Skip to main content

2025 | OriginalPaper | Buchkapitel

4. Interface Circuits

verfasst von : Ebrahim Ghafar-Zadeh, Saghi Forouhi, Tayebeh Azadmousavi

Erschienen in: Advanced CMOS Biochips

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides an in-depth exploration of the interface circuits designed for a variety of CMOS biosensors including voltammetric, impedimetric, capacitive, field-effect transistor (FET)-based, optical, magnetic, nuclear magnetic resonance (NMR), and temperature sensors as well as neural stimulation/recording systems. Each section of the chapter is designed to provide a comprehensive understanding of the circuits that drive these various CMOS biosensors, illustrating their significance in modern biochemical technologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jafari HM, Genov R (2013) Chopper-stabilized bidirectional current acquisition circuits for electrochemical amperometric biosensors. IEEE Trans Circuits Syst I: Regul Pap 60(5):1149–1157MathSciNetCrossRef Jafari HM, Genov R (2013) Chopper-stabilized bidirectional current acquisition circuits for electrochemical amperometric biosensors. IEEE Trans Circuits Syst I: Regul Pap 60(5):1149–1157MathSciNetCrossRef
2.
Zurück zum Zitat Kim BN, Herbst AD, Kim SJ, Minch BA, Lindau M (2013) Parallel recording of neurotransmitters release from chromaffin cells using a 10× 10 CMOS IC potentiostat array with on-chip working electrodes. Biosens Bioelectron 41:736–744CrossRef Kim BN, Herbst AD, Kim SJ, Minch BA, Lindau M (2013) Parallel recording of neurotransmitters release from chromaffin cells using a 10× 10 CMOS IC potentiostat array with on-chip working electrodes. Biosens Bioelectron 41:736–744CrossRef
3.
Zurück zum Zitat Chien J-C, Baker SW, Soh HT, Arbabian A (2020) Design and analysis of a sample-and-hold cmos electrochemical sensor for aptamer-based therapeutic drug monitoring. IEEE J Solid State Circuits 55(11):2914–2929CrossRef Chien J-C, Baker SW, Soh HT, Arbabian A (2020) Design and analysis of a sample-and-hold cmos electrochemical sensor for aptamer-based therapeutic drug monitoring. IEEE J Solid State Circuits 55(11):2914–2929CrossRef
4.
Zurück zum Zitat Nazari MH, Mazhab-Jafari H, Leng L, Guenther A, Genov R (2012) CMOS neurotransmitter microarray: 96-channel integrated potentiostat with on-die microsensors. IEEE Trans Biomed Circuits Syst 7(3):338–348CrossRef Nazari MH, Mazhab-Jafari H, Leng L, Guenther A, Genov R (2012) CMOS neurotransmitter microarray: 96-channel integrated potentiostat with on-die microsensors. IEEE Trans Biomed Circuits Syst 7(3):338–348CrossRef
5.
Zurück zum Zitat Viswam V et al (2018) Impedance spectroscopy and electrophysiological imaging of cells with a high-density CMOS microelectrode Array system. IEEE Trans Biomed Circuits Syst 12:1356–1368CrossRef Viswam V et al (2018) Impedance spectroscopy and electrophysiological imaging of cells with a high-density CMOS microelectrode Array system. IEEE Trans Biomed Circuits Syst 12:1356–1368CrossRef
6.
Zurück zum Zitat Manickam A, Johnson CA, Kavusi S, Hassibi A (2012) Interface design for CMOS-integrated electrochemical impedance spectroscopy (EIS) biosensors. Sensors 12(11):14467–14488CrossRef Manickam A, Johnson CA, Kavusi S, Hassibi A (2012) Interface design for CMOS-integrated electrochemical impedance spectroscopy (EIS) biosensors. Sensors 12(11):14467–14488CrossRef
7.
Zurück zum Zitat Manickam A, Chevalier A, McDermott M, Ellington AD, Hassibi A (2010) A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans Biomed Circuits Syst 4(6):379–390CrossRef Manickam A, Chevalier A, McDermott M, Ellington AD, Hassibi A (2010) A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans Biomed Circuits Syst 4(6):379–390CrossRef
8.
Zurück zum Zitat Ghodsevali E, Gosselin B, Boukadoum M, Miled A (2015) High accuracy and sensitivity differential potentiostat with amplifier-based error cancellation feedback loop. In: Biomedical Circuits and Systems Conference (BioCAS), 2015 IEEE. IEEE, pp 1–4 Ghodsevali E, Gosselin B, Boukadoum M, Miled A (2015) High accuracy and sensitivity differential potentiostat with amplifier-based error cancellation feedback loop. In: Biomedical Circuits and Systems Conference (BioCAS), 2015 IEEE. IEEE, pp 1–4
9.
Zurück zum Zitat Manickam A et al (2019) A CMOS electrochemical biochip with 32×32 three-electrode voltammetry pixels. IEEE J Solid State Circuits 54(11):2980–2990CrossRef Manickam A et al (2019) A CMOS electrochemical biochip with 32×32 three-electrode voltammetry pixels. IEEE J Solid State Circuits 54(11):2980–2990CrossRef
10.
Zurück zum Zitat Ghoreishizadeh SS, Baj-Rossi C, Cavallini A, Carrara S, De Micheli G (2014) An integrated control and readout circuit for implantable multi-target electrochemical biosensing. IEEE Trans Biomed Circuits Syst 8(6):891–898CrossRef Ghoreishizadeh SS, Baj-Rossi C, Cavallini A, Carrara S, De Micheli G (2014) An integrated control and readout circuit for implantable multi-target electrochemical biosensing. IEEE Trans Biomed Circuits Syst 8(6):891–898CrossRef
11.
Zurück zum Zitat Li L, Liu X, Qureshi WA, Mason AJ (2011) CMOS amperometric instrumentation and packaging for biosensor array applications. IEEE Trans Biomed Circuits Syst 5(5):439–448CrossRef Li L, Liu X, Qureshi WA, Mason AJ (2011) CMOS amperometric instrumentation and packaging for biosensor array applications. IEEE Trans Biomed Circuits Syst 5(5):439–448CrossRef
12.
Zurück zum Zitat Buscaglia LA, Oliveira ON, Carmo JP (2021) Roadmap for electrical impedance spectroscopy for sensing: a tutorial. IEEE Sensors J 21(20):22246–22257CrossRef Buscaglia LA, Oliveira ON, Carmo JP (2021) Roadmap for electrical impedance spectroscopy for sensing: a tutorial. IEEE Sensors J 21(20):22246–22257CrossRef
13.
Zurück zum Zitat Sutula S, Cuxart JP, Gonzalo-Ruiz J, Muñoz-Pascual FX, Terés L, Serra-Graells F (2014) A 25-μw all-mos potentiostatic delta-sigma adc for smart electrochemical sensors. IEEE Trans Circuits Syst I: Regul Pap 61(3):671–679CrossRef Sutula S, Cuxart JP, Gonzalo-Ruiz J, Muñoz-Pascual FX, Terés L, Serra-Graells F (2014) A 25-μw all-mos potentiostatic delta-sigma adc for smart electrochemical sensors. IEEE Trans Circuits Syst I: Regul Pap 61(3):671–679CrossRef
14.
Zurück zum Zitat Busoni L, Carla M, Lanzi L (2002) A comparison between potentiostatic circuits with grounded work or auxiliary electrode. Rev Sci Instrum 73(4):1921–1923CrossRef Busoni L, Carla M, Lanzi L (2002) A comparison between potentiostatic circuits with grounded work or auxiliary electrode. Rev Sci Instrum 73(4):1921–1923CrossRef
15.
Zurück zum Zitat Wang W-S, Kuo W-T, Huang H-Y, Luo C-H (2010) Wide dynamic range CMOS potentiostat for amperometric chemical sensor. Sensors 10(3):1782–1797CrossRef Wang W-S, Kuo W-T, Huang H-Y, Luo C-H (2010) Wide dynamic range CMOS potentiostat for amperometric chemical sensor. Sensors 10(3):1782–1797CrossRef
16.
Zurück zum Zitat Al Mamun KA, McFarlane N (2015) A CMOS potentiostatic glucose monitoring system for VACNF amperometric biosensors. In: Circuits and Systems (ISCAS), 2015 IEEE International Symposium on. IEEE, pp 477–480CrossRef Al Mamun KA, McFarlane N (2015) A CMOS potentiostatic glucose monitoring system for VACNF amperometric biosensors. In: Circuits and Systems (ISCAS), 2015 IEEE International Symposium on. IEEE, pp 477–480CrossRef
17.
Zurück zum Zitat Martin SM, Gebara FH, Strong TD, Brown RB (2004) A low-voltage, chemical sensor interface for systems-on-chip: the fully-differential potentiostat. In: Circuits and systems, 2004. ISCAS’04. Proceedings of the 2004 international symposium on, vol 4. IEEE, p IV-892-5 Martin SM, Gebara FH, Strong TD, Brown RB (2004) A low-voltage, chemical sensor interface for systems-on-chip: the fully-differential potentiostat. In: Circuits and systems, 2004. ISCAS’04. Proceedings of the 2004 international symposium on, vol 4. IEEE, p IV-892-5
18.
Zurück zum Zitat Nazari MH, Genov R (2009) A fully differential CMOS potentiostat. In: Circuits and systems, 2009. ISCAS 2009. IEEE international symposium on. IEEE, pp 2177–2180 Nazari MH, Genov R (2009) A fully differential CMOS potentiostat. In: Circuits and systems, 2009. ISCAS 2009. IEEE international symposium on. IEEE, pp 2177–2180
19.
Zurück zum Zitat Martin SM, Gebara FH, Strong TD, Brown RB (2009) A fully differential potentiostat. IEEE Sensors J 9(2):135–142CrossRef Martin SM, Gebara FH, Strong TD, Brown RB (2009) A fully differential potentiostat. IEEE Sensors J 9(2):135–142CrossRef
20.
Zurück zum Zitat Martin SM, Gebara FH, Strong TD, Brown RB (2004) A low-voltage, chemical sensor interface for systems-on-chip: the fully-differential potentiostat. In: 2004 IEEE international symposium on circuits and systems (IEEE Cat. No. 04CH37512), vol 4. IEEE, p IV-892 Martin SM, Gebara FH, Strong TD, Brown RB (2004) A low-voltage, chemical sensor interface for systems-on-chip: the fully-differential potentiostat. In: 2004 IEEE international symposium on circuits and systems (IEEE Cat. No. 04CH37512), vol 4. IEEE, p IV-892
21.
Zurück zum Zitat Ghodsevali E, Gosselin B, Boukadoum M, Miled A (2015) High accuracy and sensitivity differential potentiostat with amplifier-based error cancellation feedback loop. In: 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 1–4 Ghodsevali E, Gosselin B, Boukadoum M, Miled A (2015) High accuracy and sensitivity differential potentiostat with amplifier-based error cancellation feedback loop. In: 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 1–4
22.
Zurück zum Zitat Augustyniak, M. et al. (2006) 2.1 A 24 × 16 CMOS-based Chronocoulometric DNA microarray. Augustyniak, M. et al. (2006) 2.1 A 24 × 16 CMOS-based Chronocoulometric DNA microarray.
23.
Zurück zum Zitat Martin SM, Gebara FH, Strong TD, Brown RB (2009) A fully differential potentiostat. Sens J, IEEE 9(2):135–142CrossRef Martin SM, Gebara FH, Strong TD, Brown RB (2009) A fully differential potentiostat. Sens J, IEEE 9(2):135–142CrossRef
24.
Zurück zum Zitat Martin SM, Gebara FH, Larivee BJ, Brown RB (2005) A CMOS-integrated microinstrument for trace detection of heavy metals. IEEE J Solid-State Circuits 40(12):2777–2786CrossRef Martin SM, Gebara FH, Larivee BJ, Brown RB (2005) A CMOS-integrated microinstrument for trace detection of heavy metals. IEEE J Solid-State Circuits 40(12):2777–2786CrossRef
25.
Zurück zum Zitat Liu X (2014) CMOS instrumentation for electrochemical biosensor array microsystems. Michigan State University, Doctor of Philosophy Electrical Engineering Liu X (2014) CMOS instrumentation for electrochemical biosensor array microsystems. Michigan State University, Doctor of Philosophy Electrical Engineering
26.
