Skip to main content

2017 | OriginalPaper | Buchkapitel

Interconnects for Solid Oxide Fuel Cells

verfasst von : Angeliki Brouzgou, Anatoly Demin, Panagiotis Tsiakaras

Erschienen in: Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Interconnect materials serve an important role in solid oxide fuel cell (SOFC) technology, connecting the current collectors of each cell to either the next one or the electrical load. Up to date, two types of interconnects have been developed: (i) the ceramic and (ii) the metallic ones. The ceramic interconnects are oxides, which are very stable in oxidizing atmosphere, but their cost is high and they exhibit lower electrical conductivity in comparison with the metallic ones at the operating temperatures. The most studied ceramic interconnects are lanthanum and yttrium chromites, and perovskite p-type semiconductors. Currently, ceramic conductive materials are widely used as thin protective layers deposited on metallic interconnects. The metallic interconnects are cheaper than the ceramic ones, and they are used at lower operating temperatures. Compared with ceramics, they exhibit higher electronic conductivity, but they are not stable in oxidizing atmospheres. During the last decade, several solutions have been approached, predominating the surface modification of the metallic interconnects via protective oxide layers (ceramic one) deposition on them. This alternative approach increases the lifetime of metallic interconnects, especially under cathode conditions. Reactive element oxides, perovskites, spinels, and dual layers are the kind of coatings that have also been developed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abiko, K. (1997). The evolution of iron. Physica Status Solidi A, 160, 285–296.CrossRef Abiko, K. (1997). The evolution of iron. Physica Status Solidi A, 160, 285–296.CrossRef
Zurück zum Zitat Ajitdoss, L. C., Smeacetto, F., Bindi, M., Beretta, D., Salvo, M., & Ferraris, M. (2013). Mn1.5Co1.5O4 protective coating on Crofer22APU produced by thermal co-evaporation for SOFCs. Materials Letters, 95, 82–85.CrossRef Ajitdoss, L. C., Smeacetto, F., Bindi, M., Beretta, D., Salvo, M., & Ferraris, M. (2013). Mn1.5Co1.5O4 protective coating on Crofer22APU produced by thermal co-evaporation for SOFCs. Materials Letters, 95, 82–85.CrossRef
Zurück zum Zitat Ardigo, M. R., Popa, I., Combemale, L., Chevalier, S., Herbst, F., & Girardon, P. (2015). Dual atmosphere study of the K41X stainless steel for interconnect application in high temperature water vapour electrolysis. International Journal of Hydrogen Energy, 40, 5305–5312.CrossRef Ardigo, M. R., Popa, I., Combemale, L., Chevalier, S., Herbst, F., & Girardon, P. (2015). Dual atmosphere study of the K41X stainless steel for interconnect application in high temperature water vapour electrolysis. International Journal of Hydrogen Energy, 40, 5305–5312.CrossRef
Zurück zum Zitat Armstrong, T. R., Stevenson, J. W., McCready, D. E., Paulik, S. W., & Raney, P. E. (1996). The effect of reducing environments on the stability of acceptor substituted yttrium chromite. Solid State Ionics, 92, 213–223.CrossRef Armstrong, T. R., Stevenson, J. W., McCready, D. E., Paulik, S. W., & Raney, P. E. (1996). The effect of reducing environments on the stability of acceptor substituted yttrium chromite. Solid State Ionics, 92, 213–223.CrossRef
Zurück zum Zitat Bateni, M. R., Wei, P., Deng, X., & Petric, A. (2007). Spinel coatings for UNS 430 stainless steel interconnects. Surface and Coatings Technology, 201, 4677–4684.CrossRef Bateni, M. R., Wei, P., Deng, X., & Petric, A. (2007). Spinel coatings for UNS 430 stainless steel interconnects. Surface and Coatings Technology, 201, 4677–4684.CrossRef
Zurück zum Zitat Brylewski, T., Dabek, J., Przybylski, K., Morgiel, J., & Rekas, M. (2012). Screen-printed (La, Sr)CrO3 coatings on ferritic stainless steel interconnects for solid oxide fuel cells using nanopowders prepared by means of ultrasonic spray pyrolysis. Journal of Power Sources, 208, 86–95.CrossRef Brylewski, T., Dabek, J., Przybylski, K., Morgiel, J., & Rekas, M. (2012). Screen-printed (La, Sr)CrO3 coatings on ferritic stainless steel interconnects for solid oxide fuel cells using nanopowders prepared by means of ultrasonic spray pyrolysis. Journal of Power Sources, 208, 86–95.CrossRef
Zurück zum Zitat Chen, G., Xin, X., Luo, T., Liu, L., Zhou, Y., Yuan, C., et al. (2015). Mn1.4Co1.4Cu0.2O4 spinel protective coating on ferritic stainless steels for solid oxide fuel cell interconnect applications. Journal of Power Sources, 278, 230–234.CrossRef Chen, G., Xin, X., Luo, T., Liu, L., Zhou, Y., Yuan, C., et al. (2015). Mn1.4Co1.4Cu0.2O4 spinel protective coating on ferritic stainless steels for solid oxide fuel cell interconnect applications. Journal of Power Sources, 278, 230–234.CrossRef
Zurück zum Zitat Chen, X., Hou, P. Y., Jacobson, C. P., Visco, S. J., & De Jonghe, L. C. (2005a). Protective coating on stainless steel interconnect for SOFCs: Oxidation kinetics and electrical properties. Solid State Ionics, 176, 425–433.CrossRef Chen, X., Hou, P. Y., Jacobson, C. P., Visco, S. J., & De Jonghe, L. C. (2005a). Protective coating on stainless steel interconnect for SOFCs: Oxidation kinetics and electrical properties. Solid State Ionics, 176, 425–433.CrossRef
Zurück zum Zitat Chen, X., Huang, K., & Xu, X. B. (2005b). Automated design of a three-dimensional fishbone antenna using parallel genetic algorithm and NEC. IEEE Antennas and Wireless Propagation Letters, 4, 425–428.CrossRef Chen, X., Huang, K., & Xu, X. B. (2005b). Automated design of a three-dimensional fishbone antenna using parallel genetic algorithm and NEC. IEEE Antennas and Wireless Propagation Letters, 4, 425–428.CrossRef
Zurück zum Zitat Chen, X., Zhang, L., Liu, E., & Jiang, S. P. (2011). A fundamental study of chromium deposition and poisoning at (La0.8Sr0.2)0.95(Mn1−xCox)O3±δ (0.0 ≤ x ≤ 1.0) cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 36, 805–821.CrossRef Chen, X., Zhang, L., Liu, E., & Jiang, S. P. (2011). A fundamental study of chromium deposition and poisoning at (La0.8Sr0.2)0.95(Mn1−xCox)O3±δ (0.0 ≤ x ≤ 1.0) cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 36, 805–821.CrossRef
Zurück zum Zitat Chiu, Y.-T., & Lin, C.-K. (2012). Effects of Nb and W additions on high-temperature creep properties of ferritic stainless steels for solid oxide fuel cell interconnect. Journal of Power Sources, 198, 149–157.CrossRef Chiu, Y.-T., & Lin, C.-K. (2012). Effects of Nb and W additions on high-temperature creep properties of ferritic stainless steels for solid oxide fuel cell interconnect. Journal of Power Sources, 198, 149–157.CrossRef
Zurück zum Zitat Chu, C.-L., Lee, J., Lee, T.-H., & Cheng, Y.-N. (2009). Oxidation behavior of metallic interconnect coated with La–Sr–Mn film by screen painting and plasma sputtering. International Journal of Hydrogen Energy, 34, 422–434.CrossRef Chu, C.-L., Lee, J., Lee, T.-H., & Cheng, Y.-N. (2009). Oxidation behavior of metallic interconnect coated with La–Sr–Mn film by screen painting and plasma sputtering. International Journal of Hydrogen Energy, 34, 422–434.CrossRef
Zurück zum Zitat Da Conceição, L., Dessemond, L., Djurado, E., & Souza, M. M. V. M. (2013). La0.7Sr0.3MnO3-coated SS444 alloy by dip-coating process for metallic interconnect supported solid oxide fuel cells. Journal of Power Sources, 241, 159–167.CrossRef Da Conceição, L., Dessemond, L., Djurado, E., & Souza, M. M. V. M. (2013). La0.7Sr0.3MnO3-coated SS444 alloy by dip-coating process for metallic interconnect supported solid oxide fuel cells. Journal of Power Sources, 241, 159–167.CrossRef
Zurück zum Zitat Da Conceição, L., & Souza, M. M. V. M. (2013). Synthesis of La0.7Sr0.3MnO3 thin films supported on Fe–Cr alloy by sol–gel/dip-coating process: Evaluation of deposition parameters. Thin Solid Films, 534, 218–225.CrossRef Da Conceição, L., & Souza, M. M. V. M. (2013). Synthesis of La0.7Sr0.3MnO3 thin films supported on Fe–Cr alloy by sol–gel/dip-coating process: Evaluation of deposition parameters. Thin Solid Films, 534, 218–225.CrossRef
Zurück zum Zitat De Angelis Korb, M., Savaris, I. D., Feistauer, E. E., Barreto, L. S., Heck, N. C., Müller, I. L., et al. (2013). Modification of the La0.6Sr0.4CoO3 coating deposited on ferritic stainless steel by spray pyrolysis after oxidation in air at high temperature. International Journal of Hydrogen Energy, 38, 4760–4766.CrossRef De Angelis Korb, M., Savaris, I. D., Feistauer, E. E., Barreto, L. S., Heck, N. C., Müller, I. L., et al. (2013). Modification of the La0.6Sr0.4CoO3 coating deposited on ferritic stainless steel by spray pyrolysis after oxidation in air at high temperature. International Journal of Hydrogen Energy, 38, 4760–4766.CrossRef
Zurück zum Zitat Fergus, J., Hui, R., Li, X., Wilkinson, D. P., & Zhang, J. (2008). Solid oxide fuel cells: Materials properties and performance. Boca Raton: CRC press. Fergus, J., Hui, R., Li, X., Wilkinson, D. P., & Zhang, J. (2008). Solid oxide fuel cells: Materials properties and performance. Boca Raton: CRC press.
