Skip to main content
Erschienen in: Polymer Bulletin 9/2019

26.11.2018 | Original Paper

Interactive effect of electron beam irradiation and montmorillonite (MMT) on properties of polycarbonate (PC)/acrylonitrile butadiene styrene (ABS) nanocomposites

verfasst von: Soo-Tueen Bee, Lee Tin Sin, Kien-Sin Lim, C. T. Ratnam, Soo Ling Bee, Abdul Razak Rahmat

Erschienen in: Polymer Bulletin | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research was conducted to investigate the effect of montmorillonite (MMT) content on the flame retardancy, physico-mechanical properties of electron beam irradiated polycarbonate (PC)/acrylonitrile butadiene styrene (ABS) blends. Based on this research, it is revealed that the increase in MMT loading level has gradually increased the flame retardancy and thermal stability of the flame retarded PC/ABS blends, which is due to the induction of char residues formed by the presence of MMT particles as measured in TGA analysis. Besides, the introduction of electron beam irradiation has gradually improved the flame retardancy (LOI) by forming crosslinking networks in PC/ABS blends (as evident by the increment in gel content) which restricts the permeability of volatile and air through the polymer matrix. The addition of low MMT amount (2 phr) has reduced the elongation at break which is attributed to the intercalation of polymer matrix into the interlayer galleries of MMT particles as evident by increment in d spacing. However, the higher amount of MMT particles tended to form agglomeration and thus reduced the tensile strength of flame retarded PC/ABS blends. The increase in irradiation dosages has gradually induced the Young’s modulus of flame retarded PC/ABS blends by forming crosslinking networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lombardo BS, Keskkula H, Paul DR (1994) Influence of ABS type on morphology and mechanical properties of PC/ABS blends. J Appl Polym Sci 54(11):1697–1720CrossRef Lombardo BS, Keskkula H, Paul DR (1994) Influence of ABS type on morphology and mechanical properties of PC/ABS blends. J Appl Polym Sci 54(11):1697–1720CrossRef
2.
Zurück zum Zitat Yin ZN, Wang TJ (2008) Deformation of PC/ABS alloys at elevated temperatures and high strain rates. Mater Sci Eng A 494(1):304–313CrossRef Yin ZN, Wang TJ (2008) Deformation of PC/ABS alloys at elevated temperatures and high strain rates. Mater Sci Eng A 494(1):304–313CrossRef
3.
Zurück zum Zitat Yin ZN, Wang TJ (2010) Deformation response and constitutive modeling of PC, ABS and PC/ABS alloys under impact tensile loading. Mater Sci Eng A 527(6):1461–1468CrossRef Yin ZN, Wang TJ (2010) Deformation response and constitutive modeling of PC, ABS and PC/ABS alloys under impact tensile loading. Mater Sci Eng A 527(6):1461–1468CrossRef
4.
Zurück zum Zitat Wang H, Zhou H, Huang Z, Zhang Y, Qiao H, Yu Z (2016) Experimental investigation and modeling of the mechanical behavior of PC/ABS during monotonic and cyclic loading. Polym Test 50:216–223CrossRef Wang H, Zhou H, Huang Z, Zhang Y, Qiao H, Yu Z (2016) Experimental investigation and modeling of the mechanical behavior of PC/ABS during monotonic and cyclic loading. Polym Test 50:216–223CrossRef
5.
Zurück zum Zitat Heidar Pour R, Soheilmoghaddam M, Hassan A, Bourbigot S (2015) Flammability and thermal properties of polycarbonate/acrylonitrile-butadiene-styrene nanocomposites reinforced with multilayer grapheme. Polym Degrad Stab 120:88–97CrossRef Heidar Pour R, Soheilmoghaddam M, Hassan A, Bourbigot S (2015) Flammability and thermal properties of polycarbonate/acrylonitrile-butadiene-styrene nanocomposites reinforced with multilayer grapheme. Polym Degrad Stab 120:88–97CrossRef
6.
