Skip to main content

2024 | OriginalPaper | Buchkapitel

Interactive Chatbot for Improving the Text Classification Data Quality

verfasst von : Doaa S. Elzanfaly, Nada Amr Mohamed, Nermin Abdelhakim Othman

Erschienen in: Smart Mobile Communication & Artificial Intelligence

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The pandemic is affecting the global community in many ways. In most developing countries, there is a limitation in the detection facilities, which affect many suspected cases. This paper proposes a chatbot framework to assist and provide guide for the suspected/infected patients with COVID-19. Conversational software agents activated by natural language processing is known as chatbot, are an excellent example of such machine. Our COVID Bot is based on an integrated model between the rule-based model and the class classification model, having the rule-based model integrated with the MongoDB NoSQL database. Chatbot, using Natural Language Processing (NLP) and data mining techniques to assist patients by providing immediate answers for their questions. It also acts as a novel communication mean for impaired people for sharing knowledge and information, through conversing with them. Based on the literature review, this paper compared our methods with three classical classification algorithms: random forest, gradient boosting, and multi-layer perceptron (MLP). Experimental results show that our proposed chatbot greatly improves the classification performance, with IE-Net as 94.80%, 92.79% as recall, 92.97% as precision and 94.93% as AUC for distinguishing COVID-19 cases from non-COVID-19 cases (with only common clinical diagnose data).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Ayanouz, S., Abdelhakim, B.A., Benhmed, M.: A Smart Chatbot Architecture based NLP and Machine learning for health care assistance. In: Proceedings of the 3rd International Conference on Networking, Information Systems Security 24 April 2020 Ayanouz, S., Abdelhakim, B.A., Benhmed, M.: A Smart Chatbot Architecture based NLP and Machine learning for health care assistance. In: Proceedings of the 3rd International Conference on Networking, Information Systems Security 24 April 2020
3.
Zurück zum Zitat Mnasri, M.: Recent advances in conversational NLP : Towards the standardization of Chatbot building (2019) Mnasri, M.: Recent advances in conversational NLP : Towards the standardization of Chatbot building (2019)
4.
Zurück zum Zitat Peng, Z., Ma, X.: A survey on construction and enhancement methods in service chatbots design (2019) Peng, Z., Ma, X.: A survey on construction and enhancement methods in service chatbots design (2019)
5.
Zurück zum Zitat Chizhik, A., Zherebtsova, Y.: Challenges of building an intelligent Chatbot. In: International Conference “Internet and Modern Society (IMS-2020) Chizhik, A., Zherebtsova, Y.: Challenges of building an intelligent Chatbot. In: International Conference “Internet and Modern Society (IMS-2020)
6.
Zurück zum Zitat Kozhevnikov, V., Pankratova, E.: Research of the text data vectorization and classification algorithms of machine learning. Int. Sci. J. 85(05) (2020) Kozhevnikov, V., Pankratova, E.: Research of the text data vectorization and classification algorithms of machine learning. Int. Sci. J. 85(05) (2020)
7.
Zurück zum Zitat Kumari, A., Shashi, M.: Vectorization of text documents for identifying unifiable news articles. Int. J. Adv. Comput. Sci. Appl. 10 (2019) Kumari, A., Shashi, M.: Vectorization of text documents for identifying unifiable news articles. Int. J. Adv. Comput. Sci. Appl. 10 (2019)
8.