Zurück zum Zitat Hassibi A, Lee TH (2006) A programmable 0.18-μm CMOS electrochemical sensor microarray for biomolecular detection. IEEE Sensors J 6(6):1380–1388CrossRef Hassibi A, Lee TH (2006) A programmable 0.18-μm CMOS electrochemical sensor microarray for biomolecular detection. IEEE Sensors J 6(6):1380–1388CrossRef
27.
Zurück zum Zitat Boutet P-A, Manen S (2011) Low power CMOS potentiostat for three electrodes amperometric chemical sensor. In: 2011 Faible Tension Faible Consommation (FTFC). IEEE, pp 15–18CrossRef Boutet P-A, Manen S (2011) Low power CMOS potentiostat for three electrodes amperometric chemical sensor. In: 2011 Faible Tension Faible Consommation (FTFC). IEEE, pp 15–18CrossRef
28.
Zurück zum Zitat Kim J, Dunbar W (2014) Nanopore-application CMOS potentiostat design with input parasitic compensation. Electron Lett 50(8):578–579CrossRef Kim J, Dunbar W (2014) Nanopore-application CMOS potentiostat design with input parasitic compensation. Electron Lett 50(8):578–579CrossRef
29.
Zurück zum Zitat Carrara S, Torre MD, Cavallini A, De Venuto D, De Micheli G (2010) Multiplexing pH and temperature in a molecular biosensor. In: 2010 Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 146–149CrossRef Carrara S, Torre MD, Cavallini A, De Venuto D, De Micheli G (2010) Multiplexing pH and temperature in a molecular biosensor. In: 2010 Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 146–149CrossRef
30.
Zurück zum Zitat Chung W-Y, Silverio AA, Tsai VF (2014) An amperometric sensor readout circuit for multiple electrochemical sensor cells. In: 2014 International Symposium on Integrated Circuits (ISIC). IEEE, pp 528–531CrossRef Chung W-Y, Silverio AA, Tsai VF (2014) An amperometric sensor readout circuit for multiple electrochemical sensor cells. In: 2014 International Symposium on Integrated Circuits (ISIC). IEEE, pp 528–531CrossRef
31.
Zurück zum Zitat De Venuto D, Torre MD, Boero C, Carrara S, De Micheli G (2010) A novel multi-working electrode potentiostat for electrochemical detection of metabolites. In: SENSORS, 2010 IEEE. IEEE, pp 1572–1577CrossRef De Venuto D, Torre MD, Boero C, Carrara S, De Micheli G (2010) A novel multi-working electrode potentiostat for electrochemical detection of metabolites. In: SENSORS, 2010 IEEE. IEEE, pp 1572–1577CrossRef
32.
Zurück zum Zitat Li H, Parsnejad S, Ashoori E, Thompson C, Purcell EK, Mason AJ (2017) Ultracompact microwatt CMOS current readout with picoampere noise and kilohertz bandwidth for biosensor arrays. IEEE Trans Biomed Circuits Syst 12(1):35–46CrossRef Li H, Parsnejad S, Ashoori E, Thompson C, Purcell EK, Mason AJ (2017) Ultracompact microwatt CMOS current readout with picoampere noise and kilohertz bandwidth for biosensor arrays. IEEE Trans Biomed Circuits Syst 12(1):35–46CrossRef
33.
Zurück zum Zitat Narula HS, Harris JG (2006) A time-based VLSI potentiostat for ion current measurements. IEEE Sensors J 6(2):239–247CrossRef Narula HS, Harris JG (2006) A time-based VLSI potentiostat for ion current measurements. IEEE Sensors J 6(2):239–247CrossRef
34.
Zurück zum Zitat Massicotte G, Sawan M (2013) An efficient time-based CMOS potentiostat for neurotransmitters sensing. In: 2013 IEEE international symposium on medical measurements and applications (MeMeA). IEEE, pp 274–277CrossRef Massicotte G, Sawan M (2013) An efficient time-based CMOS potentiostat for neurotransmitters sensing. In: 2013 IEEE international symposium on medical measurements and applications (MeMeA). IEEE, pp 274–277CrossRef
35.
Zurück zum Zitat Ayers S, Gillis KD, Lindau M, Minch BA (2007) Design of a CMOS potentiostat circuit for electrochemical detector arrays. IEEE Trans Circuits Syst I: Regul Pap 54(4):736–744CrossRef Ayers S, Gillis KD, Lindau M, Minch BA (2007) Design of a CMOS potentiostat circuit for electrochemical detector arrays. IEEE Trans Circuits Syst I: Regul Pap 54(4):736–744CrossRef
36.
Zurück zum Zitat White KA, Mulberry G, Kim BN (2019) Parallel 1024-ch cyclic voltammetry on monolithic CMOS electrochemical detector array. IEEE Sensors J 20(8):4395–4402CrossRef White KA, Mulberry G, Kim BN (2019) Parallel 1024-ch cyclic voltammetry on monolithic CMOS electrochemical detector array. IEEE Sensors J 20(8):4395–4402CrossRef
37.
Zurück zum Zitat Huang M, Dorta-Quiñones CI, Minch BA, Lindau M (2021) On-chip cyclic voltammetry measurements using a compact 1024-electrode CMOS IC. Anal Chem 93(22):8027–8034CrossRef Huang M, Dorta-Quiñones CI, Minch BA, Lindau M (2021) On-chip cyclic voltammetry measurements using a compact 1024-electrode CMOS IC. Anal Chem 93(22):8027–8034CrossRef
38.
Zurück zum Zitat Huang C-W, Lu MS-C (2011) Electrochemical detection of the neurotransmitter dopamine by nanoimprinted interdigitated electrodes and a CMOS circuit with enhanced collection efficiency. IEEE Sensors J 11(9):1826–1831CrossRef Huang C-W, Lu MS-C (2011) Electrochemical detection of the neurotransmitter dopamine by nanoimprinted interdigitated electrodes and a CMOS circuit with enhanced collection efficiency. IEEE Sensors J 11(9):1826–1831CrossRef
39.
Zurück zum Zitat White KA et al (2018) Single-cell recording of vesicle release from human neuroblastoma cells using 1024-ch monolithic CMOS bioelectronics. IEEE Trans Biomed Circuits Syst 12(6):1345–1355CrossRef White KA et al (2018) Single-cell recording of vesicle release from human neuroblastoma cells using 1024-ch monolithic CMOS bioelectronics. IEEE Trans Biomed Circuits Syst 12(6):1345–1355CrossRef
40.
Zurück zum Zitat Rosenstein JK, Wanunu M, Merchant CA, Drndic M, Shepard KL (2012) Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat Methods 9(5):487–492CrossRef Rosenstein JK, Wanunu M, Merchant CA, Drndic M, Shepard KL (2012) Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat Methods 9(5):487–492CrossRef
41.
Zurück zum Zitat Rosenstein JK, Ramakrishnan S, Roseman J, Shepard KL (2013) Single ion channel recordings with CMOS-anchored lipid membranes. Nano Lett 13(6):2682–2686CrossRef Rosenstein JK, Ramakrishnan S, Roseman J, Shepard KL (2013) Single ion channel recordings with CMOS-anchored lipid membranes. Nano Lett 13(6):2682–2686CrossRef
42.
Zurück zum Zitat Dorta-Quiñones CI et al (2018) A bidirectional-current CMOS potentiostat for fast-scan cyclic voltammetry detector arrays. IEEE Trans Biomed Circuits Syst 12(4):894–903CrossRef Dorta-Quiñones CI et al (2018) A bidirectional-current CMOS potentiostat for fast-scan cyclic voltammetry detector arrays. IEEE Trans Biomed Circuits Syst 12(4):894–903CrossRef
43.
Zurück zum Zitat Tedjo W, Chen T (2019) An integrated biosensor system with a high-density microelectrode array for real-time electrochemical imaging. IEEE Trans Biomed Circuits Syst 14(1):20–35CrossRef Tedjo W, Chen T (2019) An integrated biosensor system with a high-density microelectrode array for real-time electrochemical imaging. IEEE Trans Biomed Circuits Syst 14(1):20–35CrossRef
44.
Zurück zum Zitat Levine PM, Gong P, Levicky R, Shepard KL (2008) Active CMOS sensor array for electrochemical biomolecular detection. IEEE J Solid State Circuits 43(8):1859–1871CrossRef Levine PM, Gong P, Levicky R, Shepard KL (2008) Active CMOS sensor array for electrochemical biomolecular detection. IEEE J Solid State Circuits 43(8):1859–1871CrossRef
45.
Zurück zum Zitat Schienle M et al (2004) A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion. IEEE J Solid State Circuits 39(12):2438–2445CrossRef Schienle M et al (2004) A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion. IEEE J Solid State Circuits 39(12):2438–2445CrossRef
46.
Zurück zum Zitat Laifi A, Abaji A, Adib M, Thewes R (2015) A 96 dB SNDR current-mode continuous-time ΔΣ modulator for electrochemical sensor arrays. In: Mixed design of integrated circuits & systems (MIXDES), 2015 22nd international conference. IEEE, pp 239–242 Laifi A, Abaji A, Adib M, Thewes R (2015) A 96 dB SNDR current-mode continuous-time ΔΣ modulator for electrochemical sensor arrays. In: Mixed design of integrated circuits & systems (MIXDES), 2015 22nd international conference. IEEE, pp 239–242
47.
Zurück zum Zitat Levine PM, Gong P, Levicky R, Shepard KL (2009) Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics. Biosens Bioelectron 24(7):1995–2001CrossRef Levine PM, Gong P, Levicky R, Shepard KL (2009) Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics. Biosens Bioelectron 24(7):1995–2001CrossRef
48.
Zurück zum Zitat Kruppa P et al (2010) A digital CMOS-based 24×16 sensor array platform for fully automatic electrochemical DNA detection. Biosens Bioelectron 26(4):1414–1419CrossRef Kruppa P et al (2010) A digital CMOS-based 24×16 sensor array platform for fully automatic electrochemical DNA detection. Biosens Bioelectron 26(4):1414–1419CrossRef
49.
Zurück zum Zitat Liu X, Li L, Mason AJ (2014) High-throughput impedance spectroscopy biosensor array chip. Phil Trans R Soc A 372(2012):20130107. (1–14)CrossRef Liu X, Li L, Mason AJ (2014) High-throughput impedance spectroscopy biosensor array chip. Phil Trans R Soc A 372(2012):20130107. (1–14)CrossRef
51.
Zurück zum Zitat Jafari H, Soleymani L, Genov R (2012) 16-channel CMOS impedance spectroscopy DNA analyzer with dual-slope multiplying ADCs. IEEE Trans Biomed Circuits Syst 6(5):468–478CrossRef Jafari H, Soleymani L, Genov R (2012) 16-channel CMOS impedance spectroscopy DNA analyzer with dual-slope multiplying ADCs. IEEE Trans Biomed Circuits Syst 6(5):468–478CrossRef
52.
Zurück zum Zitat Bajestan MM, Helmy AA, Hedayati H, Entesari K (2014) A 0.62–10GHz CMOS dielectric spectroscopy system for chemical/biological material characterization. In: 2014 IEEE MTT-S International Microwave Symposium (IMS). IEEE, pp 1–4 Bajestan MM, Helmy AA, Hedayati H, Entesari K (2014) A 0.62–10GHz CMOS dielectric spectroscopy system for chemical/biological material characterization. In: 2014 IEEE MTT-S International Microwave Symposium (IMS). IEEE, pp 1–4
53.
Zurück zum Zitat Bajestan MM, Helmy AA, Hedayati H, Entesari K (2014) A 0.62–10 GHz complex dielectric spectroscopy system in CMOS. IEEE Trans Microw Theory Tech 62(12):3522–3537CrossRef Bajestan MM, Helmy AA, Hedayati H, Entesari K (2014) A 0.62–10 GHz complex dielectric spectroscopy system in CMOS. IEEE Trans Microw Theory Tech 62(12):3522–3537CrossRef
54.
Zurück zum Zitat Vlachogiannakis G, Pertijs MA, Spirito M, de Vreede LC (2018) A 40-nm CMOS complex permittivity sensing pixel for material characterization at microwave frequencies. IEEE Trans Microw Theory Tech 66(3):1619–1634CrossRef Vlachogiannakis G, Pertijs MA, Spirito M, de Vreede LC (2018) A 40-nm CMOS complex permittivity sensing pixel for material characterization at microwave frequencies. IEEE Trans Microw Theory Tech 66(3):1619–1634CrossRef
55.