Zurück zum Zitat Hassan MM (2008) Mechanical, thermal and morphological behaviour of polyamide 6/acrylonitrile-butadiene-styrene blends irradiated with gamma rays. Polym Eng Sci 48:373–380CrossRef Hassan MM (2008) Mechanical, thermal and morphological behaviour of polyamide 6/acrylonitrile-butadiene-styrene blends irradiated with gamma rays. Polym Eng Sci 48:373–380CrossRef
7.
Zurück zum Zitat Merijs Meri R, Zicans J, Ivanova T, Berzina R, Saldabola R, Maksimovs R (2015) The effect of introduction of montmorillonite clay (MMT) on the elastic properties of polycarbonate (PC) composition with acrylonitrile-butadiene styrene. Compos Struct 134:950–956CrossRef Merijs Meri R, Zicans J, Ivanova T, Berzina R, Saldabola R, Maksimovs R (2015) The effect of introduction of montmorillonite clay (MMT) on the elastic properties of polycarbonate (PC) composition with acrylonitrile-butadiene styrene. Compos Struct 134:950–956CrossRef
8.
Zurück zum Zitat Wu N, Li X (2014) Flame retardancy and synergistic flame retardant mechanisms of acrylonitrile-butadiene-styrene composites based on aluminum hypophosphite. Polym Degrad Stab 105:265–276CrossRef Wu N, Li X (2014) Flame retardancy and synergistic flame retardant mechanisms of acrylonitrile-butadiene-styrene composites based on aluminum hypophosphite. Polym Degrad Stab 105:265–276CrossRef
9.
Zurück zum Zitat Ma H, Wang J, Fang Z (2012) Cross-linking of a novel reactive polymeric intumescent flame retardant to ABS copolymer and its flame retardancy properties. Polym Degrad Stab 97:1596–1605CrossRef Ma H, Wang J, Fang Z (2012) Cross-linking of a novel reactive polymeric intumescent flame retardant to ABS copolymer and its flame retardancy properties. Polym Degrad Stab 97:1596–1605CrossRef
10.
Zurück zum Zitat Hollingbery LA, Hull TR (2010) The fire retardant behaviour of huntite and hydromagnesite—a review. Polym Degrad Stab 95:2213–2225CrossRef Hollingbery LA, Hull TR (2010) The fire retardant behaviour of huntite and hydromagnesite—a review. Polym Degrad Stab 95:2213–2225CrossRef
11.
Zurück zum Zitat Pawlowski KH, Schartel B (2008) Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol A polycarbonate/acrylonitrile–butadiene–styrene blends. Polym Degrad Stab 93(3):657–667CrossRef Pawlowski KH, Schartel B (2008) Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol A polycarbonate/acrylonitrile–butadiene–styrene blends. Polym Degrad Stab 93(3):657–667CrossRef
13.
Zurück zum Zitat Lu C, Liu L, Wang X, Yang D, Huang X, Yao D (2015) Influence of clay dispersion on flame retardancy of ABS/PA6/APP. Polym Degrad Stab 114:16–29CrossRef Lu C, Liu L, Wang X, Yang D, Huang X, Yao D (2015) Influence of clay dispersion on flame retardancy of ABS/PA6/APP. Polym Degrad Stab 114:16–29CrossRef
14.
Zurück zum Zitat Lim KS, Bee ST, Sin LT, Tee TT, Ratnam CT, Hui D, Rahmat AR (2016) A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites. Compos Part B Eng 84:155–174CrossRef Lim KS, Bee ST, Sin LT, Tee TT, Ratnam CT, Hui D, Rahmat AR (2016) A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites. Compos Part B Eng 84:155–174CrossRef
15.
Zurück zum Zitat Lu H, Song L, Hu Y (2011) A review on flame retardant technology in China. Part II: flame retardant polymeric nanocomposites and coatings. Polym Adv Technol 22(4):379–394CrossRef Lu H, Song L, Hu Y (2011) A review on flame retardant technology in China. Part II: flame retardant polymeric nanocomposites and coatings. Polym Adv Technol 22(4):379–394CrossRef
16.
Zurück zum Zitat Levchik SV, Levchik GF, Balabanovich AI, Camino G, Costa L (1996) Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants. Polym Degrad Stab 54(2):217–222CrossRef Levchik SV, Levchik GF, Balabanovich AI, Camino G, Costa L (1996) Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants. Polym Degrad Stab 54(2):217–222CrossRef
17.
