M.R. Malik, “Oblique-mode breakdown and secondary instability in supersonic boundary layers,” J. Fluid Mech.273, 323–360 (1994).ADSCrossRef
31.
Zurück zum Zitat W.S. Saric, R.B. Carillo, and M.S. Reibert, “Leading edge roughness as a transition control mechanism,” AIAA Paper No. 0781 (1998). W.S. Saric, R.B. Carillo, and M.S. Reibert, “Leading edge roughness as a transition control mechanism,” AIAA Paper No. 0781 (1998).
32.
Zurück zum Zitat W.S. Saric and H.L. Reed, “Supersonic laminar flow control on swept wings using distributed roughness,” AIAA Paper No. 0147 (2002). W.S. Saric and H.L. Reed, “Supersonic laminar flow control on swept wings using distributed roughness,” AIAA Paper No. 0147 (2002).
33.
Zurück zum Zitat N.V. Semionov and A.D. Kosinov, “Method of laminar-turbulent transition control of supersonic boundary layer on a swept wing,” ThermophysicsAeromechanics14(3), 337–341 (2007).ADSCrossRef N.V. Semionov and A.D. Kosinov, “Method of laminar-turbulent transition control of supersonic boundary layer on a swept wing,” ThermophysicsAeromechanics14(3), 337–341 (2007).ADSCrossRef
34.
Zurück zum Zitat A.D.D. Craik, “Non-linear resonant instability in boundary layers,” J. Fluid Mech. 50, 393–413 (1971).ADSCrossRef A.D.D. Craik, “Non-linear resonant instability in boundary layers,” J. Fluid Mech. 50, 393–413 (1971).ADSCrossRef
35.
Zurück zum Zitat S.A. Gaponov and I.I. Maslennikova, “Subharmonic instability of supersonic boundary layer,” ThermophysicsAeromechanics4(1), 3–12 (1997). S.A. Gaponov and I.I. Maslennikova, “Subharmonic instability of supersonic boundary layer,” ThermophysicsAeromechanics4(1), 3–12 (1997).
36.
Zurück zum Zitat S.A. Gaponov, I.I. Maslennikova, and V.Yu. Tyushin, Nonlinear effect of external low-frequency acoustics on eigen-oscillations in a supersonic boundary layer,” J. Appl. Mech. Techn. Phys.40(5), 865–870 (1999).ADSCrossRef S.A. Gaponov, I.I. Maslennikova, and V.Yu. Tyushin, Nonlinear effect of external low-frequency acoustics on eigen-oscillations in a supersonic boundary layer,” J. Appl. Mech. Techn. Phys.40(5), 865–870 (1999).ADSCrossRef
Metadaten
Titel
Interaction of Stationary Disturbances with Tollmien—Schlichting Waves in a Supersonic Boundary Layer
verfasst von
S. A. Gaponov
N. M. Terekhova
Publikationsdatum
01.07.2020
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 4/2020
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462820040059

Weitere Artikel der Ausgabe 4/2020

Fluid Dynamics 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.