Zurück zum Zitat Fergus, J. W. (2004). Lanthanum chromite-based materials for solid oxide fuel cell interconnects. Solid State Ionics, 171, 1–15.CrossRef Fergus, J. W. (2004). Lanthanum chromite-based materials for solid oxide fuel cell interconnects. Solid State Ionics, 171, 1–15.CrossRef
Zurück zum Zitat Fergus, J. W. (2005). Metallic interconnects for solid oxide fuel cells. Materials Science and Engineering A, 397, 271–283.CrossRef Fergus, J. W. (2005). Metallic interconnects for solid oxide fuel cells. Materials Science and Engineering A, 397, 271–283.CrossRef
Zurück zum Zitat Flandermeyer, B. K., Poeppel, R. B., Dusek, J. T., & Anderson, H. U. (1988). Sintering aid for lanthanum chromite refractories. US Patent #4,749,632. Flandermeyer, B. K., Poeppel, R. B., Dusek, J. T., & Anderson, H. U. (1988). Sintering aid for lanthanum chromite refractories. US Patent #4,749,632.
Zurück zum Zitat Fontana, S., Amendola, R., Chevalier, S., Piccardo, P., Caboche, G., Viviani, M., et al. (2007). Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. Journal of Power Sources, 171, 652–662.CrossRef Fontana, S., Amendola, R., Chevalier, S., Piccardo, P., Caboche, G., Viviani, M., et al. (2007). Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. Journal of Power Sources, 171, 652–662.CrossRef
Zurück zum Zitat Fontana, S., Chevalier, S., & Caboche, G. (2012). metallic interconnects for solid oxide fuel cell: Performance of reactive element oxide coating during 10, 20 and 30 months exposure. Oxidation of Metals, 78, 307–328.CrossRef Fontana, S., Chevalier, S., & Caboche, G. (2012). metallic interconnects for solid oxide fuel cell: Performance of reactive element oxide coating during 10, 20 and 30 months exposure. Oxidation of Metals, 78, 307–328.CrossRef
Zurück zum Zitat Frangini, S., Masci, A., McPhail, S. J., Soccio, T., & Zaza, F. (2014). Degradation behavior of a commercial 13Cr ferritic stainless steel (SS405) exposed to an ambient air atmosphere for IT-SOFC interconnect applications. Materials Chemistry and Physics, 144, 491–497.CrossRef Frangini, S., Masci, A., McPhail, S. J., Soccio, T., & Zaza, F. (2014). Degradation behavior of a commercial 13Cr ferritic stainless steel (SS405) exposed to an ambient air atmosphere for IT-SOFC interconnect applications. Materials Chemistry and Physics, 144, 491–497.CrossRef
Zurück zum Zitat Froitzheim, J., Canovic, S., Nikumaa, M., Sachitanand, R., Johansson, L. G., & Svensson, J. E. (2012). Long term study of Cr evaporation and high temperature corrosion behaviour of Co coated ferritic steel for solid oxide fuel cell interconnects. Journal of Power Sources, 220, 217–227.CrossRef Froitzheim, J., Canovic, S., Nikumaa, M., Sachitanand, R., Johansson, L. G., & Svensson, J. E. (2012). Long term study of Cr evaporation and high temperature corrosion behaviour of Co coated ferritic steel for solid oxide fuel cell interconnects. Journal of Power Sources, 220, 217–227.CrossRef
Zurück zum Zitat Froitzheim, J., Meier, G. H., Niewolak, L., Ennis, P. J., Hattendorf, H., Singheiser, L., et al. (2008). Development of high strength ferritic steel for interconnect application in SOFCs. Journal of Power Sources, 178, 163–173.CrossRef Froitzheim, J., Meier, G. H., Niewolak, L., Ennis, P. J., Hattendorf, H., Singheiser, L., et al. (2008). Development of high strength ferritic steel for interconnect application in SOFCs. Journal of Power Sources, 178, 163–173.CrossRef
Zurück zum Zitat Fu, Y.-P., Wang, H.-C., Weng, C.-S., Hu, S.-H., & Liu, Y.-C. (2015). Characterizations of Fe doping on B-Site of (La0.8Ca0.2)(Cr0.9Co0.1)O3−δ interconnect materials for SOFCs. Journal of the American Ceramic Society, 98(8), 2561. Fu, Y.-P., Wang, H.-C., Weng, C.-S., Hu, S.-H., & Liu, Y.-C. (2015). Characterizations of Fe doping on B-Site of (La0.8Ca0.2)(Cr0.9Co0.1)O3−δ interconnect materials for SOFCs. Journal of the American Ceramic Society, 98(8), 2561.
Zurück zum Zitat Furtado, J. G. M., & Oliveira, R. N. (2008). Development of lanthanum chromites-based materials for solid oxide fuel cell interconnects. Matéria (Rio de Janeiro), 13, 147–153.CrossRef Furtado, J. G. M., & Oliveira, R. N. (2008). Development of lanthanum chromites-based materials for solid oxide fuel cell interconnects. Matéria (Rio de Janeiro), 13, 147–153.CrossRef
Zurück zum Zitat Gannon, P. E., Tripp, C. T., Knospe, A. K., Ramana, C. V., Deibert, M., Smith, R. J., et al. (2004). High-temperature oxidation resistance and surface electrical conductivity of stainless steels with filtered arc Cr–Al–N multilayer and/or superlattice coatings. Surface and Coatings Technology, 188–189, 55–61. Gannon, P. E., Tripp, C. T., Knospe, A. K., Ramana, C. V., Deibert, M., Smith, R. J., et al. (2004). High-temperature oxidation resistance and surface electrical conductivity of stainless steels with filtered arc Cr–Al–N multilayer and/or superlattice coatings. Surface and Coatings Technology, 188–189, 55–61.
Zurück zum Zitat Gannon, P. E., & Montana State University. (2007). Study of solid oxide fuel cell interconnects, protective coatings and advanced physical vapor deposition techniques. Montana, United States of America: Montana State University. Gannon, P. E., & Montana State University. (2007). Study of solid oxide fuel cell interconnects, protective coatings and advanced physical vapor deposition techniques. Montana, United States of America: Montana State University.