Zurück zum Zitat Camino G, Costa L, Luda MP (1993) Mechanistic aspects of intumescent fire retardant systems. Makromol Chem, Macromol Symp 74(1):71–83CrossRef Camino G, Costa L, Luda MP (1993) Mechanistic aspects of intumescent fire retardant systems. Makromol Chem, Macromol Symp 74(1):71–83CrossRef
18.
Zurück zum Zitat Le Bras M, Bourbigot S, Revel B (1999) Comprehensive study of the degradation of an intumescent EVA-based material during combustion. J Mater Sci 34(23):5777–5782CrossRef Le Bras M, Bourbigot S, Revel B (1999) Comprehensive study of the degradation of an intumescent EVA-based material during combustion. J Mater Sci 34(23):5777–5782CrossRef
19.
Zurück zum Zitat Cullis CF, Hirschler MM, Tao QM (1991) Studies of the effects of phosphorus-nitrogen-bromine systems on the combustion of some thermoplastic polymers. Eur Polym J 27(3):281–289CrossRef Cullis CF, Hirschler MM, Tao QM (1991) Studies of the effects of phosphorus-nitrogen-bromine systems on the combustion of some thermoplastic polymers. Eur Polym J 27(3):281–289CrossRef
20.
Zurück zum Zitat Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT (2013) Investigation of nano-size montmorillonite on electron beam irradiated flame retardant polyethylene and ethylene vinyl acetate. Nucl Inst Methods Phys Res B 299:42–50CrossRef Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT (2013) Investigation of nano-size montmorillonite on electron beam irradiated flame retardant polyethylene and ethylene vinyl acetate. Nucl Inst Methods Phys Res B 299:42–50CrossRef
21.
Zurück zum Zitat Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT, Hui D (2014) Dispersion and roles of montmorillonite on structural, flammability, thermal and mechanical behaviours of electron beam irradiated flame retarded nanocomposite. Compos Part B Eng 61:41–48CrossRef Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT, Hui D (2014) Dispersion and roles of montmorillonite on structural, flammability, thermal and mechanical behaviours of electron beam irradiated flame retarded nanocomposite. Compos Part B Eng 61:41–48CrossRef
22.
Zurück zum Zitat Sabet M, Hassan A, Wahit MU, Ratnam CT (2010) Mechanical, thermal and electrical properties of ethylene vinyl acetate irradiated by an electron-beam. Polym Plast Technol Eng 49:589–594CrossRef Sabet M, Hassan A, Wahit MU, Ratnam CT (2010) Mechanical, thermal and electrical properties of ethylene vinyl acetate irradiated by an electron-beam. Polym Plast Technol Eng 49:589–594CrossRef
23.
Zurück zum Zitat Khonakdar HA, Jafari SH, Wagenknecht U, Jehnichen D (2006) Effect of electron-irradiation on cross-link density and crystalline structure of low- and high-density polyethylene. Radiat Phys Chem 75:78–86CrossRef Khonakdar HA, Jafari SH, Wagenknecht U, Jehnichen D (2006) Effect of electron-irradiation on cross-link density and crystalline structure of low- and high-density polyethylene. Radiat Phys Chem 75:78–86CrossRef
25.
Zurück zum Zitat Bee ST, Sin LT, Ratnam CT, Kavee-Raaz RRD, Tee TT, Hui D, Rahmat AR (2015) Electron beam irradiation enhanced of Hibiscus cannabinus fiber strengthen polylactic acid composites. Compos Part B Eng 79:35–46CrossRef Bee ST, Sin LT, Ratnam CT, Kavee-Raaz RRD, Tee TT, Hui D, Rahmat AR (2015) Electron beam irradiation enhanced of Hibiscus cannabinus fiber strengthen polylactic acid composites. Compos Part B Eng 79:35–46CrossRef
26.