Zurück zum Zitat Kassanos P, Triantis IF, Demosthenous A (2013) A CMOS magnitude/phase measurement chip for impedance spectroscopy. IEEE Sensors J 13(6):2229–2236CrossRef Kassanos P, Triantis IF, Demosthenous A (2013) A CMOS magnitude/phase measurement chip for impedance spectroscopy. IEEE Sensors J 13(6):2229–2236CrossRef
56.
Zurück zum Zitat Hedayatipour A, Aslanzadeh S, McFarlane N (2019) CMOS based whole cell impedance sensing: challenges and future outlook. Biosens Bioelectron 143:111600CrossRef Hedayatipour A, Aslanzadeh S, McFarlane N (2019) CMOS based whole cell impedance sensing: challenges and future outlook. Biosens Bioelectron 143:111600CrossRef
57.
Zurück zum Zitat Hamilton TJ, Nelson NM, Sander D, Abshire P (2009) A cell impedance sensor based on a silicon cochlea. In: 2009 IEEE biomedical circuits and systems conference. IEEE, pp 117–120CrossRef Hamilton TJ, Nelson NM, Sander D, Abshire P (2009) A cell impedance sensor based on a silicon cochlea. In: 2009 IEEE biomedical circuits and systems conference. IEEE, pp 117–120CrossRef
58.
Zurück zum Zitat Lu MS-C, Chen Y-C, Huang P-C (2010) 5 × 5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine. Biosens Bioelectron 26(3):1093–1097CrossRef Lu MS-C, Chen Y-C, Huang P-C (2010) 5 × 5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine. Biosens Bioelectron 26(3):1093–1097CrossRef
59.
Zurück zum Zitat Chang A-Y, Lu MS-C (2013) A CMOS magnetic microbead-based capacitive biosensor array with on-chip electromagnetic manipulation. Biosens Bioelectron 45:6–12CrossRef Chang A-Y, Lu MS-C (2013) A CMOS magnetic microbead-based capacitive biosensor array with on-chip electromagnetic manipulation. Biosens Bioelectron 45:6–12CrossRef
61.
Zurück zum Zitat Mohammad K, Buchanan DA, Thomson DJ (2016) Integrated 0.35 pm CMOS capacitance sensor with atto-farad sensitivity for single cell analysis. In: Biomedical Circuits and Systems Conference (BioCAS), 2016 IEEE. IEEE, pp 22–25CrossRef Mohammad K, Buchanan DA, Thomson DJ (2016) Integrated 0.35 pm CMOS capacitance sensor with atto-farad sensitivity for single cell analysis. In: Biomedical Circuits and Systems Conference (BioCAS), 2016 IEEE. IEEE, pp 22–25CrossRef
62.
Zurück zum Zitat Couniot N, Bol D, Poncelet O, Francis LA, Flandre D (2014) A capacitance-to-frequency converter with on-chip passivated microelectrodes for bacteria detection in saline buffers up to 575 MHz. IEEE Trans Circuits Syst II: Express Briefs 62(2):159–163 Couniot N, Bol D, Poncelet O, Francis LA, Flandre D (2014) A capacitance-to-frequency converter with on-chip passivated microelectrodes for bacteria detection in saline buffers up to 575 MHz. IEEE Trans Circuits Syst II: Express Briefs 62(2):159–163
63.
Zurück zum Zitat Mohammad K, Thomson DJ (2017) Differential ring oscillator based capacitance sensor for microfluidic applications. IEEE Trans Biomed Circuits Syst 11(2):392–399CrossRef Mohammad K, Thomson DJ (2017) Differential ring oscillator based capacitance sensor for microfluidic applications. IEEE Trans Biomed Circuits Syst 11(2):392–399CrossRef
64.
Zurück zum Zitat Senevirathna B, Lu S, Abshire P (2017) Characterization of a high dynamic range lab-on-CMOS capacitance sensor array. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 1–4 Senevirathna B, Lu S, Abshire P (2017) Characterization of a high dynamic range lab-on-CMOS capacitance sensor array. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 1–4
65.
Zurück zum Zitat Gaggatur JS, Banerjee G (2017) High gain capacitance sensor interface for the monitoring of cell volume growth. In: 2017 30th international conference on VLSI design and 2017 16th international conference on embedded systems (VLSID). IEEE, pp 201–206CrossRef Gaggatur JS, Banerjee G (2017) High gain capacitance sensor interface for the monitoring of cell volume growth. In: 2017 30th international conference on VLSI design and 2017 16th international conference on embedded systems (VLSID). IEEE, pp 201–206CrossRef
66.
Zurück zum Zitat Senevirathna B, Castro A, Dandin M, Smela E, Abshire P (2016) Lab-on-CMOS capacitance sensor array for real-time cell viability measurements with I2C readout. In: 2016 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 2863–2866CrossRef Senevirathna B, Castro A, Dandin M, Smela E, Abshire P (2016) Lab-on-CMOS capacitance sensor array for real-time cell viability measurements with I2C readout. In: 2016 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 2863–2866CrossRef
67.
Zurück zum Zitat Naviasky E, Datta-Chaudhuri T, Abshire P (2014) High resolution capacitance sensor array for real-time monitoring of cell viability. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 634–637CrossRef Naviasky E, Datta-Chaudhuri T, Abshire P (2014) High resolution capacitance sensor array for real-time monitoring of cell viability. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 634–637CrossRef
69.
Zurück zum Zitat Helmy AA et al (2012) A self-sustained CMOS microwave chemical sensor using a frequency synthesizer. IEEE J Solid State Circuits 47(10):2467–2483CrossRef Helmy AA et al (2012) A self-sustained CMOS microwave chemical sensor using a frequency synthesizer. IEEE J Solid State Circuits 47(10):2467–2483CrossRef
70.
Zurück zum Zitat Nehring J, Bartels M, Weigel R, Kissinger D (2015) A permittivity sensitive PLL based on a silicon-integrated capacitive sensor for microwave biosensing applications. In: 2015 IEEE topical conference on biomedical wireless technologies, networks, and sensing systems (BioWireleSS). IEEE, pp 1–3 Nehring J, Bartels M, Weigel R, Kissinger D (2015) A permittivity sensitive PLL based on a silicon-integrated capacitive sensor for microwave biosensing applications. In: 2015 IEEE topical conference on biomedical wireless technologies, networks, and sensing systems (BioWireleSS). IEEE, pp 1–3
71.
Zurück zum Zitat Guha S, Schmalz K, Wenger C, Herzel F (2015) Self-calibrating highly sensitive dynamic capacitance sensor: towards rapid sensing and counting of particles in laminar flow systems. Analyst 140(9):3262–3272CrossRef Guha S, Schmalz K, Wenger C, Herzel F (2015) Self-calibrating highly sensitive dynamic capacitance sensor: towards rapid sensing and counting of particles in laminar flow systems. Analyst 140(9):3262–3272CrossRef
72.
Zurück zum Zitat Elhadidy O, Elkholy M, Helmy AA, Palermo S, Entesari K (2013) A CMOS fractional- N PLL-based microwave chemical sensor with 1.5% permittivity accuracy. IEEE Trans Microw Theory Tech 61(9):3402–3416CrossRef Elhadidy O, Elkholy M, Helmy AA, Palermo S, Entesari K (2013) A CMOS fractional- N PLL-based microwave chemical sensor with 1.5% permittivity accuracy. IEEE Trans Microw Theory Tech 61(9):3402–3416CrossRef
73.
Zurück zum Zitat Mitsunaka T et al (2016) CMOS biosensor IC focusing on dielectric relaxations of biological water with 120 and 60 GHz oscillator arrays. IEEE J Solid State Circuits 51(11):2534–2544CrossRef Mitsunaka T et al (2016) CMOS biosensor IC focusing on dielectric relaxations of biological water with 120 and 60 GHz oscillator arrays. IEEE J Solid State Circuits 51(11):2534–2544CrossRef
74.
Zurück zum Zitat Chien J-C, Anwar M, Yeh E-C, Lee LP, Niknejad AM (2014) A 6.5/17.5-GHz dual-channel interferometer-based capacitive sensor in 65-nm CMOS for high-speed flow cytometry. In: 2014 IEEE MTT-S International Microwave Symposium (IMS). IEEE, pp 1–4 Chien J-C, Anwar M, Yeh E-C, Lee LP, Niknejad AM (2014) A 6.5/17.5-GHz dual-channel interferometer-based capacitive sensor in 65-nm CMOS for high-speed flow cytometry. In: 2014 IEEE MTT-S International Microwave Symposium (IMS). IEEE, pp 1–4
75.
Zurück zum Zitat Chien J-C, Yeh E-C, Lee LP, Anwar M, Niknejad AM (2015) A near-field modulation chopping stabilized injection-locked oscillator sensor for protein conformation detection at microwave frequency. In: 2015 Symposium on VLSI Circuits (VLSI Circuits). IEEE, pp C332–C333CrossRef Chien J-C, Yeh E-C, Lee LP, Anwar M, Niknejad AM (2015) A near-field modulation chopping stabilized injection-locked oscillator sensor for protein conformation detection at microwave frequency. In: 2015 Symposium on VLSI Circuits (VLSI Circuits). IEEE, pp C332–C333CrossRef
76.
Zurück zum Zitat Chien J-C, Niknejad AM (2016) Oscillator-based reactance sensors with injection locking for high-throughput flow cytometry using microwave dielectric spectroscopy. J Solid-State Circuits 51(2):457–472CrossRef Chien J-C, Niknejad AM (2016) Oscillator-based reactance sensors with injection locking for high-throughput flow cytometry using microwave dielectric spectroscopy. J Solid-State Circuits 51(2):457–472CrossRef
77.
Zurück zum Zitat Elhadidy O, Shakib S, Krenek K, Palermo S, Entesari K (2015) A wide-band fully-integrated CMOS ring-oscillator PLL-based complex dielectric spectroscopy system. IEEE Trans Circuits Syst I: Regul Pap 62(8):1940–1949MathSciNetCrossRef Elhadidy O, Shakib S, Krenek K, Palermo S, Entesari K (2015) A wide-band fully-integrated CMOS ring-oscillator PLL-based complex dielectric spectroscopy system. IEEE Trans Circuits Syst I: Regul Pap 62(8):1940–1949MathSciNetCrossRef
78.
Zurück zum Zitat Ciccarella P, Carminati M, Sampietro M, Ferrari G (2016) Multichannel 65 zF rms resolution CMOS monolithic capacitive sensor for counting single micrometer-sized airborne particles on chip. IEEE J Solid State Circuits 51(11):2545–2553CrossRef Ciccarella P, Carminati M, Sampietro M, Ferrari G (2016) Multichannel 65 zF rms resolution CMOS monolithic capacitive sensor for counting single micrometer-sized airborne particles on chip. IEEE J Solid State Circuits 51(11):2545–2553CrossRef
79.
Zurück zum Zitat Ciccarella P, Carminati M, Sampietro M, Ferrari G (2016) CMOS monolithic airborne-particulate-matter detector based on 32 capacitive sensors with a resolution of 65zF rms. In: 2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp 486–488CrossRef Ciccarella P, Carminati M, Sampietro M, Ferrari G (2016) CMOS monolithic airborne-particulate-matter detector based on 32 capacitive sensors with a resolution of 65zF rms. In: 2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp 486–488CrossRef
80.
Zurück zum Zitat Prakash SB, Abshire P (2007) On-chip capacitance sensing for cell monitoring applications. IEEE Sensors J 7(3):440–447CrossRef Prakash SB, Abshire P (2007) On-chip capacitance sensing for cell monitoring applications. IEEE Sensors J 7(3):440–447CrossRef
83.
Zurück zum Zitat De Venuto D, Carrara S, Riccò B (2009) Design of an integrated low-noise read-out system for DNA capacitive sensors. Microelectron J 40(9):1358–1365CrossRef De Venuto D, Carrara S, Riccò B (2009) Design of an integrated low-noise read-out system for DNA capacitive sensors. Microelectron J 40(9):1358–1365CrossRef
84.
Zurück zum Zitat Petrellis N, Spathis C, Georgakopoulou K, Birbas A (2013) Capacitive sensor estimation based on self-configurable reference capacitance. Recent Patents on Signal Processing 3(1):12–21CrossRef Petrellis N, Spathis C, Georgakopoulou K, Birbas A (2013) Capacitive sensor estimation based on self-configurable reference capacitance. Recent Patents on Signal Processing 3(1):12–21CrossRef
85.