Zurück zum Zitat Garcia-Fresnillo, L., Shemet, V., Chyrkin, A., de Haart, L., & Quadakkers, W. (2014). Long-term behaviour of solid oxide fuel cell interconnect materials in contact with Ni-mesh during exposure in simulated anode gas at 700 and 800° C. Journal of Power Sources, 271, 213–222.CrossRef Garcia-Fresnillo, L., Shemet, V., Chyrkin, A., de Haart, L., & Quadakkers, W. (2014). Long-term behaviour of solid oxide fuel cell interconnect materials in contact with Ni-mesh during exposure in simulated anode gas at 700 and 800° C. Journal of Power Sources, 271, 213–222.CrossRef
Zurück zum Zitat Geng, S., Qi, S., Xiang, D., Zhu, S., & Wang, F. (2012a). Oxidation and electrical behavior of ferritic stainless steel interconnect with Fe–Co–Ni coating by electroplating. Journal of Power Sources, 215, 274–278.CrossRef Geng, S., Qi, S., Xiang, D., Zhu, S., & Wang, F. (2012a). Oxidation and electrical behavior of ferritic stainless steel interconnect with Fe–Co–Ni coating by electroplating. Journal of Power Sources, 215, 274–278.CrossRef
Zurück zum Zitat Geng, S., Qi, S., Zhao, Q., Zhu, S., & Wang, F. (2012b). Electroplated Ni-Fe2O3 composite coating for solid oxide fuel cell interconnect application. International Journal of Hydrogen Energy, 37, 10850–10856.CrossRef Geng, S., Qi, S., Zhao, Q., Zhu, S., & Wang, F. (2012b). Electroplated Ni-Fe2O3 composite coating for solid oxide fuel cell interconnect application. International Journal of Hydrogen Energy, 37, 10850–10856.CrossRef
Zurück zum Zitat Geng, S., Wang, Q., Wang, W., Zhu, S., & Wang, F. (2012c). Sputtered Ni coating on ferritic stainless steel for solid oxide fuel cell interconnect application. International Journal of Hydrogen Energy, 37, 916–920.CrossRef Geng, S., Wang, Q., Wang, W., Zhu, S., & Wang, F. (2012c). Sputtered Ni coating on ferritic stainless steel for solid oxide fuel cell interconnect application. International Journal of Hydrogen Energy, 37, 916–920.CrossRef
Zurück zum Zitat Geng, S., & Zhu, J. (2006). Promising alloys for intermediate-temperature solid oxide fuel cell interconnect application. Journal of Power Sources, 160, 1009–1016.CrossRef Geng, S., & Zhu, J. (2006). Promising alloys for intermediate-temperature solid oxide fuel cell interconnect application. Journal of Power Sources, 160, 1009–1016.CrossRef
Zurück zum Zitat Gopalan, S. (2005). Bi-Layer pn junction interconnections for goal based solid oxide fuel cells, Final Technical Report DOE, 1–21. Gopalan, S. (2005). Bi-Layer pn junction interconnections for goal based solid oxide fuel cells, Final Technical Report DOE, 1–21.
Zurück zum Zitat Hayashi, S., Fukaya, K., & Saito, H. (1988). Sintering of lanthanum chromite doped with zinc or copper. Journal of Materials Science Letters, 7, 457–458.CrossRef Hayashi, S., Fukaya, K., & Saito, H. (1988). Sintering of lanthanum chromite doped with zinc or copper. Journal of Materials Science Letters, 7, 457–458.CrossRef
Zurück zum Zitat Hedström, P., Huyan, F., Zhou, J., Wessman, S., Thuvander, M., & Odqvist, J. (2013). The 475 °C embrittlement in Fe-20Cr and Fe-20Cr-X (X = Ni, Cu, Mn) alloys studied by mechanical testing and atom probe tomography. Materials Science and Engineering A, 574, 123–129.CrossRef Hedström, P., Huyan, F., Zhou, J., Wessman, S., Thuvander, M., & Odqvist, J. (2013). The 475 °C embrittlement in Fe-20Cr and Fe-20Cr-X (X = Ni, Cu, Mn) alloys studied by mechanical testing and atom probe tomography. Materials Science and Engineering A, 574, 123–129.CrossRef
Zurück zum Zitat Heidarpour, A., Choi, G. M., Abbasi, M. H., & Saidi, A. (2012). A novel approach to co-sintering of doped lanthanum chromite interconnect on Ni–YSZ anode substrate for SOFC applications. Journal of Alloys and Compounds, 512, 156–159.CrossRef Heidarpour, A., Choi, G. M., Abbasi, M. H., & Saidi, A. (2012). A novel approach to co-sintering of doped lanthanum chromite interconnect on Ni–YSZ anode substrate for SOFC applications. Journal of Alloys and Compounds, 512, 156–159.CrossRef
Zurück zum Zitat Heidarpour, A., Saidi, A., Abbasi, M. H., & Choi, G. M. (2013). In situ fabrication mechanism of a dense Sr and Ca doped lanthanum chromite interconnect on Ni-YSZ anode of a solid oxide fuel cell during co-sintering. Ceramics International, 39, 1821–1826.CrossRef Heidarpour, A., Saidi, A., Abbasi, M. H., & Choi, G. M. (2013). In situ fabrication mechanism of a dense Sr and Ca doped lanthanum chromite interconnect on Ni-YSZ anode of a solid oxide fuel cell during co-sintering. Ceramics International, 39, 1821–1826.CrossRef
Zurück zum Zitat Hosseini, N., Abbasi, M. H., Karimzadeh, F., & Choi, G. M. (2015). Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects. Journal of Power Sources, 273, 1073–1083.CrossRef Hosseini, N., Abbasi, M. H., Karimzadeh, F., & Choi, G. M. (2015). Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects. Journal of Power Sources, 273, 1073–1083.CrossRef
Zurück zum Zitat Hosseini, N., Karimzadeh, F., Abbasi, M. H., & Choi, G. M. (2014). Microstructural characterization and electrical conductivity of CuxMn3−xO4 (0.9 ≤ x ≤ 1.3) spinels produced by optimized glycine–nitrate combustion and mechanical milling processes. Ceramics International, 40, 12219–12226.CrossRef Hosseini, N., Karimzadeh, F., Abbasi, M. H., & Choi, G. M. (2014). Microstructural characterization and electrical conductivity of CuxMn3−xO4 (0.9 ≤ x ≤ 1.3) spinels produced by optimized glycine–nitrate combustion and mechanical milling processes. Ceramics International, 40, 12219–12226.CrossRef
Zurück zum Zitat Hoyt, K. O., Gannon, P. E., White, P., Tortop, R., Ellingwood, B. J., & Khoshuei, H. (2012). Oxidation behavior of (Co, Mn)3O4 coatings on preoxidized stainless steel for solid oxide fuel cell interconnects. International Journal of Hydrogen Energy, 37, 518–529.CrossRef Hoyt, K. O., Gannon, P. E., White, P., Tortop, R., Ellingwood, B. J., & Khoshuei, H. (2012). Oxidation behavior of (Co, Mn)3O4 coatings on preoxidized stainless steel for solid oxide fuel cell interconnects. International Journal of Hydrogen Energy, 37, 518–529.CrossRef
Zurück zum Zitat Hua, B., Pu, J., Lu, F., Zhang, J., Chi, B., & Jian, L. (2010a). Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 195, 2782–2788.CrossRef Hua, B., Pu, J., Lu, F., Zhang, J., Chi, B., & Jian, L. (2010a). Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 195, 2782–2788.CrossRef
Zurück zum Zitat Hua, B., Zhang, W., Wu, J., Pu, J., Chi, B., & Jian, L. (2010b). A promising NiCo2O4 protective coating for metallic interconnects of solid oxide fuel cells. Journal of Power Sources, 195, 7375–7379.CrossRef Hua, B., Zhang, W., Wu, J., Pu, J., Chi, B., & Jian, L. (2010b). A promising NiCo2O4 protective coating for metallic interconnects of solid oxide fuel cells. Journal of Power Sources, 195, 7375–7379.CrossRef
Zurück zum Zitat Huang, J.-J., Fu, Y.-P., Wang, J.-Y., Cheng, Y.-N., Lee, S., & Hsu, J.-C. (2014). Characterization of Fe–Cr alloy metallic interconnects coated with LSMO using the aerosol deposition process. Materials Research Bulletin, 51, 63–68.CrossRef Huang, J.-J., Fu, Y.-P., Wang, J.-Y., Cheng, Y.-N., Lee, S., & Hsu, J.-C. (2014). Characterization of Fe–Cr alloy metallic interconnects coated with LSMO using the aerosol deposition process. Materials Research Bulletin, 51, 63–68.CrossRef
Zurück zum Zitat Huang, W., & Gopalan, S. (2006). Bi-layer structures as solid oxide fuel cell interconnections. Solid State Ionics, 177, 347–350.CrossRef Huang, W., & Gopalan, S. (2006). Bi-layer structures as solid oxide fuel cell interconnections. Solid State Ionics, 177, 347–350.CrossRef
Zurück zum Zitat Jian, P., Jian, L., Bing, H., & Xie, G. (2006). Oxidation kinetics and phase evolution of a Fe–16Cr alloy in simulated SOFC cathode atmosphere. Journal of Power Sources, 158, 354–360.CrossRef Jian, P., Jian, L., Bing, H., & Xie, G. (2006). Oxidation kinetics and phase evolution of a Fe–16Cr alloy in simulated SOFC cathode atmosphere. Journal of Power Sources, 158, 354–360.CrossRef
Zurück zum Zitat Jo, K. H., Kim, J. H., Kim, K. M., Lee, I.-S., & Kim, S.-J. (2015). Development of a new cost effective Fe–Cr ferritic stainless steel for SOFC interconnect. International Journal of Hydrogen Energy. 40(30), 9523. Jo, K. H., Kim, J. H., Kim, K. M., Lee, I.-S., & Kim, S.-J. (2015). Development of a new cost effective Fe–Cr ferritic stainless steel for SOFC interconnect. International Journal of Hydrogen Energy. 40(30), 9523.