Zurück zum Zitat Haurie L, Fernandez AI, Velasco JI, Chimenos JM, Cuesta JML, Espiell F (2007) Thermal stability and flame retardancy of LDPE/EVA blends filled synthetic hydromagnesite/aluminium hydroxide/montmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures. Polym Degrad Stab 92:1082–1087CrossRef Haurie L, Fernandez AI, Velasco JI, Chimenos JM, Cuesta JML, Espiell F (2007) Thermal stability and flame retardancy of LDPE/EVA blends filled synthetic hydromagnesite/aluminium hydroxide/montmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures. Polym Degrad Stab 92:1082–1087CrossRef
27.
Zurück zum Zitat Tuen BS, Hassan A, Abu Bakar A (2012) Mechanical properties of talc- and (Calcium carbonate)-filled poly(vinyl chloride) hybrid composites. J Vinyl Addit Technol 18:76–86CrossRef Tuen BS, Hassan A, Abu Bakar A (2012) Mechanical properties of talc- and (Calcium carbonate)-filled poly(vinyl chloride) hybrid composites. J Vinyl Addit Technol 18:76–86CrossRef
28.
Zurück zum Zitat Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT (2012) Effects of montmorillonite on the electron beam irradiated alumina trihydrate added polyethylene and ethylene vinyl acetate nanocomposite. Polym Compos 33:1883–1892CrossRef Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT (2012) Effects of montmorillonite on the electron beam irradiated alumina trihydrate added polyethylene and ethylene vinyl acetate nanocomposite. Polym Compos 33:1883–1892CrossRef
29.
Zurück zum Zitat Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT (2014) Interactions of montmorillonite and electron beam irradiation in enhancing the properties of alumina trihydrate–added polyethylene and ethylene vinyl acetate blends. J Compos Mater 48(10):1155–1171CrossRef Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT (2014) Interactions of montmorillonite and electron beam irradiation in enhancing the properties of alumina trihydrate–added polyethylene and ethylene vinyl acetate blends. J Compos Mater 48(10):1155–1171CrossRef
30.
Zurück zum Zitat Sharif J, Dahlan KZM, Wan Yunus WMZ (2007) Electron beam crosslinking of poly(ethylene-co-vinyl acetate)/clay nanocomposites. Radiat Phys Chem 76:1698–1702CrossRef Sharif J, Dahlan KZM, Wan Yunus WMZ (2007) Electron beam crosslinking of poly(ethylene-co-vinyl acetate)/clay nanocomposites. Radiat Phys Chem 76:1698–1702CrossRef
31.
Zurück zum Zitat Ng HM, Bee ST, Ratnam CT, Sin LT, Phang YY, Tee TT, Rahmat AR (2014) Effectiveness of trimethylopropane trimethacrylate for the electron–beam-irradiation-induced cross-linking of polylactic acid. Nucl Inst Methods Phys Res B 319:62–70CrossRef Ng HM, Bee ST, Ratnam CT, Sin LT, Phang YY, Tee TT, Rahmat AR (2014) Effectiveness of trimethylopropane trimethacrylate for the electron–beam-irradiation-induced cross-linking of polylactic acid. Nucl Inst Methods Phys Res B 319:62–70CrossRef
32.
Zurück zum Zitat Szep A, Szabo A, Toth N, Anna P, Marosi G (2006) Role of montmorillonite in flame retardancy of ethylene-vinyl acetate copolymer. Polym Degrad Stab 91:593–599CrossRef Szep A, Szabo A, Toth N, Anna P, Marosi G (2006) Role of montmorillonite in flame retardancy of ethylene-vinyl acetate copolymer. Polym Degrad Stab 91:593–599CrossRef
33.
Zurück zum Zitat Zhao C, Qin H, Gong F, Feng M, Zhang S, Yang M (2005) Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym Degrad Stab 87:183–189CrossRef Zhao C, Qin H, Gong F, Feng M, Zhang S, Yang M (2005) Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym Degrad Stab 87:183–189CrossRef
34.
Zurück zum Zitat Wang B, Song L, Hong N, Tai Q, Lu H, Hu Y (2011) Effect of electron beam irradiation on the mechanical and thermal properties of intumescent flame retarded ethylene-vinyl acetate copolymer/organically modified montmorillonite nanocomposites. Radiat Phys Chem 80(11):1275–1281CrossRef Wang B, Song L, Hong N, Tai Q, Lu H, Hu Y (2011) Effect of electron beam irradiation on the mechanical and thermal properties of intumescent flame retarded ethylene-vinyl acetate copolymer/organically modified montmorillonite nanocomposites. Radiat Phys Chem 80(11):1275–1281CrossRef
35.