Zurück zum Zitat Romani A et al (2004) Capacitive sensor array for localization of bioparticles in CMOS lab-on-a-chip. In: 2004 IEEE international solid-state circuits conference, 2004. Digest of technical papers. ISSCC. IEEE, pp 224–225 Romani A et al (2004) Capacitive sensor array for localization of bioparticles in CMOS lab-on-a-chip. In: 2004 IEEE international solid-state circuits conference, 2004. Digest of technical papers. ISSCC. IEEE, pp 224–225
86.
Zurück zum Zitat Georgakopoulou K, Spathis C, Petrellis N, Birbas A (2016) A capacitive-to-digital converter with automatic range adaptation for readout instrumentation. IEEE Trans Instrum Meas 65(2):336–345CrossRef Georgakopoulou K, Spathis C, Petrellis N, Birbas A (2016) A capacitive-to-digital converter with automatic range adaptation for readout instrumentation. IEEE Trans Instrum Meas 65(2):336–345CrossRef
87.
Zurück zum Zitat Ha H, Sylvester D, Blaauw D, Sim J-Y (2014) 12.6 A 160nW 63.9 fJ/conversion-step capacitance-to-digital converter for ultra-low-power wireless sensor nodes. In: Solid-state circuits conference digest of technical papers (ISSCC), 2014 IEEE International. IEEE, pp 220–221CrossRef Ha H, Sylvester D, Blaauw D, Sim J-Y (2014) 12.6 A 160nW 63.9 fJ/conversion-step capacitance-to-digital converter for ultra-low-power wireless sensor nodes. In: Solid-state circuits conference digest of technical papers (ISSCC), 2014 IEEE International. IEEE, pp 220–221CrossRef
88.
Zurück zum Zitat Tanaka K, Kuramochi Y, Kurashina T, Okada K, Matsuzawa A (2007) A 0.026 mm2 capacitance-to-digital converter for biotelemetry applications using a charge redistribution technique. In: IEEE Asian solid-state circuits conference, vol ASSCC’07. IEEE, 2007, pp 244–247 Tanaka K, Kuramochi Y, Kurashina T, Okada K, Matsuzawa A (2007) A 0.026 mm2 capacitance-to-digital converter for biotelemetry applications using a charge redistribution technique. In: IEEE Asian solid-state circuits conference, vol ASSCC’07. IEEE, 2007, pp 244–247
89.
Zurück zum Zitat Alhoshany A, Salama KN (2018) A precision, energy-efficient, oversampling, noise-shaping differential SAR capacitance-to-digital converter. IEEE Trans Instrum Meas 99 Alhoshany A, Salama KN (2018) A precision, energy-efficient, oversampling, noise-shaping differential SAR capacitance-to-digital converter. IEEE Trans Instrum Meas 99
90.
Zurück zum Zitat Alhoshany A, Sivashankar S, Mashraei Y, Omran H, Salama KN (2017) A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection. Sensors 17(9):1942 (1–12)CrossRef Alhoshany A, Sivashankar S, Mashraei Y, Omran H, Salama KN (2017) A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection. Sensors 17(9):1942 (1–12)CrossRef
91.
Zurück zum Zitat Guiducci C et al (2004) DNA detection by integrable electronics. Biosens Bioelectron 19(8):781–787CrossRef Guiducci C et al (2004) DNA detection by integrable electronics. Biosens Bioelectron 19(8):781–787CrossRef
92.
Zurück zum Zitat Ghafar-Zadeh E, Sawan M (2010) CMOS capacitive sensors for lab-on-chip applications. Springer, New YorkCrossRef Ghafar-Zadeh E, Sawan M (2010) CMOS capacitive sensors for lab-on-chip applications. Springer, New YorkCrossRef
94.
Zurück zum Zitat Evans I, York T (2004) Microelectronic capacitance transducer for particle detection. IEEE Sensors J 4(3):364–372CrossRef Evans I, York T (2004) Microelectronic capacitance transducer for particle detection. IEEE Sensors J 4(3):364–372CrossRef
95.
Zurück zum Zitat Tanskanen A, Bahreyni B, Syrzycki M (2016) Charge-based femto-farad capacitance measurement technique for MEMS applications. In: 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, pp 1–4 Tanskanen A, Bahreyni B, Syrzycki M (2016) Charge-based femto-farad capacitance measurement technique for MEMS applications. In: 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, pp 1–4
96.
Zurück zum Zitat York T, Evans I, Pokusevski Z, Dyakowski T (2001) Particle detection using an integrated capacitance sensor. Sensors Actuators A Phys 92(1–3):74–79CrossRef York T, Evans I, Pokusevski Z, Dyakowski T (2001) Particle detection using an integrated capacitance sensor. Sensors Actuators A Phys 92(1–3):74–79CrossRef
97.
Zurück zum Zitat Ghafar-Zadeh E, Sawan M (2005) A high precision and linearity differential capacitive sensor circuit dedicated to bioparticles detection. In: The 3rd International IEEE-NEWCAS Conference, 2005. IEEE, pp 299–302 Ghafar-Zadeh E, Sawan M (2005) A high precision and linearity differential capacitive sensor circuit dedicated to bioparticles detection. In: The 3rd International IEEE-NEWCAS Conference, 2005. IEEE, pp 299–302
98.
Zurück zum Zitat Ghafar-Zadeh E, Sawan M, Therriault D (2008) A 0.18-μm CMOS capacitive sensor lab-on-chip. Sensors Actuators A Phys 141(2):454–462CrossRef Ghafar-Zadeh E, Sawan M, Therriault D (2008) A 0.18-μm CMOS capacitive sensor lab-on-chip. Sensors Actuators A Phys 141(2):454–462CrossRef
99.
Zurück zum Zitat Ghafar-Zadeh E, Sawan M (2008) A Core-CBCM sigma delta capacitive sensor array dedicated to lab-on-chip applications. Sensors Actuators A Phys 144(2):304–313CrossRef Ghafar-Zadeh E, Sawan M (2008) A Core-CBCM sigma delta capacitive sensor array dedicated to lab-on-chip applications. Sensors Actuators A Phys 144(2):304–313CrossRef
100.
Zurück zum Zitat Prakash SB, Abshire P (2007) A fully differential rail-to-rail capacitance measurement circuit for integrated cell sensing. In: 2007 IEEE Sensors. IEEE, pp 1444–1447CrossRef Prakash SB, Abshire P (2007) A fully differential rail-to-rail capacitance measurement circuit for integrated cell sensing. In: 2007 IEEE Sensors. IEEE, pp 1444–1447CrossRef
101.
Zurück zum Zitat Prakash SB, Abshire P (2009) A fully differential rail-to-rail CMOS capacitance sensor with floating-gate trimming for mismatch compensation. IEEE Trans Circuits Syst I: Regul Pap 56(5):975–986MathSciNetCrossRef Prakash SB, Abshire P (2009) A fully differential rail-to-rail CMOS capacitance sensor with floating-gate trimming for mismatch compensation. IEEE Trans Circuits Syst I: Regul Pap 56(5):975–986MathSciNetCrossRef
102.
Zurück zum Zitat Nabovati G, Ghafar-Zadeh E, Mirzaei M, Ayala-Charca G, Awwad F, Sawan M (2015) A new fully differential CMOS capacitance to digital converter for lab-on-Chip applications. IEEE Trans Biomed Circuits Syst 9(3):353–361CrossRef Nabovati G, Ghafar-Zadeh E, Mirzaei M, Ayala-Charca G, Awwad F, Sawan M (2015) A new fully differential CMOS capacitance to digital converter for lab-on-Chip applications. IEEE Trans Biomed Circuits Syst 9(3):353–361CrossRef
103.
Zurück zum Zitat Forouhi S, Dehghani R, Ghafar-Zadeh E (2018) Toward high throughput core-CBCM CMOS capacitive sensors for life science applications: a novel current-mode for high dynamic range circuitry. Sensors 18(10):3370 (1–29)CrossRef Forouhi S, Dehghani R, Ghafar-Zadeh E (2018) Toward high throughput core-CBCM CMOS capacitive sensors for life science applications: a novel current-mode for high dynamic range circuitry. Sensors 18(10):3370 (1–29)CrossRef
104.
Zurück zum Zitat Tabrizi HO, Farhanieh O, Owen Q, Magierowski S, Ghafar-Zadeh E (2021) Wide input dynamic range fully integrated capacitive sensor for life science applications. IEEE Trans Biomed Circuits Syst 15(2):339–350CrossRef Tabrizi HO, Farhanieh O, Owen Q, Magierowski S, Ghafar-Zadeh E (2021) Wide input dynamic range fully integrated capacitive sensor for life science applications. IEEE Trans Biomed Circuits Syst 15(2):339–350CrossRef
105.
Zurück zum Zitat Forouhi S, Farhanieh O, Dehghani R, Ghafar-Zadeh E (2017) A current based capacitance-to-frequency converter for lab-on-chip applications. IEEECrossRef Forouhi S, Farhanieh O, Dehghani R, Ghafar-Zadeh E (2017) A current based capacitance-to-frequency converter for lab-on-chip applications. IEEECrossRef
106.
Zurück zum Zitat Tabrizi HO, Forouhi S, Ghafar-Zadeh E (2022) A high dynamic range dual 8× 16 capacitive sensor Array for life science applications. IEEE Trans Biomed Circuits Syst Tabrizi HO, Forouhi S, Ghafar-Zadeh E (2022) A high dynamic range dual 8× 16 capacitive sensor Array for life science applications. IEEE Trans Biomed Circuits Syst
107.
Zurück zum Zitat Druart S, Flandre D, Francis LA (2014) A self-oscillating system to measure the conductivity and the permittivity of liquids within a single triangular signal. J Sensors 2014 Druart S, Flandre D, Francis LA (2014) A self-oscillating system to measure the conductivity and the permittivity of liquids within a single triangular signal. J Sensors 2014
108.
Zurück zum Zitat Lee K-H et al (2010) One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor. Biosens Bioelectron 26(4):1373–1379CrossRef Lee K-H et al (2010) One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor. Biosens Bioelectron 26(4):1373–1379CrossRef
109.
Zurück zum Zitat Noorsal E, Sooksood K, Xu H, Hornig R, Becker J, Ortmanns M (2011) A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants. IEEE J Solid State Circuits 47(1):244–256CrossRef Noorsal E, Sooksood K, Xu H, Hornig R, Becker J, Ortmanns M (2011) A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants. IEEE J Solid State Circuits 47(1):244–256CrossRef
110.
Zurück zum Zitat Butz N, Taschwer A, Nessler S, Manoli Y, Kuhl M (2018) A 22 V compliant 56 μW twin-track active charge balancing enabling 100% charge compensation even in monophasic and 36% amplitude correction in biphasic neural stimulators. IEEE J Solid State Circuits 53(8):2298–2310CrossRef Butz N, Taschwer A, Nessler S, Manoli Y, Kuhl M (2018) A 22 V compliant 56 μW twin-track active charge balancing enabling 100% charge compensation even in monophasic and 36% amplitude correction in biphasic neural stimulators. IEEE J Solid State Circuits 53(8):2298–2310CrossRef
111.
Zurück zum Zitat Lee H-M, Park H, Ghovanloo M (2013) A power-efficient wireless system with adaptive supply control for deep brain stimulation. IEEE J Solid State Circuits 48(9):2203–2216CrossRef Lee H-M, Park H, Ghovanloo M (2013) A power-efficient wireless system with adaptive supply control for deep brain stimulation. IEEE J Solid State Circuits 48(9):2203–2216CrossRef
112.
Zurück zum Zitat Ortmanns M, Rocke A, Gehrke M, Tiedtke H-J (2007) A 232-channel epiretinal stimulator ASIC. IEEE J Solid State Circuits 42(12):2946–2959CrossRef Ortmanns M, Rocke A, Gehrke M, Tiedtke H-J (2007) A 232-channel epiretinal stimulator ASIC. IEEE J Solid State Circuits 42(12):2946–2959CrossRef
113.
Zurück zum Zitat Li J, Liu X, Mao W, Chen T, Yu H (2021) Advances in neural recording and stimulation integrated circuits. Front Neurosci 15:663204CrossRef Li J, Liu X, Mao W, Chen T, Yu H (2021) Advances in neural recording and stimulation integrated circuits. Front Neurosci 15:663204CrossRef
115.