Zurück zum Zitat Kornely, M., Neumann, A., Menzler, N. H., Leonide, A., Weber, A., & Ivers-Tiffée, E. (2011). Degradation of anode supported cell (ASC) performance by Cr-poisoning. Journal of Power Sources, 196, 7203–7208.CrossRef Kornely, M., Neumann, A., Menzler, N. H., Leonide, A., Weber, A., & Ivers-Tiffée, E. (2011). Degradation of anode supported cell (ASC) performance by Cr-poisoning. Journal of Power Sources, 196, 7203–7208.CrossRef
Zurück zum Zitat Kruk, A., Stygar, M., & Brylewski, T. (2013). Mn–Co spinel protective–conductive coating on AL453 ferritic stainless steel for IT-SOFC interconnect applications. Journal of Solid State Electrochemistry, 17, 993–1003.CrossRef Kruk, A., Stygar, M., & Brylewski, T. (2013). Mn–Co spinel protective–conductive coating on AL453 ferritic stainless steel for IT-SOFC interconnect applications. Journal of Solid State Electrochemistry, 17, 993–1003.CrossRef
Zurück zum Zitat Kurokawa, H., Kawamura, K., & Maruyama, T. (2004). Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient. Solid State Ionics, 168, 13–21.CrossRef Kurokawa, H., Kawamura, K., & Maruyama, T. (2004). Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient. Solid State Ionics, 168, 13–21.CrossRef
Zurück zum Zitat Lee, S., Chu, C.-L., Tsai, M.-J., & Lee, J. (2010). High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing. Applied Surface Science, 256, 1817–1824.CrossRef Lee, S., Chu, C.-L., Tsai, M.-J., & Lee, J. (2010). High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing. Applied Surface Science, 256, 1817–1824.CrossRef
Zurück zum Zitat Li, S., Wang, Y., & Wang, X. (2015). Effects of Ni content on the microstructures, mechanical properties and thermal aging embrittlement behaviors of Fe–20Cr–xNi alloys. Materials Science and Engineering A, 639, 640–646.CrossRef Li, S., Wang, Y., & Wang, X. (2015). Effects of Ni content on the microstructures, mechanical properties and thermal aging embrittlement behaviors of Fe–20Cr–xNi alloys. Materials Science and Engineering A, 639, 640–646.CrossRef
Zurück zum Zitat Liu, W. N., Sun, X., Stephens, E., & Khaleel, M. A. (2009). Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications. Journal of Power Sources, 189, 1044–1050.CrossRef Liu, W. N., Sun, X., Stephens, E., & Khaleel, M. A. (2009). Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications. Journal of Power Sources, 189, 1044–1050.CrossRef
Zurück zum Zitat Liu, X., Su, W., Lu, Z., Liu, J., Pei, L., Liu, W., et al. (2000). Mixed valence state and electrical conductivity of La1−xSrxCrO3. Journal of Alloys and Compounds, 305, 21–23.CrossRef Liu, X., Su, W., Lu, Z., Liu, J., Pei, L., Liu, W., et al. (2000). Mixed valence state and electrical conductivity of La1−xSrxCrO3. Journal of Alloys and Compounds, 305, 21–23.CrossRef
Zurück zum Zitat Marina, O. A., Canfield, N. L., & Stevenson, J. W. (2002). Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics, 149, 21–28.CrossRef Marina, O. A., Canfield, N. L., & Stevenson, J. W. (2002). Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics, 149, 21–28.CrossRef
Zurück zum Zitat Miguel-Pérez, V., Martínez-Amesti, A., Nó, M. L., Larrañaga, A., & Arriortua, M. I. (2012). Oxide scale formation on different metallic interconnects for solid oxide fuel cells. Corrosion Science, 60, 38–49.CrossRef Miguel-Pérez, V., Martínez-Amesti, A., Nó, M. L., Larrañaga, A., & Arriortua, M. I. (2012). Oxide scale formation on different metallic interconnects for solid oxide fuel cells. Corrosion Science, 60, 38–49.CrossRef
Zurück zum Zitat Miguel-Pérez, V., Martínez-Amesti, A., Nó, M. L., Larrañaga, A., & Arriortua, M. I. (2013). The effect of doping (Mn, B)3O4 materials as protective layers in different metallic interconnects for solid oxide fuel cells. Journal of Power Sources, 243, 419–430.CrossRef Miguel-Pérez, V., Martínez-Amesti, A., Nó, M. L., Larrañaga, A., & Arriortua, M. I. (2013). The effect of doping (Mn, B)3O4 materials as protective layers in different metallic interconnects for solid oxide fuel cells. Journal of Power Sources, 243, 419–430.CrossRef
Zurück zum Zitat Montero, X., Tietz, F., Sebold, D., Buchkremer, H. P., Ringuede, A., Cassir, M., et al. (2008). MnCo1.9Fe0.1O4 spinel protection layer on commercial ferritic steels for interconnect applications in solid oxide fuel cells. Journal of Power Sources, 184, 172–179. Montero, X., Tietz, F., Sebold, D., Buchkremer, H. P., Ringuede, A., Cassir, M., et al. (2008). MnCo1.9Fe0.1O4 spinel protection layer on commercial ferritic steels for interconnect applications in solid oxide fuel cells. Journal of Power Sources, 184, 172–179.