Zurück zum Zitat Martinez-Pardo ME, Zuazua MP, Hernandez-Mendoza V, Cardosa J, Montiel R, Vazquez H (1995) Structure-properties relationship of irradiated LDPE/EVA blend. Nucl Inst Methods Phys Res B 105:258–261CrossRef Martinez-Pardo ME, Zuazua MP, Hernandez-Mendoza V, Cardosa J, Montiel R, Vazquez H (1995) Structure-properties relationship of irradiated LDPE/EVA blend. Nucl Inst Methods Phys Res B 105:258–261CrossRef
36.
Zurück zum Zitat Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT (2014) Effects of irradiation on the mechanical, electrical, and flammability properties of (low-density polyethylene)/(ethylene-[vinyl acetate] copolymer) blends containing alumina trihydrate. J Vinyl Addit Technol 20:91–98CrossRef Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT (2014) Effects of irradiation on the mechanical, electrical, and flammability properties of (low-density polyethylene)/(ethylene-[vinyl acetate] copolymer) blends containing alumina trihydrate. J Vinyl Addit Technol 20:91–98CrossRef
37.
Zurück zum Zitat Bee ST, Ratnam CT, Sin LT, Tee TT, Hui D, Kadhum AAH, Rahmat AR, Lau J (2014) Effects of electron beam irradiation on mechanical properties and nanostructural-morphology of montmorillonite added polyvinyl alcohol composite. Compos Part B Eng 63:141–153CrossRef Bee ST, Ratnam CT, Sin LT, Tee TT, Hui D, Kadhum AAH, Rahmat AR, Lau J (2014) Effects of electron beam irradiation on mechanical properties and nanostructural-morphology of montmorillonite added polyvinyl alcohol composite. Compos Part B Eng 63:141–153CrossRef
38.
Zurück zum Zitat Isitman NA, Kaynak C (2011) Nanostructure of montmorillonite barrier layers: a new insight into the mechanism of flammability reduction in polymer nanocomposites. Polym Degrad Stab 96(12):2284–2289CrossRef Isitman NA, Kaynak C (2011) Nanostructure of montmorillonite barrier layers: a new insight into the mechanism of flammability reduction in polymer nanocomposites. Polym Degrad Stab 96(12):2284–2289CrossRef
39.
Zurück zum Zitat Tseng CR, Wu JY, Lee HY, Chang FC (2001) Preparation and crystallization behavior of syndiotactic polystyrene-clay nanocomposites. Polym 42:10063–10070CrossRef Tseng CR, Wu JY, Lee HY, Chang FC (2001) Preparation and crystallization behavior of syndiotactic polystyrene-clay nanocomposites. Polym 42:10063–10070CrossRef
40.
Zurück zum Zitat Dadbin S, Frounchi M, Saeid MH, Gangi F (2002) Molecular structure and physical properties of E-beam cross-linked low-density polyethylene for wire and cable insulation applications. J Appl Polym Sci 86:1959–1969CrossRef Dadbin S, Frounchi M, Saeid MH, Gangi F (2002) Molecular structure and physical properties of E-beam cross-linked low-density polyethylene for wire and cable insulation applications. J Appl Polym Sci 86:1959–1969CrossRef
41.
Zurück zum Zitat Sabet M, Hassan A, Ratnam CT (2012) Electron beam irradiation of low density polyethylene/ethylene vinyl acetate filled with metal hydroxides for wire and cable applications. Polym Degrad Stab 97(8):1432–1437CrossRef Sabet M, Hassan A, Ratnam CT (2012) Electron beam irradiation of low density polyethylene/ethylene vinyl acetate filled with metal hydroxides for wire and cable applications. Polym Degrad Stab 97(8):1432–1437CrossRef
42.