Zurück zum Zitat Hsu W-Y, Schmid A (2017) Compact, energy-efficient high-frequency switched capacitor neural stimulator with active charge balancing. IEEE Trans Biomed Circuits Syst 11(4):878–888CrossRef Hsu W-Y, Schmid A (2017) Compact, energy-efficient high-frequency switched capacitor neural stimulator with active charge balancing. IEEE Trans Biomed Circuits Syst 11(4):878–888CrossRef
116.
Zurück zum Zitat Van Dongen MN, Hoebeek FE, Koekkoek S, De Zeeuw CI, Serdijn WA (2015) High frequency switched-mode stimulation can evoke post synaptic responses in cerebellar principal neurons. Front Neuroengineering:2 Van Dongen MN, Hoebeek FE, Koekkoek S, De Zeeuw CI, Serdijn WA (2015) High frequency switched-mode stimulation can evoke post synaptic responses in cerebellar principal neurons. Front Neuroengineering:2
117.
Zurück zum Zitat Lee H-M, Kwon KY, Li W, Ghovanloo M (2014) A power-efficient switched-capacitor stimulating system for electrical/optical deep brain stimulation. IEEE J Solid State Circuits 50(1):360–374CrossRef Lee H-M, Kwon KY, Li W, Ghovanloo M (2014) A power-efficient switched-capacitor stimulating system for electrical/optical deep brain stimulation. IEEE J Solid State Circuits 50(1):360–374CrossRef
118.
Zurück zum Zitat Yao L, Li P, Je M (2015) A pulse-width-adaptive active charge balancing circuit with pulse-insertion based residual charge compensation and quantization for electrical stimulation applications. In: 2015 IEEE Asian solid-state circuits conference (A-SSCC). IEEE, pp 1–4 Yao L, Li P, Je M (2015) A pulse-width-adaptive active charge balancing circuit with pulse-insertion based residual charge compensation and quantization for electrical stimulation applications. In: 2015 IEEE Asian solid-state circuits conference (A-SSCC). IEEE, pp 1–4
119.
Zurück zum Zitat Chen Z, Liu X, Wang Z (2020) A charge balancing technique for neurostimulators. Analog Integr Circ Sig Process 105:483–496CrossRef Chen Z, Liu X, Wang Z (2020) A charge balancing technique for neurostimulators. Analog Integr Circ Sig Process 105:483–496CrossRef
120.
Zurück zum Zitat Gosselin B (2011) Recent advances in neural recording microsystems. Sensors 11:4572–4597CrossRef Gosselin B (2011) Recent advances in neural recording microsystems. Sensors 11:4572–4597CrossRef
121.
Zurück zum Zitat Zou X, Xu X, Yao L, Lian Y (2009) A 1-V 450-nW fully integrated programmable biomedical sensor interface chip. IEEE J Solid State Circuits 44(4):1067–1077CrossRef Zou X, Xu X, Yao L, Lian Y (2009) A 1-V 450-nW fully integrated programmable biomedical sensor interface chip. IEEE J Solid State Circuits 44(4):1067–1077CrossRef
122.
Zurück zum Zitat Liu X et al (2017) A microfluidic cytometer for complete blood count with a 3.2-megapixel, 1.1-μm-pitch super-resolution image sensor in 65-nm BSI CMOS. IEEE Trans Biomed Circuits Syst 11(4):794–803CrossRef Liu X et al (2017) A microfluidic cytometer for complete blood count with a 3.2-megapixel, 1.1-μm-pitch super-resolution image sensor in 65-nm BSI CMOS. IEEE Trans Biomed Circuits Syst 11(4):794–803CrossRef
123.
Zurück zum Zitat Yu H, Yan M, Huang X (2018) CMOS integrated lab-on-a-chip system for personalized biomedical diagnosis. WileyCrossRef Yu H, Yan M, Huang X (2018) CMOS integrated lab-on-a-chip system for personalized biomedical diagnosis. WileyCrossRef
124.
Zurück zum Zitat Park S-Y, Cho J, Na K, Yoon E (2017) Modular 128-channel ∆-∆∑ analog front-end architecture using spectrum equalization scheme for 1024-channel 3-D neural recording microsystems. IEEE J Solid State Circuits 53(2):501–514CrossRef Park S-Y, Cho J, Na K, Yoon E (2017) Modular 128-channel ∆-∆∑ analog front-end architecture using spectrum equalization scheme for 1024-channel 3-D neural recording microsystems. IEEE J Solid State Circuits 53(2):501–514CrossRef
125.
Zurück zum Zitat Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid State Circuits 38(6):958–965CrossRef Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid State Circuits 38(6):958–965CrossRef
126.
Zurück zum Zitat Harrison RR et al (2006) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid State Circuits 42(1):123–133CrossRef Harrison RR et al (2006) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid State Circuits 42(1):123–133CrossRef
127.
Zurück zum Zitat Kipke DR et al (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28(46):11830–11838CrossRef Kipke DR et al (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28(46):11830–11838CrossRef
128.
Zurück zum Zitat Olsson RH, Buhl DL, Sirota AM, Buzsáki G, Wise KD (2005) Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans Biomed Eng 52(7):1303–1311CrossRef Olsson RH, Buhl DL, Sirota AM, Buzsáki G, Wise KD (2005) Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans Biomed Eng 52(7):1303–1311CrossRef
129.
Zurück zum Zitat Lee SB, Lee H-M, Kiani M, Jow U-M, Ghovanloo M (2010) An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans Biomed Circuits Syst 4(6):360–371CrossRef Lee SB, Lee H-M, Kiani M, Jow U-M, Ghovanloo M (2010) An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans Biomed Circuits Syst 4(6):360–371CrossRef
130.
Zurück zum Zitat Mollazadeh M, Murari K, Cauwenberghs G, Thakor N (2009) Micropower CMOS integrated low-noise amplification, filtering, and digitization of multimodal neuropotentials. IEEE Trans Biomed Circuits Syst 3(1):1–10CrossRef Mollazadeh M, Murari K, Cauwenberghs G, Thakor N (2009) Micropower CMOS integrated low-noise amplification, filtering, and digitization of multimodal neuropotentials. IEEE Trans Biomed Circuits Syst 3(1):1–10CrossRef
131.
Zurück zum Zitat Farshchi S, Pesterev A, Nuyujukian P, Guenterberg E, Mody I, Judy JW (2010) Embedded neural recording with TinyOS-based wireless-enabled processor modules. IEEE Trans Neural Syst Rehabil Eng 18(2):134–141CrossRef Farshchi S, Pesterev A, Nuyujukian P, Guenterberg E, Mody I, Judy JW (2010) Embedded neural recording with TinyOS-based wireless-enabled processor modules. IEEE Trans Neural Syst Rehabil Eng 18(2):134–141CrossRef
132.
Zurück zum Zitat Xiao Z, Tang C-M, Dougherty CM, Bashirullah R (2010) A 20μW neural recording tag with supply-current-modulated AFE in 0.13 μm CMOS. In: 2010 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, pp 122–123CrossRef Xiao Z, Tang C-M, Dougherty CM, Bashirullah R (2010) A 20μW neural recording tag with supply-current-modulated AFE in 0.13 μm CMOS. In: 2010 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, pp 122–123CrossRef
133.
Zurück zum Zitat Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circuits Syst 1(2):136–147CrossRef Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circuits Syst 1(2):136–147CrossRef
134.
Zurück zum Zitat Shen L, Lu N, Sun N (2018) A 1-V 0.25-μW inverter stacking amplifier with 1.07 noise efficiency factor. IEEE J Solid State Circuits 53(3):896–905CrossRef Shen L, Lu N, Sun N (2018) A 1-V 0.25-μW inverter stacking amplifier with 1.07 noise efficiency factor. IEEE J Solid State Circuits 53(3):896–905CrossRef
135.
Zurück zum Zitat Gosselin B, Sawan M, Chapman CA (2007) A low-power integrated bioamplifier with active low-frequency suppression. IEEE Trans Biomed Circuits Syst 1(3):184–192CrossRef Gosselin B, Sawan M, Chapman CA (2007) A low-power integrated bioamplifier with active low-frequency suppression. IEEE Trans Biomed Circuits Syst 1(3):184–192CrossRef
136.
Zurück zum Zitat Verma N, Shoeb A, Bohorquez J, Dawson J, Guttag J, Chandrakasan AP (2010) A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid State Circuits 45(4):804–816CrossRef Verma N, Shoeb A, Bohorquez J, Dawson J, Guttag J, Chandrakasan AP (2010) A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid State Circuits 45(4):804–816CrossRef
137.
Zurück zum Zitat Avestruz A-T et al (2008) A 5 μW/channel spectral analysis IC for chronic bidirectional brain–machine interfaces. IEEE J Solid State Circuits 43(12):3006–3024CrossRef Avestruz A-T et al (2008) A 5 μW/channel spectral analysis IC for chronic bidirectional brain–machine interfaces. IEEE J Solid State Circuits 43(12):3006–3024CrossRef
138.
Zurück zum Zitat Mollazadeh M, Murari K, Cauwenberghs G, Thakor N (2009) Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans Biomed Circuits Syst 3(6):388–397CrossRef Mollazadeh M, Murari K, Cauwenberghs G, Thakor N (2009) Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans Biomed Circuits Syst 3(6):388–397CrossRef
139.
Zurück zum Zitat Perlin GE, Sodagar AM, Wise KD (2008) A neural amplifier with high programmable gain and tunable bandwidth. In: 2008 30th annual international conference of the ieee engineering in medicine and biology society. IEEE, pp 3154–3157CrossRef Perlin GE, Sodagar AM, Wise KD (2008) A neural amplifier with high programmable gain and tunable bandwidth. In: 2008 30th annual international conference of the ieee engineering in medicine and biology society. IEEE, pp 3154–3157CrossRef
140.
Zurück zum Zitat Mohseni P, Najafi K (2004) A fully integrated neural recording amplifier with DC input stabilization. IEEE Trans Biomed Eng 51(5):832–837CrossRef Mohseni P, Najafi K (2004) A fully integrated neural recording amplifier with DC input stabilization. IEEE Trans Biomed Eng 51(5):832–837CrossRef
141.
Zurück zum Zitat Horiuchi T, Swindell T, Sander D, Abshire P (2004) A low-power CMOS neural amplifier with amplitude measurements for spike sorting. In: 2004 IEEE international symposium on circuits and systems (ISCAS), vol 4. IEEE, pp IV–29CrossRef Horiuchi T, Swindell T, Sander D, Abshire P (2004) A low-power CMOS neural amplifier with amplitude measurements for spike sorting. In: 2004 IEEE international symposium on circuits and systems (ISCAS), vol 4. IEEE, pp IV–29CrossRef
142.
Zurück zum Zitat Yin M, Ghovanloo M (2007) A low-noise preamplifier with adjustable gain and bandwidth for biopotential recording applications. In: 2007 IEEE international symposium on circuits and systems. IEEE, pp 321–324 Yin M, Ghovanloo M (2007) A low-noise preamplifier with adjustable gain and bandwidth for biopotential recording applications. In: 2007 IEEE international symposium on circuits and systems. IEEE, pp 321–324
143.
Zurück zum Zitat Chae MS, Yang Z, Yuce MR, Hoang L, Liu W (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Syst Rehabil Eng 17(4):312–321CrossRef Chae MS, Yang Z, Yuce MR, Hoang L, Liu W (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Syst Rehabil Eng 17(4):312–321CrossRef
144.
Zurück zum Zitat Zou X, Liew W-S, Yao L, Lian Y (2010) A 1V 22μW 32-channel implantable EEG recording IC. In: 2010 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, pp 126–127CrossRef Zou X, Liew W-S, Yao L, Lian Y (2010) A 1V 22μW 32-channel implantable EEG recording IC. In: 2010 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, pp 126–127CrossRef
145.
Zurück zum Zitat Gosselin B, Ghovanloo M (2011) A high-performance analog front-end for an intraoral tongue-operated assistive technology. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS). IEEE, pp 2613–2616CrossRef Gosselin B, Ghovanloo M (2011) A high-performance analog front-end for an intraoral tongue-operated assistive technology. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS). IEEE, pp 2613–2616CrossRef
146.
Zurück zum Zitat Rieger R et al (2006) Very low-noise ENG amplifier system using CMOS technology. IEEE Trans Neural Syst Rehabil Eng 14(4):427–437CrossRef Rieger R et al (2006) Very low-noise ENG amplifier system using CMOS technology. IEEE Trans Neural Syst Rehabil Eng 14(4):427–437CrossRef
147.