Zurück zum Zitat Morán-Ruiz, A., Vidal, K., Laguna-Bercero, M. Á., Larrañaga, A., & Arriortua, M. I. (2014). Effects of using (La0.8Sr0.2)0.95Fe0.6Mn0.3Co0.1O3 (LSFMC), LaNi0.6Fe0.4O3−δ (LNF) and LaNi0.6Co0.4O3−δ (LNC) as contact materials on solid oxide fuel cells. Journal of Power Sources, 248, 1067–1076.CrossRef Morán-Ruiz, A., Vidal, K., Laguna-Bercero, M. Á., Larrañaga, A., & Arriortua, M. I. (2014). Effects of using (La0.8Sr0.2)0.95Fe0.6Mn0.3Co0.1O3 (LSFMC), LaNi0.6Fe0.4O3−δ (LNF) and LaNi0.6Co0.4O3−δ (LNC) as contact materials on solid oxide fuel cells. Journal of Power Sources, 248, 1067–1076.CrossRef
Zurück zum Zitat Morán-Ruiz, A., Vidal, K., Larrañaga, A., Porras-Vázquez, J. M., Slater, P. R., & Arriortua, M. I. (2015a). Evaluation of using protective/conductive coating on Fe-22Cr mesh as a composite cathode contact material for intermediate solid oxide fuel cells. International Journal of Hydrogen Energy, 40, 4804–4818.CrossRef Morán-Ruiz, A., Vidal, K., Larrañaga, A., Porras-Vázquez, J. M., Slater, P. R., & Arriortua, M. I. (2015a). Evaluation of using protective/conductive coating on Fe-22Cr mesh as a composite cathode contact material for intermediate solid oxide fuel cells. International Journal of Hydrogen Energy, 40, 4804–4818.CrossRef
Zurück zum Zitat Morán-Ruiz, A., Vidal, K., Larrañaga, A., Porras-Vázquez, J. M., Slater, P. R., & Arriortua, M. I. (2015b). Laser machining of LaNi0.6M0.4O3−δ (M: Co, Fe) dip-coated on a Fe–22Cr mesh material to obtain a new contact coating for SOFC: Interaction between Crofer22APU interconnect and La0.6Sr0.4FeO3 cathode. International Journal of Hydrogen Energy, 40, 8407–8418.CrossRef Morán-Ruiz, A., Vidal, K., Larrañaga, A., Porras-Vázquez, J. M., Slater, P. R., & Arriortua, M. I. (2015b). Laser machining of LaNi0.6M0.4O3−δ (M: Co, Fe) dip-coated on a Fe–22Cr mesh material to obtain a new contact coating for SOFC: Interaction between Crofer22APU interconnect and La0.6Sr0.4FeO3 cathode. International Journal of Hydrogen Energy, 40, 8407–8418.CrossRef
Zurück zum Zitat Nair, S. R., Purohit, R. D., Tyagi, A. K., Sinha, P. K., & Sharma, B. P. (2008). Low-temperature sintering of La(Ca)CrO3 powder prepared through the combustion process. Journal of the American Ceramic Society, 91, 88–91.CrossRef Nair, S. R., Purohit, R. D., Tyagi, A. K., Sinha, P. K., & Sharma, B. P. (2008). Low-temperature sintering of La(Ca)CrO3 powder prepared through the combustion process. Journal of the American Ceramic Society, 91, 88–91.CrossRef
Zurück zum Zitat Niewolak, L., Garcia-Fresnillo, L., Meier, G. H., & Quadakkers, W. J. (2015). Sigma-phase formation in high chromium ferritic steels at 650 °C. Journal of Alloys and Compounds, 638, 405–418.CrossRef Niewolak, L., Garcia-Fresnillo, L., Meier, G. H., & Quadakkers, W. J. (2015). Sigma-phase formation in high chromium ferritic steels at 650 °C. Journal of Alloys and Compounds, 638, 405–418.CrossRef
Zurück zum Zitat Ou, D. R., & Cheng, M. (2014). Effect of pre-oxidation on the oxidation resistance of spinel-coated Fe–Cr ferritic alloy for solid oxide fuel cell applications. Journal of Power Sources, 247, 84–89.CrossRef Ou, D. R., & Cheng, M. (2014). Effect of pre-oxidation on the oxidation resistance of spinel-coated Fe–Cr ferritic alloy for solid oxide fuel cell applications. Journal of Power Sources, 247, 84–89.CrossRef
Zurück zum Zitat Palcut, M., Mikkelsen, L., Neufeld, K., Chen, M., Knibbe, R., & Hendriksen, P. V. (2012). Efficient dual layer interconnect coating for high temperature electrochemical devices. International Journal of Hydrogen Energy, 37, 14501–14510.CrossRef Palcut, M., Mikkelsen, L., Neufeld, K., Chen, M., Knibbe, R., & Hendriksen, P. V. (2012). Efficient dual layer interconnect coating for high temperature electrochemical devices. International Journal of Hydrogen Energy, 37, 14501–14510.CrossRef
Zurück zum Zitat Park, B.-K., Lee, J.-W., Lee, S.-B., Lim, T.-H., Park, S.-J., Park, C.-O., et al. (2013). Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells. International Journal of Hydrogen Energy, 38, 12043–12050. Park, B.-K., Lee, J.-W., Lee, S.-B., Lim, T.-H., Park, S.-J., Park, C.-O., et al. (2013). Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells. International Journal of Hydrogen Energy, 38, 12043–12050.
Zurück zum Zitat Park, B.-K., Lee, J.-W., Lee, S.-B., Lim, T.-H., Park, S.-J., Song, R.-H., et al. (2012). La-doped SrTiO3 interconnect materials for anode-supported flat-tubular solid oxide fuel cells. International Journal of Hydrogen Energy, 37, 4319–4327. Park, B.-K., Lee, J.-W., Lee, S.-B., Lim, T.-H., Park, S.-J., Song, R.-H., et al. (2012). La-doped SrTiO3 interconnect materials for anode-supported flat-tubular solid oxide fuel cells. International Journal of Hydrogen Energy, 37, 4319–4327.
Zurück zum Zitat Park, B. K., Lee, J. W., Lee, S. B., Lim, T. H., Park, S. J., Park, C. O., et al. (2013). Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells. International Journal of Hydrogen Energy, 38, 12043–12050. Park, B. K., Lee, J. W., Lee, S. B., Lim, T. H., Park, S. J., Park, C. O., et al. (2013). Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells. International Journal of Hydrogen Energy, 38, 12043–12050.
Zurück zum Zitat Paulik, S. W., Baskaran, S., & Armstrong, T. R. (1999). Mechanical properties of calcium-substituted yttrium chromite. Journal of Materials Science Letters, 18, 819–822.CrossRef Paulik, S. W., Baskaran, S., & Armstrong, T. R. (1999). Mechanical properties of calcium-substituted yttrium chromite. Journal of Materials Science Letters, 18, 819–822.CrossRef
Zurück zum Zitat Persson, Å. H., Mikkelsen, L., Hendriksen, P. V., & Somers, M. A. J. (2012). Interaction mechanisms between slurry coatings and solid oxide fuel cell interconnect alloys during high temperature oxidation. Journal of Alloys and Compounds, 521, 16–29.CrossRef Persson, Å. H., Mikkelsen, L., Hendriksen, P. V., & Somers, M. A. J. (2012). Interaction mechanisms between slurry coatings and solid oxide fuel cell interconnect alloys during high temperature oxidation. Journal of Alloys and Compounds, 521, 16–29.CrossRef
Zurück zum Zitat Pi, S. H., Lee, S. B., Song, R. H., Lee, J. W., Lim, T. H., Park, S. J., et al. (2013). Novel Ag–glass composite interconnect materials for anode-supported flat-tubular solid oxide fuel cells operated at an intermediate temperature. Fuel Cells, 13, 392–397. Pi, S. H., Lee, S. B., Song, R. H., Lee, J. W., Lim, T. H., Park, S. J., et al. (2013). Novel Ag–glass composite interconnect materials for anode-supported flat-tubular solid oxide fuel cells operated at an intermediate temperature. Fuel Cells, 13, 392–397.
Zurück zum Zitat Piccardo, P., Anelli, S., Bongiorno, V., Spotorno, R., Repetto, L., & Girardon, P. (2015). K44M ferritic stainless steel as possible interconnect material for SOFC stack operating at 600 °C: Characterization of the oxidation behaviour at early working stages. International Journal of Hydrogen Energy, 40, 3726–3738.CrossRef Piccardo, P., Anelli, S., Bongiorno, V., Spotorno, R., Repetto, L., & Girardon, P. (2015). K44M ferritic stainless steel as possible interconnect material for SOFC stack operating at 600 °C: Characterization of the oxidation behaviour at early working stages. International Journal of Hydrogen Energy, 40, 3726–3738.CrossRef
Zurück zum Zitat Przybylski, K., Brylewski, T., Durda, E., Gawel, R., & Kruk, A. (2014). Oxidation properties of the Crofer 22 APU steel coated with La0.6Sr0.4Co0.2Fe0.8O3 for IT-SOFC interconnect applications. Journal of Thermal Analysis and Calorimetry, 116, 825–834.CrossRef Przybylski, K., Brylewski, T., Durda, E., Gawel, R., & Kruk, A. (2014). Oxidation properties of the Crofer 22 APU steel coated with La0.6Sr0.4Co0.2Fe0.8O3 for IT-SOFC interconnect applications. Journal of Thermal Analysis and Calorimetry, 116, 825–834.CrossRef
Zurück zum Zitat Rashtchi, H., Sani, M. A. F., & Dayaghi, A. M. (2013). Effect of Sr and Ca dopants on oxidation and electrical properties of lanthanum chromite-coated AISI 430 stainless steel for solid oxide fuel cell interconnect application. Ceramics International, 39, 8123–8131.CrossRef Rashtchi, H., Sani, M. A. F., & Dayaghi, A. M. (2013). Effect of Sr and Ca dopants on oxidation and electrical properties of lanthanum chromite-coated AISI 430 stainless steel for solid oxide fuel cell interconnect application. Ceramics International, 39, 8123–8131.CrossRef
Zurück zum Zitat Rufner, J., Gannon, P., White, P., Deibert, M., Teintze, S., Smith, R., et al. (2008). Oxidation behavior of stainless steel 430 and 441 at 800 °C in single (air/air) and dual atmosphere (air/hydrogen) exposures. International Journal of Hydrogen Energy, 33, 1392–1398. Rufner, J., Gannon, P., White, P., Deibert, M., Teintze, S., Smith, R., et al. (2008). Oxidation behavior of stainless steel 430 and 441 at 800 °C in single (air/air) and dual atmosphere (air/hydrogen) exposures. International Journal of Hydrogen Energy, 33, 1392–1398.