Zurück zum Zitat Unnikrishnan L, Mohanty S, Nayak SK, Ali A (2011) Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: effect of organoclay on thermal, mechanical and flammability properties. Mater Sci Eng A 528:3943–3951CrossRef Unnikrishnan L, Mohanty S, Nayak SK, Ali A (2011) Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: effect of organoclay on thermal, mechanical and flammability properties. Mater Sci Eng A 528:3943–3951CrossRef
43.
Zurück zum Zitat Carosio F, Alongi J, Malucelli G (2013) Flammability and combustion properties of ammonium polyphosphate-/poly(acrylic acid)-based layer by layer architectures deposited on cotton, polyester and their blends. Polym Degrad Stab 98:1626–1637CrossRef Carosio F, Alongi J, Malucelli G (2013) Flammability and combustion properties of ammonium polyphosphate-/poly(acrylic acid)-based layer by layer architectures deposited on cotton, polyester and their blends. Polym Degrad Stab 98:1626–1637CrossRef
44.
Zurück zum Zitat Wang B, Zhou K, Wang L, Song L, Hu Y, Hu S (2012) Enhancement on physical properties of flame retarded ethylene-vinyl acetate copolymer/ferric pyrophosphate composites through electron beam irradiation. Compos Part B Eng 43(2):641–646CrossRef Wang B, Zhou K, Wang L, Song L, Hu Y, Hu S (2012) Enhancement on physical properties of flame retarded ethylene-vinyl acetate copolymer/ferric pyrophosphate composites through electron beam irradiation. Compos Part B Eng 43(2):641–646CrossRef
45.
Zurück zum Zitat Razak MZA, Arsad A, Rahmat AR, Hassan A (2012) Influence of MMT as reinforcement on rheological behavior, mechanical and morphological properties of recycled PET/ABS thermoplastic nanocomposites. J Polym Eng 32(3):177–183CrossRef Razak MZA, Arsad A, Rahmat AR, Hassan A (2012) Influence of MMT as reinforcement on rheological behavior, mechanical and morphological properties of recycled PET/ABS thermoplastic nanocomposites. J Polym Eng 32(3):177–183CrossRef
46.
Zurück zum Zitat Jiang W, Hao J, Han Z (2012) Study on the thermal degradation of mixtures of ammonium polyphosphate and a novel caged bicyclic phosphate and their flame retardant effect in polypropylene. Polym Degrad Stab 97:632–637CrossRef Jiang W, Hao J, Han Z (2012) Study on the thermal degradation of mixtures of ammonium polyphosphate and a novel caged bicyclic phosphate and their flame retardant effect in polypropylene. Polym Degrad Stab 97:632–637CrossRef
47.
Zurück zum Zitat Li J, Ke C, Xu L, Wang Y (2012) Synergistic effect between a hyperbranched charring agent and ammonium polyphosphate on the intumescent flame retardance of acrylonitrile-butadiene-styrene polymer. Polym Degrad Stab 97:1107–1113CrossRef Li J, Ke C, Xu L, Wang Y (2012) Synergistic effect between a hyperbranched charring agent and ammonium polyphosphate on the intumescent flame retardance of acrylonitrile-butadiene-styrene polymer. Polym Degrad Stab 97:1107–1113CrossRef
48.
Zurück zum Zitat Bozi J, Czégény Z, Mészáros E, Blazsό M (2007) Thermal decomposition of flame retarded polycarbonates. J Anal Appl Pyrolysis 79:337–345CrossRef Bozi J, Czégény Z, Mészáros E, Blazsό M (2007) Thermal decomposition of flame retarded polycarbonates. J Anal Appl Pyrolysis 79:337–345CrossRef
49.
Zurück zum Zitat Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958CrossRef Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958CrossRef
Metadaten
Titel
Interactive effect of electron beam irradiation and montmorillonite (MMT) on properties of polycarbonate (PC)/acrylonitrile butadiene styrene (ABS) nanocomposites
verfasst von
Soo-Tueen Bee
Lee Tin Sin
Kien-Sin Lim
C. T. Ratnam
Soo Ling Bee
Abdul Razak Rahmat
Publikationsdatum
26.11.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 9/2019
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-018-2622-5

Weitere Artikel der Ausgabe 9/2019

Polymer Bulletin 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.