Zurück zum Zitat Holleman J, Otis B (2007) A sub-microwatt low-noise amplifier for neural recording. In: 2007 29th annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 3930–3933CrossRef Holleman J, Otis B (2007) A sub-microwatt low-noise amplifier for neural recording. In: 2007 29th annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 3930–3933CrossRef
148.
Zurück zum Zitat Jochum T, Denison T, Wolf P (2009) Integrated circuit amplifiers for multi-electrode intracortical recording. J Neural Eng 6(1):012001CrossRef Jochum T, Denison T, Wolf P (2009) Integrated circuit amplifiers for multi-electrode intracortical recording. J Neural Eng 6(1):012001CrossRef
149.
Zurück zum Zitat Jeon H, Bang J-S, Jung Y, Choi I, Je M (2019) A high DR, DC-coupled, time-based neural-recording IC with degeneration R-DAC for bidirectional neural interface. IEEE J Solid State Circuits 54(10):2658–2670CrossRef Jeon H, Bang J-S, Jung Y, Choi I, Je M (2019) A high DR, DC-coupled, time-based neural-recording IC with degeneration R-DAC for bidirectional neural interface. IEEE J Solid State Circuits 54(10):2658–2670CrossRef
150.
Zurück zum Zitat Heer F, Hafizovic S, Franks W, Blau A, Ziegler C, Hierlemann A (2006) CMOS microelectrode array for bidirectional interaction with neuronal networks. IEEE J Solid State Circuits 41(7):1620–1629CrossRef Heer F, Hafizovic S, Franks W, Blau A, Ziegler C, Hierlemann A (2006) CMOS microelectrode array for bidirectional interaction with neuronal networks. IEEE J Solid State Circuits 41(7):1620–1629CrossRef
151.
Zurück zum Zitat Johnson B, Peace ST, Cleland TA, Molnar A (2013) A 50μm pitch, 1120-channel, 20kHz frame rate microelectrode array for slice recording. In: 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 109–112CrossRef Johnson B, Peace ST, Cleland TA, Molnar A (2013) A 50μm pitch, 1120-channel, 20kHz frame rate microelectrode array for slice recording. In: 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 109–112CrossRef
153.
Zurück zum Zitat Lopez CM et al (2013) An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J Solid State Circuits 49(1):248–261CrossRef Lopez CM et al (2013) An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J Solid State Circuits 49(1):248–261CrossRef
154.
Zurück zum Zitat Xu J, Wu T, Liu W, Yang Z (2014) A frequency shaping neural recorder with 3 pF input capacitance and 11 plus 4.5 bits dynamic range. IEEE Trans Biomed Circuits Syst 8(4):510–527CrossRef Xu J, Wu T, Liu W, Yang Z (2014) A frequency shaping neural recorder with 3 pF input capacitance and 11 plus 4.5 bits dynamic range. IEEE Trans Biomed Circuits Syst 8(4):510–527CrossRef
155.
Zurück zum Zitat Jiang W, Hokhikyan V, Chandrakumar H, Karkare V, Marković D (2016) A±50-mV linear-input-range VCO-based neural-recording front-end with digital nonlinearity correction. IEEE J Solid State Circuits 52(1):173–184CrossRef Jiang W, Hokhikyan V, Chandrakumar H, Karkare V, Marković D (2016) A±50-mV linear-input-range VCO-based neural-recording front-end with digital nonlinearity correction. IEEE J Solid State Circuits 52(1):173–184CrossRef
156.
Zurück zum Zitat Nikas A, Jambunathan S, Klein L, Voelker M, Ortmanns M (2019) A continuous-time delta-sigma modulator using a modified instrumentation amplifier and current reuse DAC for neural recording. IEEE J Solid State Circuits 54(10):2879–2891CrossRef Nikas A, Jambunathan S, Klein L, Voelker M, Ortmanns M (2019) A continuous-time delta-sigma modulator using a modified instrumentation amplifier and current reuse DAC for neural recording. IEEE J Solid State Circuits 54(10):2879–2891CrossRef
160.
Zurück zum Zitat Dastagir T et al (2007) Electrical detection of hepatitis C virus RNA on single wall carbon nanotube-field effect transistors. Analyst 132(8):738–740CrossRef Dastagir T et al (2007) Electrical detection of hepatitis C virus RNA on single wall carbon nanotube-field effect transistors. Analyst 132(8):738–740CrossRef
161.
Zurück zum Zitat Rothberg JM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356):348–352CrossRef Rothberg JM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356):348–352CrossRef
162.
Zurück zum Zitat Nikkhoo N, Gulak PG, Maxwell K (2013) Rapid detection of E. Coli bacteria using potassium-sensitive FETs in CMOS. IEEE Trans Biomed Circuits Syst 7(5):621–630CrossRef Nikkhoo N, Gulak PG, Maxwell K (2013) Rapid detection of E. Coli bacteria using potassium-sensitive FETs in CMOS. IEEE Trans Biomed Circuits Syst 7(5):621–630CrossRef
164.
Zurück zum Zitat Malpartida-Cardenas K et al (2019) Quantitative and rapid plasmodium falciparum malaria diagnosis and artemisinin-resistance detection using a CMOS lab-on-Chip platform. Biosens Bioelectron 145:111678CrossRef Malpartida-Cardenas K et al (2019) Quantitative and rapid plasmodium falciparum malaria diagnosis and artemisinin-resistance detection using a CMOS lab-on-Chip platform. Biosens Bioelectron 145:111678CrossRef
166.
Zurück zum Zitat Bausells J, Carrabina J, Errachid A, Merlos A (1999) Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sensors Actuators B Chem 57(1–3):56–62CrossRef Bausells J, Carrabina J, Errachid A, Merlos A (1999) Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sensors Actuators B Chem 57(1–3):56–62CrossRef
167.
Zurück zum Zitat Bergveld P (1981) The operation of an ISFET as an electronic device. Sensors Actuators 1:17–29CrossRef Bergveld P (1981) The operation of an ISFET as an electronic device. Sensors Actuators 1:17–29CrossRef
168.
Zurück zum Zitat Miscourides N, Georgiou P (2016) Linear current-mode ISFET arrays. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 2827–2830CrossRef Miscourides N, Georgiou P (2016) Linear current-mode ISFET arrays. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 2827–2830CrossRef
169.
Zurück zum Zitat Milgrew MJ, Cumming DR (2008) Matching the transconductance characteristics of CMOS ISFET arrays by removing trapped charge. IEEE Trans Electron Dev 55(4):1074–1079CrossRef Milgrew MJ, Cumming DR (2008) Matching the transconductance characteristics of CMOS ISFET arrays by removing trapped charge. IEEE Trans Electron Dev 55(4):1074–1079CrossRef
170.
Zurück zum Zitat Georgiou P, Toumazou C (2009) ISFET threshold voltage programming in CMOS using hot-electron injection. Electron Lett 45(22):1112–1113CrossRef Georgiou P, Toumazou C (2009) ISFET threshold voltage programming in CMOS using hot-electron injection. Electron Lett 45(22):1112–1113CrossRef
171.
Zurück zum Zitat Wong H-S, White MH (1989) A CMOS-integrated’ISFET-operational amplifier’chemical sensor employing differential sensing. IEEE Trans Electron Dev 36(3):479–487CrossRef Wong H-S, White MH (1989) A CMOS-integrated’ISFET-operational amplifier’chemical sensor employing differential sensing. IEEE Trans Electron Dev 36(3):479–487CrossRef
172.
Zurück zum Zitat Aw C-Y, Cheung PW (1988) A pH-ISFET sensor with on-chip temperature sensing. In: Engineering in medicine and biology society, 1988. Proceedings of the Annual International Conference of the IEEE. IEEE, pp 772–773 Aw C-Y, Cheung PW (1988) A pH-ISFET sensor with on-chip temperature sensing. In: Engineering in medicine and biology society, 1988. Proceedings of the Annual International Conference of the IEEE. IEEE, pp 772–773
173.
Zurück zum Zitat Sohbati M, Toumazou C (2014) A temperature insensitive continuous time ΔpH to digital converter. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 37–40CrossRef Sohbati M, Toumazou C (2014) A temperature insensitive continuous time ΔpH to digital converter. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 37–40CrossRef
174.
Zurück zum Zitat Jakobson C, Nemirovsky Y (1999) 1/f noise in ion sensitive field effect transistors from subthreshold to saturation. IEEE Trans Electron Dev 46(1):259–261CrossRef Jakobson C, Nemirovsky Y (1999) 1/f noise in ion sensitive field effect transistors from subthreshold to saturation. IEEE Trans Electron Dev 46(1):259–261CrossRef
175.
Zurück zum Zitat Morgenshtein A, Sudakov-Boreysha L, Dinnar U, Jakobson CG, Nemirovsky Y (2004) Wheatstone-bridge readout interface for ISFET/REFET applications. Sensors Actuators B Chem 98(1):18–27CrossRef Morgenshtein A, Sudakov-Boreysha L, Dinnar U, Jakobson CG, Nemirovsky Y (2004) Wheatstone-bridge readout interface for ISFET/REFET applications. Sensors Actuators B Chem 98(1):18–27CrossRef
176.
Zurück zum Zitat Georgiou P, Toumazou C (2009) An adaptive CMOS-based PG-ISFET for pH sensing. In: 2009 IEEE international symposium on circuits and systems. IEEE, pp 557–560 Georgiou P, Toumazou C (2009) An adaptive CMOS-based PG-ISFET for pH sensing. In: 2009 IEEE international symposium on circuits and systems. IEEE, pp 557–560
177.
Zurück zum Zitat Jamasb S (2004) An analytical technique for counteracting drift in ion-selective field effect transistors (ISFETs). IEEE Sensors J 4(6):795–801CrossRef Jamasb S (2004) An analytical technique for counteracting drift in ion-selective field effect transistors (ISFETs). IEEE Sensors J 4(6):795–801CrossRef
178.
Zurück zum Zitat Bergveld P (2003) Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensors Actuators B Chem 88(1):1–20CrossRef Bergveld P (2003) Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensors Actuators B Chem 88(1):1–20CrossRef
179.
Zurück zum Zitat Moser N, Lande TS, Toumazou C, Georgiou P (2016) ISFETs in CMOS and emergent trends in instrumentation: a review. IEEE Sensors J 16(17):6496–6514CrossRef Moser N, Lande TS, Toumazou C, Georgiou P (2016) ISFETs in CMOS and emergent trends in instrumentation: a review. IEEE Sensors J 16(17):6496–6514CrossRef
180.
Zurück zum Zitat Ravezzi L, Conci P (1998) ISFET sensor coupled with CMOS read-out circuit microsystem. Electron Lett 34(23):2234–2235CrossRef Ravezzi L, Conci P (1998) ISFET sensor coupled with CMOS read-out circuit microsystem. Electron Lett 34(23):2234–2235CrossRef
181.
Zurück zum Zitat Duan M, Zhong X, Xu J, Lee Y-K, Bermak A (2020) A high offset distribution tolerance high resolution ISFET array with auto-compensation for long-term bacterial metabolism monitoring. IEEE Trans Biomed Circuits Syst 14(3):463–476 Duan M, Zhong X, Xu J, Lee Y-K, Bermak A (2020) A high offset distribution tolerance high resolution ISFET array with auto-compensation for long-term bacterial metabolism monitoring. IEEE Trans Biomed Circuits Syst 14(3):463–476
182.
Zurück zum Zitat Liu Y, Constandinou TG, Georgiou P (2019) Ultrafast large-scale chemical sensing with CMOS ISFETs: a level-crossing time-domain approach. IEEE Trans Biomed Circuits Syst 13(6):1201–1213CrossRef Liu Y, Constandinou TG, Georgiou P (2019) Ultrafast large-scale chemical sensing with CMOS ISFETs: a level-crossing time-domain approach. IEEE Trans Biomed Circuits Syst 13(6):1201–1213CrossRef
183.
Zurück zum Zitat Milgrew M, Hammond P, Cumming D (2004) The development of scalable sensor arrays using standard CMOS technology. Sensors Actuators B Chem 103(1–2):37–42CrossRef Milgrew M, Hammond P, Cumming D (2004) The development of scalable sensor arrays using standard CMOS technology. Sensors Actuators B Chem 103(1–2):37–42CrossRef
184.