Zurück zum Zitat Oussous, A., Benjelloun, F.Z., Lahcen, A.A., Belfkih, S.: Comparison and Classification of NoSQL Databases for Big Data. In: International conference on Big Data, Cloud and Applications, Tetuan, Morocco (2015) Oussous, A., Benjelloun, F.Z., Lahcen, A.A., Belfkih, S.: Comparison and Classification of NoSQL Databases for Big Data. In: International conference on Big Data, Cloud and Applications, Tetuan, Morocco (2015)
9.
Zurück zum Zitat Moniruzzaman, A.B.M., Hossain, S.A.: NoSQL database: new era of databases for big data analytics - classification, characteristics and comparison. Int. J. Datab. Theory Appl. 6 (2013) Moniruzzaman, A.B.M., Hossain, S.A.: NoSQL database: new era of databases for big data analytics - classification, characteristics and comparison. Int. J. Datab. Theory Appl. 6 (2013)
10.
Zurück zum Zitat Tauro, C.J.M., Patil, B.R., Prashanth, K.R.: A comparative analysis of different nosql databases on data model, query model and replication model. In: International Conference on Emerging Research in Computing, Information, Communication and Applications, Bangalore, India (2013) Tauro, C.J.M., Patil, B.R., Prashanth, K.R.: A comparative analysis of different nosql databases on data model, query model and replication model. In: International Conference on Emerging Research in Computing, Information, Communication and Applications, Bangalore, India (2013)
11.
Zurück zum Zitat Krishnan, H., Elayidom, M.S., Santhanakrishnan, T.: MongoDB – a comparison with NoSQL databases. Int. J. Sci. Eng. Res. 7(5), 5 (2016) Krishnan, H., Elayidom, M.S., Santhanakrishnan, T.: MongoDB – a comparison with NoSQL databases. Int. J. Sci. Eng. Res. 7(5), 5 (2016)
12.
Zurück zum Zitat Zhou, L., Li, D., Gao, J., Shum, H.Y.: The design and implementation of Xiaoice, an empathetic social chatbot. Comput. Linguist. 1 (2019) Zhou, L., Li, D., Gao, J., Shum, H.Y.: The design and implementation of Xiaoice, an empathetic social chatbot. Comput. Linguist. 1 (2019)
13.
Zurück zum Zitat Shum, H.Y., He, X., Li, D.: From Eliza to XiaoIce: challenges and opportunities with social chatbots (2018) Shum, H.Y., He, X., Li, D.: From Eliza to XiaoIce: challenges and opportunities with social chatbots (2018)
14.
Zurück zum Zitat Colace, F., Santo, M.D., Lombardi, M., Pascale, F., Pietrosanto, A., Lemma, S.: Chatbot for e-learning: a case of study. Int. J. Mech. Eng. Robot. Res. 7(5), 528–533 (2018) Colace, F., Santo, M.D., Lombardi, M., Pascale, F., Pietrosanto, A., Lemma, S.: Chatbot for e-learning: a case of study. Int. J. Mech. Eng. Robot. Res. 7(5), 528–533 (2018)
15.
Zurück zum Zitat Awangga, R.M., Setyawan, M.Y.H., Efendi, S.R.: Comparison of multinomial naive bayes algorithm and logistic regression for intent classification in chatbot. In: 2018 International Conference on Applied Engineering (ICAE), October 2018 Awangga, R.M., Setyawan, M.Y.H., Efendi, S.R.: Comparison of multinomial naive bayes algorithm and logistic regression for intent classification in chatbot. In: 2018 International Conference on Applied Engineering (ICAE), October 2018
16.
Zurück zum Zitat Kumar, S.A., Krishna, C.V., Reddy, P.N., Reddy, B.R.K., Jacob, I.J.: Self-diagnosing health care chatbot using machine learning. Int. J. Adv. Sci. Technol. 29(5) (2020) Kumar, S.A., Krishna, C.V., Reddy, P.N., Reddy, B.R.K., Jacob, I.J.: Self-diagnosing health care chatbot using machine learning. Int. J. Adv. Sci. Technol. 29(5) (2020)
17.
Zurück zum Zitat Kalla, D., Samiuddin, V., Malware, E.: Chatbot for medical treatment using NLTK Lib. IOSR J. Comput. Eng. (IOSR-JCE) 22 (2020) Kalla, D., Samiuddin, V., Malware, E.: Chatbot for medical treatment using NLTK Lib. IOSR J. Comput. Eng. (IOSR-JCE) 22 (2020)
18.
Zurück zum Zitat Bali, M., Mohanty, S., Chatterjee, S., Sarma, M., Puravanka, R.:“Diabot: a predictive medical chatbot using ensemble learning. Int. J. Recent Technol. Eng. 8(2) (2019) Bali, M., Mohanty, S., Chatterjee, S., Sarma, M., Puravanka, R.:“Diabot: a predictive medical chatbot using ensemble learning. Int. J. Recent Technol. Eng. 8(2) (2019)