Zurück zum Zitat Sachitanand, R., Sattari, M., Svensson, J.-E., & Froitzheim, J. (2013). Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects. International Journal of Hydrogen Energy, 38, 15328–15334.CrossRef Sachitanand, R., Sattari, M., Svensson, J.-E., & Froitzheim, J. (2013). Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects. International Journal of Hydrogen Energy, 38, 15328–15334.CrossRef
Zurück zum Zitat Safikhani, A., & Aminfard, M. (2014). Effect of W and Ti addition on oxidation behavior and area-specific resistance of Fe–22Cr–0.5Mn ferritic stainless steel for SOFCs interconnect. International Journal of Hydrogen Energy, 39, 2286–2296.CrossRef Safikhani, A., & Aminfard, M. (2014). Effect of W and Ti addition on oxidation behavior and area-specific resistance of Fe–22Cr–0.5Mn ferritic stainless steel for SOFCs interconnect. International Journal of Hydrogen Energy, 39, 2286–2296.CrossRef
Zurück zum Zitat Sakai, N., Yokokawa, H., Horita, T., & Yamaji, K. (2004). Lanthanum chromite-based interconnects as key materials for SOFC stack development. International Journal of Applied Ceramic Technology, 1, 23–30.CrossRef Sakai, N., Yokokawa, H., Horita, T., & Yamaji, K. (2004). Lanthanum chromite-based interconnects as key materials for SOFC stack development. International Journal of Applied Ceramic Technology, 1, 23–30.CrossRef
Zurück zum Zitat Sarda, V., Auvinen, S., Shemet, V., Quadakkers, W. J., Pihlatie, M., Kiviaho, J., et al. (2013). Long term resistivity behavior of SOFC interconnect/Ni-Mesh/anode interfaces. ECS Transactions, 57, 2279–2288. Sarda, V., Auvinen, S., Shemet, V., Quadakkers, W. J., Pihlatie, M., Kiviaho, J., et al. (2013). Long term resistivity behavior of SOFC interconnect/Ni-Mesh/anode interfaces. ECS Transactions, 57, 2279–2288.
Zurück zum Zitat Seabaugh, M. M., Ibanez, S., & Swartz, S. L. (2012). Protective coatings for metal alloys and methods incorporating the same. Google Patents. Seabaugh, M. M., Ibanez, S., & Swartz, S. L. (2012). Protective coatings for metal alloys and methods incorporating the same. Google Patents.
Zurück zum Zitat Seo, H. S., Yun, D. W., & Kim, K. Y. (2012). Effect of Ti addition on the electric and ionic property of the oxide scale formed on the ferritic stainless steel for SOFC interconnect. International Journal of Hydrogen Energy, 37, 16151–16160.CrossRef Seo, H. S., Yun, D. W., & Kim, K. Y. (2012). Effect of Ti addition on the electric and ionic property of the oxide scale formed on the ferritic stainless steel for SOFC interconnect. International Journal of Hydrogen Energy, 37, 16151–16160.CrossRef
Zurück zum Zitat Setz, L. F. G., Santacruz, I., León-Reina, L., De la Torre, A. G., Aranda, M. A. G., Mello-Castanho, S. R. H., et al. (2015). Strontium and cobalt doped-lanthanum chromite: Characterisation of synthesised powders and sintered materials. Ceramics International, 41, 1177–1187. Setz, L. F. G., Santacruz, I., León-Reina, L., De la Torre, A. G., Aranda, M. A. G., Mello-Castanho, S. R. H., et al. (2015). Strontium and cobalt doped-lanthanum chromite: Characterisation of synthesised powders and sintered materials. Ceramics International, 41, 1177–1187.
Zurück zum Zitat Shaigan, N., Qu, W., Ivey, D. G., & Chen, W. (2010). A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. Journal of Power Sources, 195, 1529–1542.CrossRef Shaigan, N., Qu, W., Ivey, D. G., & Chen, W. (2010). A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. Journal of Power Sources, 195, 1529–1542.CrossRef
Zurück zum Zitat Simner, S. P., Anderson, M. D., Xia, G. G., Yang, Z., & Stevenson, J. W. (2005). Long-term SOFC stability with coated ferritic stainless steel interconnect. Ceramic Engineering and Science Proceedings, 83–90. Simner, S. P., Anderson, M. D., Xia, G. G., Yang, Z., & Stevenson, J. W. (2005). Long-term SOFC stability with coated ferritic stainless steel interconnect. Ceramic Engineering and Science Proceedings, 83–90.
Zurück zum Zitat Singhal, S. C. (2000). Advances in solid oxide fuel cell technology. Solid State Ionics, 135, 305–313.CrossRef Singhal, S. C. (2000). Advances in solid oxide fuel cell technology. Solid State Ionics, 135, 305–313.CrossRef
Zurück zum Zitat Singhal, S. C., & Kendall, K. (2003). High-temperature solid oxide fuel cells: Fundamentals, design and applications: Fundamentals, design and applications. Oxford: Elsevier Science. Singhal, S. C., & Kendall, K. (2003). High-temperature solid oxide fuel cells: Fundamentals, design and applications: Fundamentals, design and applications. Oxford: Elsevier Science.
Zurück zum Zitat Smeacetto, F., De Miranda, A., Cabanas Polo, S., Molin, S., Boccaccini, D., et al. (2015). Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application. Journal of Power Sources, 280, 379–386. Smeacetto, F., De Miranda, A., Cabanas Polo, S., Molin, S., Boccaccini, D., et al. (2015). Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application. Journal of Power Sources, 280, 379–386.
Zurück zum Zitat Smeacetto, F., Salvo, M., Leone, P., Santarelli, M., & Ferraris, M. (2011). Performance and testing of joined Crofer22APU-glass-ceramic sealant-anode supported cell in SOFC relevant conditions. Materials Letters, 65, 1048–1052.CrossRef Smeacetto, F., Salvo, M., Leone, P., Santarelli, M., & Ferraris, M. (2011). Performance and testing of joined Crofer22APU-glass-ceramic sealant-anode supported cell in SOFC relevant conditions. Materials Letters, 65, 1048–1052.CrossRef
Zurück zum Zitat Stambouli, A. B., & Traversa, E. (2002). Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 6, 433–455.CrossRef Stambouli, A. B., & Traversa, E. (2002). Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 6, 433–455.CrossRef
Zurück zum Zitat Stevenson, J. W., Yang, Z. G., Xia, G. G., Nie, Z., & Templeton, J. D. (2013). Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications. Journal of Power Sources, 231, 256–263.CrossRef Stevenson, J. W., Yang, Z. G., Xia, G. G., Nie, Z., & Templeton, J. D. (2013). Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications. Journal of Power Sources, 231, 256–263.CrossRef
Zurück zum Zitat Tsai, M.-J., Chu, C.-L., & Lee, S. (2010). La0.6Sr0.4Co0.2Fe0.8O3 protective coatings for solid oxide fuel cell interconnect deposited by screen printing. Journal of Alloys and Compounds, 489, 576–581.CrossRef Tsai, M.-J., Chu, C.-L., & Lee, S. (2010). La0.6Sr0.4Co0.2Fe0.8O3 protective coatings for solid oxide fuel cell interconnect deposited by screen printing. Journal of Alloys and Compounds, 489, 576–581.CrossRef
Zurück zum Zitat Tunthawiroon, P., Li, Y., Tang, N., Koizumi, Y., & Chiba, A. (2015). Effects of alloyed Si on the oxidation behaviour of Co–29Cr–6Mo alloy for solid-oxide fuel cell interconnects. Corrosion Science, 95, 88–99.CrossRef Tunthawiroon, P., Li, Y., Tang, N., Koizumi, Y., & Chiba, A. (2015). Effects of alloyed Si on the oxidation behaviour of Co–29Cr–6Mo alloy for solid-oxide fuel cell interconnects. Corrosion Science, 95, 88–99.CrossRef
Zurück zum Zitat Vidal, K., Morán-Ruiz, A., Larrañaga, A., Porras-Vázquez, J. M., Slater, P. R., & Arriortua, M. I. (2015). Characterization of LaNi0.6Fe0.4O3 perovskite synthesized by glycine-nitrate combustion method. Solid State Ionics, 269, 24–29.CrossRef Vidal, K., Morán-Ruiz, A., Larrañaga, A., Porras-Vázquez, J. M., Slater, P. R., & Arriortua, M. I. (2015). Characterization of LaNi0.6Fe0.4O3 perovskite synthesized by glycine-nitrate combustion method. Solid State Ionics, 269, 24–29.CrossRef
Zurück zum Zitat Wang, S., Lin, B., Chen, Y., Liu, X., & Meng, G. (2009a). Evaluation of simple, easily sintered La0.7Ca0.3Cr0.97O3-δ perovskite oxide as novel interconnect material for solid oxide fuel cells. Journal of Alloys and Compounds, 479, 764–768.CrossRef Wang, S., Lin, B., Chen, Y., Liu, X., & Meng, G. (2009a). Evaluation of simple, easily sintered La0.7Ca0.3Cr0.97O3-δ perovskite oxide as novel interconnect material for solid oxide fuel cells. Journal of Alloys and Compounds, 479, 764–768.CrossRef
Zurück zum Zitat Wang, S., Lin, B., Dong, Y., Fang, D., Ding, H., Liu, X., et al. (2009b). Stable, easily sintered Ca–Zn-doped YCrO3 as novel interconnect materials for co-fired yttrium-stabilized zirconia-based solid oxide fuel cells. Journal of Power Sources, 188, 483–488. Wang, S., Lin, B., Dong, Y., Fang, D., Ding, H., Liu, X., et al. (2009b). Stable, easily sintered Ca–Zn-doped YCrO3 as novel interconnect materials for co-fired yttrium-stabilized zirconia-based solid oxide fuel cells. Journal of Power Sources, 188, 483–488.