Zurück zum Zitat Hammond PA, Ali D, Cumming DR (2004) Design of a single-chip pH sensor using a conventional 0.6 μm CMOS process. IEEE Sensors J 4(6):706–712CrossRef Hammond PA, Ali D, Cumming DR (2004) Design of a single-chip pH sensor using a conventional 0.6 μm CMOS process. IEEE Sensors J 4(6):706–712CrossRef
185.
Zurück zum Zitat Milgrew M, Riehle M, Cumming D (2005) A large transistor-based sensor array chip for direct extracellular imaging. Sensors Actuators B Chem 111:347–353CrossRef Milgrew M, Riehle M, Cumming D (2005) A large transistor-based sensor array chip for direct extracellular imaging. Sensors Actuators B Chem 111:347–353CrossRef
186.
Zurück zum Zitat Hammond PA, Ali D, Cumming DR (2005) A system-on-chip digital pH meter for use in a wireless diagnostic capsule. IEEE Trans Biomed Eng 52(4):687–694CrossRef Hammond PA, Ali D, Cumming DR (2005) A system-on-chip digital pH meter for use in a wireless diagnostic capsule. IEEE Trans Biomed Eng 52(4):687–694CrossRef
187.
Zurück zum Zitat Rothberg JM, Hinz W, Johnson KL, Bustillo J (2011) Methods and apparatus for measuring analytes using large scale FET arrays. Google Patents Rothberg JM, Hinz W, Johnson KL, Bustillo J (2011) Methods and apparatus for measuring analytes using large scale FET arrays. Google Patents
188.
Zurück zum Zitat Uzzal MM, Zarkesh-Ha P, Edwards JS, Coelho E, Rawat P (2014) A highly sensitive ISFET using pH-to-current conversion for real-time DNA sequencing. In: 2014 27th IEEE international system-on-chip conference (SOCC). IEEE, pp 410–414CrossRef Uzzal MM, Zarkesh-Ha P, Edwards JS, Coelho E, Rawat P (2014) A highly sensitive ISFET using pH-to-current conversion for real-time DNA sequencing. In: 2014 27th IEEE international system-on-chip conference (SOCC). IEEE, pp 410–414CrossRef
189.
Zurück zum Zitat Shepherd L, Toumazou C (2005) Weak inversion ISFETs for ultra-low power biochemical sensing and real-time analysis. Sensors Actuators B Chem 107(1):468–473CrossRef Shepherd L, Toumazou C (2005) Weak inversion ISFETs for ultra-low power biochemical sensing and real-time analysis. Sensors Actuators B Chem 107(1):468–473CrossRef
190.
Zurück zum Zitat Georgiou P, Toumazou C (2009) Chemical log-domain filter. Electron Lett 45(8):391–392CrossRef Georgiou P, Toumazou C (2009) Chemical log-domain filter. Electron Lett 45(8):391–392CrossRef
191.
Zurück zum Zitat Premanode B, Silawan N, Chan WP, Toumazou C (2007) A composite ISFET readout circuit employing current feedback. Sensors Actuators B Chem 127(2):486–490CrossRef Premanode B, Silawan N, Chan WP, Toumazou C (2007) A composite ISFET readout circuit employing current feedback. Sensors Actuators B Chem 127(2):486–490CrossRef
192.
Zurück zum Zitat Miscourides N, Georgiou P (2016) A linear programmable-gate ISFET array operating in velocity saturation. In: 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 292–295CrossRef Miscourides N, Georgiou P (2016) A linear programmable-gate ISFET array operating in velocity saturation. In: 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 292–295CrossRef
193.
Zurück zum Zitat Miscourides N, Georgiou P (2018) ISFET arrays in CMOS: a head-to-head comparison between voltage and current mode. IEEE Sensors J 19(4):1224–1238CrossRef Miscourides N, Georgiou P (2018) ISFET arrays in CMOS: a head-to-head comparison between voltage and current mode. IEEE Sensors J 19(4):1224–1238CrossRef
194.
Zurück zum Zitat Miscourides N, Yu L-S, Rodriguez-Manzano J, Georgiou P (2018) A 12.8 k current-mode velocity-saturation ISFET array for on-chip real-time DNA detection. IEEE Trans Biomed Circuits Syst 12(5):1202–1214CrossRef Miscourides N, Yu L-S, Rodriguez-Manzano J, Georgiou P (2018) A 12.8 k current-mode velocity-saturation ISFET array for on-chip real-time DNA detection. IEEE Trans Biomed Circuits Syst 12(5):1202–1214CrossRef
195.
Zurück zum Zitat Toumazou C, Lidgey FJ, Haigh D (1990) Analogue IC design: the current-mode approach. Presbyterian Publishing Corp Toumazou C, Lidgey FJ, Haigh D (1990) Analogue IC design: the current-mode approach. Presbyterian Publishing Corp
196.
Zurück zum Zitat Pookaiyaudom P, Toumazou C, Lidgey F (2008) The chemical current-conveyor: a new microchip biosensor. In: 2008 IEEE international symposium on circuits and systems. IEEE, pp 3166–3169 Pookaiyaudom P, Toumazou C, Lidgey F (2008) The chemical current-conveyor: a new microchip biosensor. In: 2008 IEEE international symposium on circuits and systems. IEEE, pp 3166–3169
197.
Zurück zum Zitat Zeng J, Kuang L, Miscourides N, Georgiou P (2020) A 128×128 current-mode ultra-high frame rate ISFET array with in-pixel calibration for real-time ion imaging. IEEE Trans Biomed Circuits Syst 14(2):359–372CrossRef Zeng J, Kuang L, Miscourides N, Georgiou P (2020) A 128×128 current-mode ultra-high frame rate ISFET array with in-pixel calibration for real-time ion imaging. IEEE Trans Biomed Circuits Syst 14(2):359–372CrossRef
198.
Zurück zum Zitat Juffali W, Georgiou P, Toumazou C (2010) ISFET based urea: creatinine translinear sensor. Electron Lett 46(11):746–748CrossRef Juffali W, Georgiou P, Toumazou C (2010) ISFET based urea: creatinine translinear sensor. Electron Lett 46(11):746–748CrossRef
199.
Zurück zum Zitat Kalofonou M, Georgiou P, Ou C-P, Toumazou C (2012) An ISFET based translinear sensor for DNA methylation detection. Sensors Actuators B Chem 161(1):156–162CrossRef Kalofonou M, Georgiou P, Ou C-P, Toumazou C (2012) An ISFET based translinear sensor for DNA methylation detection. Sensors Actuators B Chem 161(1):156–162CrossRef
200.
Zurück zum Zitat Premanode B, Chan W, Toumazou C (2006) Ultra-low power precision ISFET readout using global current feedback. Electron Lett 42(22):1264–1265CrossRef Premanode B, Chan W, Toumazou C (2006) Ultra-low power precision ISFET readout using global current feedback. Electron Lett 42(22):1264–1265CrossRef
201.
Zurück zum Zitat Chan W, Premanode B, Toumazou C (2009) 64 pH-ISFET averaging array employing global negative current feedback. Electron Lett 45(11):536–537CrossRef Chan W, Premanode B, Toumazou C (2009) 64 pH-ISFET averaging array employing global negative current feedback. Electron Lett 45(11):536–537CrossRef
202.
Zurück zum Zitat Georgiou P, Toumazou C (2009) ISFET characteristics in CMOS and their application to weak inversion operation. Sensors Actuators B Chem 143(1):211–217CrossRef Georgiou P, Toumazou C (2009) ISFET characteristics in CMOS and their application to weak inversion operation. Sensors Actuators B Chem 143(1):211–217CrossRef
203.
Zurück zum Zitat Shepherd LM, Toumazou C (2005) A biochemical translinear principle with weak inversion ISFETs. IEEE Trans Circuits Syst I: Regul Pap 52(12):2614–2619CrossRef Shepherd LM, Toumazou C (2005) A biochemical translinear principle with weak inversion ISFETs. IEEE Trans Circuits Syst I: Regul Pap 52(12):2614–2619CrossRef
204.
Zurück zum Zitat Georgiou P, Toumazou C (2007) A silicon pancreatic beta cell for diabetes. IEEE Trans Biomed Circuits Syst 1(1):39–49CrossRef Georgiou P, Toumazou C (2007) A silicon pancreatic beta cell for diabetes. IEEE Trans Biomed Circuits Syst 1(1):39–49CrossRef
205.
Zurück zum Zitat Wong W, Shepherd L, Georgiou P, Toumazou C (2009) Towards ISFET based DNA logic for rapid nucleic acid detection. In: Sensors, 2009 IEEE. IEEE, pp 1451–1454CrossRef Wong W, Shepherd L, Georgiou P, Toumazou C (2009) Towards ISFET based DNA logic for rapid nucleic acid detection. In: Sensors, 2009 IEEE. IEEE, pp 1451–1454CrossRef
206.
Zurück zum Zitat AlAhdal A, Toumazou C (2012) ISFET-based chemical Schmitt trigger. Electron Lett 48(10):549–551CrossRef AlAhdal A, Toumazou C (2012) ISFET-based chemical Schmitt trigger. Electron Lett 48(10):549–551CrossRef
207.
Zurück zum Zitat Al-Ahdal A, Toumazou C (2011) ISFET-based chemical switch. IEEE Sensors J 12(5):1140–1146CrossRef Al-Ahdal A, Toumazou C (2011) ISFET-based chemical switch. IEEE Sensors J 12(5):1140–1146CrossRef
208.
Zurück zum Zitat Al-Ahdal A, Toumazou C (2012) High gain ISFET based νMOS chemical inverter. Sensors Actuators B Chem 171:110–117CrossRef Al-Ahdal A, Toumazou C (2012) High gain ISFET based νMOS chemical inverter. Sensors Actuators B Chem 171:110–117CrossRef
209.
Zurück zum Zitat Nabovati G, Ghafar-Zadeh E, Sawan M (2015) A 64 pixel ISFET-based biosensor for extracellular pH gradient monitoring. In: 2015 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1762–1765CrossRef Nabovati G, Ghafar-Zadeh E, Sawan M (2015) A 64 pixel ISFET-based biosensor for extracellular pH gradient monitoring. In: 2015 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1762–1765CrossRef
210.
Zurück zum Zitat Liu Y, Al-Ahdal A, Georgiou P, Toumazou C (2012) Minimal readout scheme for ISFET sensing arrays based on pulse width modulation. Electron Lett 48(10):548–549CrossRef Liu Y, Al-Ahdal A, Georgiou P, Toumazou C (2012) Minimal readout scheme for ISFET sensing arrays based on pulse width modulation. Electron Lett 48(10):548–549CrossRef
211.
Zurück zum Zitat Moser N, Lande TS, Georgiou P (2015) A novel pH-to-time ISFET pixel architecture with offset compensation. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 481–484CrossRef Moser N, Lande TS, Georgiou P (2015) A novel pH-to-time ISFET pixel architecture with offset compensation. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 481–484CrossRef
212.
Zurück zum Zitat Moser N, Lande TS, Georgiou P (2016) A robust ISFET array with in-pixel quantisation and automatic offset calibration. In: 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 50–53CrossRef Moser N, Lande TS, Georgiou P (2016) A robust ISFET array with in-pixel quantisation and automatic offset calibration. In: 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 50–53CrossRef
213.
Zurück zum Zitat Moser N, Rodriguez-Manzano J, Lande TS, Georgiou P (2018) A scalable ISFET sensing and memory array with sensor auto-calibration for on-chip real-time DNA detection. IEEE Trans Biomed Circuits Syst 12(2):390–401CrossRef Moser N, Rodriguez-Manzano J, Lande TS, Georgiou P (2018) A scalable ISFET sensing and memory array with sensor auto-calibration for on-chip real-time DNA detection. IEEE Trans Biomed Circuits Syst 12(2):390–401CrossRef
214.
Zurück zum Zitat Cacho-Soblechero M, Malpartida-Cardenas K, Moser N, Georgiou P (2019) Programmable ion-sensing using oscillator-based isfet architectures. IEEE Sensors J 19(19):8563–8575CrossRef Cacho-Soblechero M, Malpartida-Cardenas K, Moser N, Georgiou P (2019) Programmable ion-sensing using oscillator-based isfet architectures. IEEE Sensors J 19(19):8563–8575CrossRef
215.