19.
Zurück zum Zitat Herriman, M., Meer, E., Rosin, R., Lee, M.V., Washington, M.P.V., Volpp, K.G.: Asked and answered: building a chatbot to address COVID-19-related concerns. NEJM Catalyst (2020) Herriman, M., Meer, E., Rosin, R., Lee, M.V., Washington, M.P.V., Volpp, K.G.: Asked and answered: building a chatbot to address COVID-19-related concerns. NEJM Catalyst (2020)
20.
Zurück zum Zitat Thukrul, J., Srivastava, A., Thakkar, G.: DoctorBot - an informative and interactive Chatbot for COVID-19. Int. Res. J. Eng. Technol. (IRJET) 07(07) (2020) Thukrul, J., Srivastava, A., Thakkar, G.: DoctorBot - an informative and interactive Chatbot for COVID-19. Int. Res. J. Eng. Technol. (IRJET) 07(07) (2020)
21.
Zurück zum Zitat Guti´errez, B.J., Zeng, J., Zhang, D., Zhang, P., Su, Y.: Document classification for COVID-19 literature. In: Findings of the Association for Computational Linguistics: EMNLP 2020 (2020) Guti´errez, B.J., Zeng, J., Zhang, D., Zhang, P., Su, Y.: Document classification for COVID-19 literature. In: Findings of the Association for Computational Linguistics: EMNLP 2020 (2020)
26.
Zurück zum Zitat Ting, S., Ip, W., Tsang, A.H.: Is Naïve Bayes a good classifier for document classification?. Int. J. Softw. Eng. Appl. 5 (2011) Ting, S., Ip, W., Tsang, A.H.: Is Naïve Bayes a good classifier for document classification?. Int. J. Softw. Eng. Appl. 5 (2011)
27.
Zurück zum Zitat Singh, G., Kumar, B., Gaur, L., Tyagi, A.: Comparison between multinomial and bernoulli Naïve Bayes for text classification. In: International Conference on Automation, Computational and Technology Management (ICACTM) (2019) Singh, G., Kumar, B., Gaur, L., Tyagi, A.: Comparison between multinomial and bernoulli Naïve Bayes for text classification. In: International Conference on Automation, Computational and Technology Management (ICACTM) (2019)
28.
Zurück zum Zitat Oprea, S., Bâra, A.: Setting the time-of-use tariff rates with NoSQL and machine learning to a sustainable environment. IEEE Access 8, 10 (2020)CrossRef Oprea, S., Bâra, A.: Setting the time-of-use tariff rates with NoSQL and machine learning to a sustainable environment. IEEE Access 8, 10 (2020)CrossRef
29.
Zurück zum Zitat Sanyal, S., Hazra, S., Ghosh, N., Adhikary, S.: Resume parser with natural language processing. Int. J. Eng. Sci. Comput. 7(2) (2017) Sanyal, S., Hazra, S., Ghosh, N., Adhikary, S.: Resume parser with natural language processing. Int. J. Eng. Sci. Comput. 7(2) (2017)
30.
Zurück zum Zitat Barres, I.G., Milla, S., Cebrián, A., Fan, H., Millet, J.: Detecting weak signals of the future: a system implementation based on text mining and natural language processing. Sustainability (2020) Barres, I.G., Milla, S., Cebrián, A., Fan, H., Millet, J.: Detecting weak signals of the future: a system implementation based on text mining and natural language processing. Sustainability (2020)
31.
Zurück zum Zitat Haldar, R., Mukhopadhyay, D.: Levenshtein Distance Technique in Dictionary Lookup Methods: An Improved Approach (2011) Haldar, R., Mukhopadhyay, D.: Levenshtein Distance Technique in Dictionary Lookup Methods: An Improved Approach (2011)
37.
Zurück zum Zitat Judson, T.J., et al.: Implementation of a digital chatbot to screen health system employees during the covid-19 pandemic. J. Am. Med. Inform. Assoc. 27(9), 1450–1455 (2020)CrossRef Judson, T.J., et al.: Implementation of a digital chatbot to screen health system employees during the covid-19 pandemic. J. Am. Med. Inform. Assoc. 27(9), 1450–1455 (2020)CrossRef
Metadaten
Titel
Interactive Chatbot for Improving the Text Classification Data Quality
verfasst von
Doaa S. Elzanfaly
Nada Amr Mohamed
Nermin Abdelhakim Othman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-56075-0_7