Zurück zum Zitat Wang, Z., Mori, M., & Itoh, T. (2010). Thermal expansion properties of Sr1 − xLaxTiO3 ( 0 ≤ x ≤ 0.3) perovskites in oxidizing and reducing atmospheres. Journal of the Electrochemical Society, 157, B1783–B1789.CrossRef Wang, Z., Mori, M., & Itoh, T. (2010). Thermal expansion properties of Sr1 − xLaxTiO3 ( 0 ≤ x ≤ 0.3) perovskites in oxidizing and reducing atmospheres. Journal of the Electrochemical Society, 157, B1783–B1789.CrossRef
Zurück zum Zitat Wei, T., Liu, X., Yuan, C., Gao, Q., Xin, X., & Wang, S. (2014). A modified liquid-phase-assisted sintering mechanism for La0.8Sr0.2Cr1−xFexO3−δ—A high density, redox-stable perovskite interconnect for solid oxide fuel cells. Journal of Power Sources, 250, 152–159.CrossRef Wei, T., Liu, X., Yuan, C., Gao, Q., Xin, X., & Wang, S. (2014). A modified liquid-phase-assisted sintering mechanism for La0.8Sr0.2Cr1−xFexO3−δ—A high density, redox-stable perovskite interconnect for solid oxide fuel cells. Journal of Power Sources, 250, 152–159.CrossRef
Zurück zum Zitat Wei, W., Chen, W., & Ivey, D. G. (2009). Oxidation resistance and electrical properties of anodically electrodeposited Mn–Co oxide coatings for solid oxide fuel cell interconnect applications. Journal of Power Sources, 186, 428–434.CrossRef Wei, W., Chen, W., & Ivey, D. G. (2009). Oxidation resistance and electrical properties of anodically electrodeposited Mn–Co oxide coatings for solid oxide fuel cell interconnect applications. Journal of Power Sources, 186, 428–434.CrossRef
Zurück zum Zitat Wongpromrat, W., Parry, V., Charlot, F., Crisci, A., Latu-Romain, L., Chandra-ambhorn, W., et al. (2015). Possible connection between nodule development and presence of niobium and/or titanium during short time thermal oxidation of AISI 441 stainless steel in wet atmosphere. Materials at High Temperatures, 32, 22–27. Wongpromrat, W., Parry, V., Charlot, F., Crisci, A., Latu-Romain, L., Chandra-ambhorn, W., et al. (2015). Possible connection between nodule development and presence of niobium and/or titanium during short time thermal oxidation of AISI 441 stainless steel in wet atmosphere. Materials at High Temperatures, 32, 22–27.
Zurück zum Zitat Wu, J., Gemmen, R. S., Manivannan, A., & Liu, X. (2011). Investigation of Mn/Co coated T441 alloy as SOFC interconnect by on-cell tests. International Journal of Hydrogen Energy, 36, 4525–4529.CrossRef Wu, J., Gemmen, R. S., Manivannan, A., & Liu, X. (2011). Investigation of Mn/Co coated T441 alloy as SOFC interconnect by on-cell tests. International Journal of Hydrogen Energy, 36, 4525–4529.CrossRef
Zurück zum Zitat Wu, W., Guan, W., Wang, G., Liu, W., Zhang, Q., Chen, T., et al. (2014). Evaluation of Ni80Cr20/(La0.75Sr0.25)0.95MnO3 dual layer coating on SUS 430 stainless steel used as metallic interconnect for solid oxide fuel cells. International Journal of Hydrogen Energy, 39, 996–1004. Wu, W., Guan, W., Wang, G., Liu, W., Zhang, Q., Chen, T., et al. (2014). Evaluation of Ni80Cr20/(La0.75Sr0.25)0.95MnO3 dual layer coating on SUS 430 stainless steel used as metallic interconnect for solid oxide fuel cells. International Journal of Hydrogen Energy, 39, 996–1004.
Zurück zum Zitat Wu, W., Guan, W., & Wang, W. (2015). Contribution of properties of composite cathode and cathode/electrolyte interface to cell performance in a planar solid oxide fuel cell stack. Journal of Power Sources, 279, 540–548.CrossRef Wu, W., Guan, W., & Wang, W. (2015). Contribution of properties of composite cathode and cathode/electrolyte interface to cell performance in a planar solid oxide fuel cell stack. Journal of Power Sources, 279, 540–548.CrossRef
Zurück zum Zitat Xiao, J., Zhang, W., Xiong, C., Chi, B., Pu, J., & Jian, L. (2015). Oxidation of MnCu0.5Co1.5O4 spinel coated SUS430 alloy interconnect in anode and cathode atmospheres for intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 40, 1868–1876.CrossRef Xiao, J., Zhang, W., Xiong, C., Chi, B., Pu, J., & Jian, L. (2015). Oxidation of MnCu0.5Co1.5O4 spinel coated SUS430 alloy interconnect in anode and cathode atmospheres for intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 40, 1868–1876.CrossRef
Zurück zum Zitat Yang, P., Liu, C.-K., Wu, J.-Y., Shong, W.-J., Lee, R.-Y., & Sung, C.-C. (2012). Effects of pre-oxidation on the microstructural and electrical properties of La0.67Sr0.33MnO3 − δ coated ferritic stainless steels. Journal of Power Sources, 213, 63–68.CrossRef Yang, P., Liu, C.-K., Wu, J.-Y., Shong, W.-J., Lee, R.-Y., & Sung, C.-C. (2012). Effects of pre-oxidation on the microstructural and electrical properties of La0.67Sr0.33MnO3 − δ coated ferritic stainless steels. Journal of Power Sources, 213, 63–68.CrossRef
Zurück zum Zitat Yang, X., Tu, H., & Yu, Q. (2015). Fabrication of Co3O4 and La0.6Sr0.4CoO3−δ–Ce0.8Gd0.2O2−δ dual layer coatings on SUS430 steel by in-situ phase formation for solid oxide fuel cell interconnects. International Journal of Hydrogen Energy, 40, 607–614.CrossRef Yang, X., Tu, H., & Yu, Q. (2015). Fabrication of Co3O4 and La0.6Sr0.4CoO3−δ–Ce0.8Gd0.2O2−δ dual layer coatings on SUS430 steel by in-situ phase formation for solid oxide fuel cell interconnects. International Journal of Hydrogen Energy, 40, 607–614.CrossRef
Zurück zum Zitat Yang, Z., Xia, G., Simner, S. P., & Stevenson, J. W. (2005). Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects. Journal of the Electrochemical Society, 152, A1896–A1901.CrossRef Yang, Z., Xia, G., Simner, S. P., & Stevenson, J. W. (2005). Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects. Journal of the Electrochemical Society, 152, A1896–A1901.CrossRef
Zurück zum Zitat Yang, Z., Xia, G. G., Li, X. H., & Stevenson, J. W. (2007). (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. International Journal of Hydrogen Energy, 32, 3648–3654.CrossRef Yang, Z., Xia, G. G., Li, X. H., & Stevenson, J. W. (2007). (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. International Journal of Hydrogen Energy, 32, 3648–3654.CrossRef
Zurück zum Zitat Yokokawa, H., Sakai, N., Kawada, T., & Dokiya, M. (1991). Chemical thermodynamic considerations in sintering of LaCrO3-based perovskites. Journal of the Electrochemical Society, 138, 1018–1027.CrossRef Yokokawa, H., Sakai, N., Kawada, T., & Dokiya, M. (1991). Chemical thermodynamic considerations in sintering of LaCrO3-based perovskites. Journal of the Electrochemical Society, 138, 1018–1027.CrossRef
Zurück zum Zitat Yoon, K. J., Cramer, C. N., Stevenson, J. W., & Marina, O. A. (2010a). Advanced ceramic interconnect material for solid oxide fuel cells: Electrical and thermal properties of calcium- and nickel-doped yttrium chromites. Journal of Power Sources, 195, 7587–7593.CrossRef Yoon, K. J., Cramer, C. N., Stevenson, J. W., & Marina, O. A. (2010a). Advanced ceramic interconnect material for solid oxide fuel cells: Electrical and thermal properties of calcium- and nickel-doped yttrium chromites. Journal of Power Sources, 195, 7587–7593.CrossRef
Zurück zum Zitat Yoon, K. J., Cramer, C. N., Thomsen, E. C., Coyle, C. A., Coffey, G. W., & Marina, O. A. (2010b). Calcium- and cobalt-doped yttrium chromites as an interconnect material for solid oxide fuel cells. Journal of the Electrochemical Society, 157, B856–B861.CrossRef Yoon, K. J., Cramer, C. N., Thomsen, E. C., Coyle, C. A., Coffey, G. W., & Marina, O. A. (2010b). Calcium- and cobalt-doped yttrium chromites as an interconnect material for solid oxide fuel cells. Journal of the Electrochemical Society, 157, B856–B861.CrossRef
Zurück zum Zitat Yoon, K. J., Stevenson, J. W., & Marina, O. A. (2011). High performance ceramic interconnect material for solid oxide fuel cells (SOFCs): Ca- and transition metal-doped yttrium chromite. Journal of Power Sources, 196, 8531–8538.CrossRef Yoon, K. J., Stevenson, J. W., & Marina, O. A. (2011). High performance ceramic interconnect material for solid oxide fuel cells (SOFCs): Ca- and transition metal-doped yttrium chromite. Journal of Power Sources, 196, 8531–8538.CrossRef
Zurück zum Zitat Yun, D. W., Seo, H. S., Jun, J. H., & Kim, K. Y. (2013). Evaluation of Nb- or Mo-alloyed ferritic stainless steel as SOFC interconnect by using button cells. International Journal of Hydrogen Energy, 38, 1560–1570.CrossRef Yun, D. W., Seo, H. S., Jun, J. H., & Kim, K. Y. (2013). Evaluation of Nb- or Mo-alloyed ferritic stainless steel as SOFC interconnect by using button cells. International Journal of Hydrogen Energy, 38, 1560–1570.CrossRef
Zurück zum Zitat Yun, D. W., Seo, H. S., Jun, J. H., Lee, J. M., & Kim, K. Y. (2012). Molybdenum effect on oxidation resistance and electric conduction of ferritic stainless steel for SOFC interconnect. International Journal of Hydrogen Energy, 37, 10328–10336.CrossRef Yun, D. W., Seo, H. S., Jun, J. H., Lee, J. M., & Kim, K. Y. (2012). Molybdenum effect on oxidation resistance and electric conduction of ferritic stainless steel for SOFC interconnect. International Journal of Hydrogen Energy, 37, 10328–10336.CrossRef
Zurück zum Zitat Zhang, H., Wu, J., Liu, X., & Baker, A. (2013). Studies on elements diffusion of Mn/Co coated ferritic stainless steel for solid oxide fuel cell interconnects application. International Journal of Hydrogen Energy, 38, 5075–5083.CrossRef Zhang, H., Wu, J., Liu, X., & Baker, A. (2013). Studies on elements diffusion of Mn/Co coated ferritic stainless steel for solid oxide fuel cell interconnects application. International Journal of Hydrogen Energy, 38, 5075–5083.CrossRef
Zurück zum Zitat Zhang, W., Pu, J., Chi, B., & Jian, L. (2011). NiMn2O4 spinel as an alternative coating material for metallic interconnects of intermediate temperature solid oxide fuel cells. Journal of Power Sources, 196, 5591–5594.CrossRef Zhang, W., Pu, J., Chi, B., & Jian, L. (2011). NiMn2O4 spinel as an alternative coating material for metallic interconnects of intermediate temperature solid oxide fuel cells. Journal of Power Sources, 196, 5591–5594.CrossRef
Zurück zum Zitat Zhang, W., Yan, D., Yang, J., Chen, J., Chi, B., Pu, J., et al. (2014a). A novel low Cr-containing Fe–Cr–Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells. Journal of Power Sources, 271, 25–31. Zhang, W., Yan, D., Yang, J., Chen, J., Chi, B., Pu, J., et al. (2014a). A novel low Cr-containing Fe–Cr–Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells. Journal of Power Sources, 271, 25–31.
Zurück zum Zitat Zhang, Y., Javed, A., Zhou, M., Liang, S., & Xiao, P. (2014b). Fabrication of Mn–Co spinel coatings on Crofer 22 APU stainless steel by electrophoretic deposition for interconnect applications in solid oxide fuel cells. International Journal of Applied Ceramic Technology, 11, 332–341.CrossRef Zhang, Y., Javed, A., Zhou, M., Liang, S., & Xiao, P. (2014b). Fabrication of Mn–Co spinel coatings on Crofer 22 APU stainless steel by electrophoretic deposition for interconnect applications in solid oxide fuel cells. International Journal of Applied Ceramic Technology, 11, 332–341.CrossRef
Zurück zum Zitat Zhang, Z., Yue, D., Yang, G., Chen, J., Zheng, Y., Miao, H., et al. (2015). Three-dimensional CFD modeling of transport phenomena in multi-channel anode-supported planar SOFCs. International Journal of Heat and Mass Transfer, 84, 942–954. Zhang, Z., Yue, D., Yang, G., Chen, J., Zheng, Y., Miao, H., et al. (2015). Three-dimensional CFD modeling of transport phenomena in multi-channel anode-supported planar SOFCs. International Journal of Heat and Mass Transfer, 84, 942–954.
Zurück zum Zitat Zhong, Z. (2006). Stoichiometric lanthanum chromite based ceramic interconnects with low sintering temperature. Solid State Ionics, 177, 757–764.CrossRef Zhong, Z. (2006). Stoichiometric lanthanum chromite based ceramic interconnects with low sintering temperature. Solid State Ionics, 177, 757–764.CrossRef
Zurück zum Zitat Zhu, W. Z., & Deevi, S. C. (2003a). Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering A, 348, 227–243.CrossRef Zhu, W. Z., & Deevi, S. C. (2003a). Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering A, 348, 227–243.CrossRef
Zurück zum Zitat Zhu, W. Z., & Deevi, S. C. (2003b). Opportunity of metallic interconnects for solid oxide fuel cells: A status on contact resistance. Materials Research Bulletin, 38, 957–972.CrossRef Zhu, W. Z., & Deevi, S. C. (2003b). Opportunity of metallic interconnects for solid oxide fuel cells: A status on contact resistance. Materials Research Bulletin, 38, 957–972.CrossRef
Metadaten
Titel
Interconnects for Solid Oxide Fuel Cells
verfasst von
Angeliki Brouzgou
Anatoly Demin
Panagiotis Tsiakaras
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-46146-5_4