Zurück zum Zitat Chan WP, Premanode B, Toumazou C (2010) An integrated ISFETs instrumentation system in standard CMOS technology. IEEE J Solid State Circuits 45(9):1923–1934CrossRef Chan WP, Premanode B, Toumazou C (2010) An integrated ISFETs instrumentation system in standard CMOS technology. IEEE J Solid State Circuits 45(9):1923–1934CrossRef
216.
Zurück zum Zitat Wang K, Liu Y, Toumazou C, Georgiou P (2012) A TDC based ISFET readout for large-scale chemical sensing systems. In: 2012 IEEE biomedical circuits and systems conference (BioCAS). IEEE, pp 176–179CrossRef Wang K, Liu Y, Toumazou C, Georgiou P (2012) A TDC based ISFET readout for large-scale chemical sensing systems. In: 2012 IEEE biomedical circuits and systems conference (BioCAS). IEEE, pp 176–179CrossRef
217.
Zurück zum Zitat Livi P et al (2014) Sensor system including silicon nanowire ion sensitive FET arrays and CMOS readout. Sensors Actuators B Chem 204:568–577CrossRef Livi P et al (2014) Sensor system including silicon nanowire ion sensitive FET arrays and CMOS readout. Sensors Actuators B Chem 204:568–577CrossRef
218.
Zurück zum Zitat Chang C-F, Lu MS-C (2020) CMOS ion sensitive field effect transistors for highly sensitive detection of DNA hybridization. IEEE Sensors J 20(16):8930–8937CrossRef Chang C-F, Lu MS-C (2020) CMOS ion sensitive field effect transistors for highly sensitive detection of DNA hybridization. IEEE Sensors J 20(16):8930–8937CrossRef
219.
Zurück zum Zitat Georgiou P, Toumazou C (2008) An adaptive ISFET chemical imager chip. In: 2008 IEEE international symposium on circuits and systems. IEEE, pp 2078–2081 Georgiou P, Toumazou C (2008) An adaptive ISFET chemical imager chip. In: 2008 IEEE international symposium on circuits and systems. IEEE, pp 2078–2081
220.
Zurück zum Zitat Lee C, Chen Y-W, Lu MS-C (2020) CMOS biosensors for the detection of DNA hybridization in high ionic-strength solutions. IEEE Sensors J 21(4):4135–4142CrossRef Lee C, Chen Y-W, Lu MS-C (2020) CMOS biosensors for the detection of DNA hybridization in high ionic-strength solutions. IEEE Sensors J 21(4):4135–4142CrossRef
221.
Zurück zum Zitat Jiang Y, Coquet P, Yu H (2017) Fast food safety screening with CMOS high-sensitivity large-arrayed ISFET sensor. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 1–4 Jiang Y, Coquet P, Yu H (2017) Fast food safety screening with CMOS high-sensitivity large-arrayed ISFET sensor. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 1–4
222.
Zurück zum Zitat Do AT, Minkyu J, Yeo KS (2013) Improved inverter-based read-out scheme for low-power ISFET sensing array. Electron Lett 49(24):1517–1518CrossRef Do AT, Minkyu J, Yeo KS (2013) Improved inverter-based read-out scheme for low-power ISFET sensing array. Electron Lett 49(24):1517–1518CrossRef
223.
Zurück zum Zitat Futagawa M, Otake R, Dasai F, Ishida M, Sawada K (2015) Realization of 1 million pixel charge transfer type ion image sensor with 12 μm pixel pitch. In: 2015 transducers-2015 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS). IEEE, pp 236–239CrossRef Futagawa M, Otake R, Dasai F, Ishida M, Sawada K (2015) Realization of 1 million pixel charge transfer type ion image sensor with 12 μm pixel pitch. In: 2015 transducers-2015 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS). IEEE, pp 236–239CrossRef
224.
Zurück zum Zitat Hizawa T, Sawada K, Takao H, Ishida M (2006) Fabrication of a two-dimensional pH image sensor using a charge transfer technique. Sensors Actuators B Chem 117(2):509–515CrossRef Hizawa T, Sawada K, Takao H, Ishida M (2006) Fabrication of a two-dimensional pH image sensor using a charge transfer technique. Sensors Actuators B Chem 117(2):509–515CrossRef
225.
Zurück zum Zitat Huang X, Yu H, Liu X, Jiang Y, Yan M, Wu D (2015) A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis. IEEE Trans Biomed Eng 62(9):2224–2233CrossRef Huang X, Yu H, Liu X, Jiang Y, Yan M, Wu D (2015) A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis. IEEE Trans Biomed Eng 62(9):2224–2233CrossRef
226.
Zurück zum Zitat Goh ZDC, Georgiou P, Constandinou TG, Prodromakis T, Toumazou C (2011) Live demonstration: a CMOS-based lab-on-chip array for combined magnetic manipulation and opto-chemical sensing. In: 2011 IEEE international symposium of circuits and systems (ISCAS). IEEE, pp 1997–2001CrossRef Goh ZDC, Georgiou P, Constandinou TG, Prodromakis T, Toumazou C (2011) Live demonstration: a CMOS-based lab-on-chip array for combined magnetic manipulation and opto-chemical sensing. In: 2011 IEEE international symposium of circuits and systems (ISCAS). IEEE, pp 1997–2001CrossRef
227.
Zurück zum Zitat Nemeth B, Piechocinski MS, Cumming DR (2012) High-resolution real-time ion-camera system using a CMOS-based chemical sensor array for proton imaging. Sensors Actuators B Chem 171:747–752CrossRef Nemeth B, Piechocinski MS, Cumming DR (2012) High-resolution real-time ion-camera system using a CMOS-based chemical sensor array for proton imaging. Sensors Actuators B Chem 171:747–752CrossRef
228.
Zurück zum Zitat Hu Y, Georgiou P (2014) 3-T ISFET front-end utilising parasitic device capacitance. Electron Lett 50(21):1507–1509CrossRef Hu Y, Georgiou P (2014) 3-T ISFET front-end utilising parasitic device capacitance. Electron Lett 50(21):1507–1509CrossRef
229.
Zurück zum Zitat Maruyama Y, Terao S, Sawada K (2009) Label free CMOS DNA image sensor based on the charge transfer technique. Biosens Bioelectron 24(10):3108–3112CrossRef Maruyama Y, Terao S, Sawada K (2009) Label free CMOS DNA image sensor based on the charge transfer technique. Biosens Bioelectron 24(10):3108–3112CrossRef
230.
Zurück zum Zitat Sawada K, Shimada T, Ohshina T, Takao H, Ishida M (2004) Highly sensitive ion sensors using charge transfer technique. Sensors Actuators B Chem 98(1):69–72CrossRef Sawada K, Shimada T, Ohshina T, Takao H, Ishida M (2004) Highly sensitive ion sensors using charge transfer technique. Sensors Actuators B Chem 98(1):69–72CrossRef
231.
Zurück zum Zitat Lee Y-N et al (2019) High-density 2-μm-pitch pH image sensor with high-speed operation up to 1933 fps. IEEE Trans Biomed Circuits Syst 13(2):352–363CrossRef Lee Y-N et al (2019) High-density 2-μm-pitch pH image sensor with high-speed operation up to 1933 fps. IEEE Trans Biomed Circuits Syst 13(2):352–363CrossRef
232.
Zurück zum Zitat Matsuo T, Nakajima H (1984) Characteristics of reference electrodes using a polymer gate ISFET. Sensors Actuators 5(4):293–305CrossRef Matsuo T, Nakajima H (1984) Characteristics of reference electrodes using a polymer gate ISFET. Sensors Actuators 5(4):293–305CrossRef
233.
Zurück zum Zitat Nabovati G, Ghafarzadeh E, Awwad F, Sawan M (2013) A sigma delta ISFET readout circuit for Lab-on-Chip applications. In: New circuits and systems conference (NEWCAS), 2013 IEEE 11th International. IEEE, pp 1–4 Nabovati G, Ghafarzadeh E, Awwad F, Sawan M (2013) A sigma delta ISFET readout circuit for Lab-on-Chip applications. In: New circuits and systems conference (NEWCAS), 2013 IEEE 11th International. IEEE, pp 1–4
234.
Zurück zum Zitat Liu Y, Toumazou C (2010) An ISFET based sensing array with sensor offset compensation and pH sensitivity enhancement. In: Proceedings of 2010 IEEE international symposium on circuits and systems. IEEE, pp 2283–2286 Liu Y, Toumazou C (2010) An ISFET based sensing array with sensor offset compensation and pH sensitivity enhancement. In: Proceedings of 2010 IEEE international symposium on circuits and systems. IEEE, pp 2283–2286
235.
Zurück zum Zitat Palan B, Santos F, Karam J, Courtois B, Husak M (1999) New ISFET sensor interface circuit for biomedical applications. Sensors Actuators B Chem 57(1–3):63–68CrossRef Palan B, Santos F, Karam J, Courtois B, Husak M (1999) New ISFET sensor interface circuit for biomedical applications. Sensors Actuators B Chem 57(1–3):63–68CrossRef
236.
Zurück zum Zitat Kalofonou M, Toumazou C (2013) A low power sub-μW chemical Gilbert cell for ISFET differential reaction monitoring. IEEE Trans Biomed Circuits Syst 8(4):565–574CrossRef Kalofonou M, Toumazou C (2013) A low power sub-μW chemical Gilbert cell for ISFET differential reaction monitoring. IEEE Trans Biomed Circuits Syst 8(4):565–574CrossRef
237.
Zurück zum Zitat Chodavarapu V, Titus A, Cartwright A (2005) Differential read-out architecture for CMOS ISFET microsystems. Electron Lett 41(12):698–699CrossRef Chodavarapu V, Titus A, Cartwright A (2005) Differential read-out architecture for CMOS ISFET microsystems. Electron Lett 41(12):698–699CrossRef
238.
Zurück zum Zitat Seong-Jin K, Euisik Y (2012) Label-free CMOS bio sensor with on-chip noise reduction scheme for real-time quantitative monitoring of biomolecules. IEEE Trans Biomed Circuits Syst 6(3):189–196CrossRef Seong-Jin K, Euisik Y (2012) Label-free CMOS bio sensor with on-chip noise reduction scheme for real-time quantitative monitoring of biomolecules. IEEE Trans Biomed Circuits Syst 6(3):189–196CrossRef
239.
Zurück zum Zitat Chudy M, Wróblewski W, Brzózka Z (1999) Towards REFET. Sensors Actuators B Chem 57(1–3):47–50CrossRef Chudy M, Wróblewski W, Brzózka Z (1999) Towards REFET. Sensors Actuators B Chem 57(1–3):47–50CrossRef
240.
Zurück zum Zitat Chovelon J et al (1992) Sensitization of dielectric surfaces by chemical grafting: application to pH ISFETs and REFETs. Sensors Actuators B Chem 8(3):221–225CrossRef Chovelon J et al (1992) Sensitization of dielectric surfaces by chemical grafting: application to pH ISFETs and REFETs. Sensors Actuators B Chem 8(3):221–225CrossRef
241.
Zurück zum Zitat Nakajima H, Esashi M, Matsuo T (1982) The cation concentration response of polymer gate ISFET. J Electrochem Soc 129(1):141CrossRef Nakajima H, Esashi M, Matsuo T (1982) The cation concentration response of polymer gate ISFET. J Electrochem Soc 129(1):141CrossRef
243.
Zurück zum Zitat Hong L, Li H, Yang H, Sengupta K (2018) Integrated angle-insensitive nanoplasmonic filters for ultraminiaturized fluorescence microarray in a 65 nm digital CMOS process. ACS Photonics 5(11):4312–4322CrossRef Hong L, Li H, Yang H, Sengupta K (2018) Integrated angle-insensitive nanoplasmonic filters for ultraminiaturized fluorescence microarray in a 65 nm digital CMOS process. ACS Photonics 5(11):4312–4322CrossRef
244.
Zurück zum Zitat Khiarak MN, Martel S, De Koninck Y, Gosselin B (2019) High-DR CMOS fluorescence biosensor with extended counting ADC and noise cancellation. IEEE Trans Circuits Syst I: Regul Pap 66(6):2077–2087CrossRef Khiarak MN, Martel S, De Koninck Y, Gosselin B (2019) High-DR CMOS fluorescence biosensor with extended counting ADC and noise cancellation. IEEE Trans Circuits Syst I: Regul Pap 66(6):2077–2087CrossRef
245.
Zurück zum Zitat Zhu C, Hong L, Yang H, Sengupta K (2022) A packaged multiplexed fluorescent biomolecular sensor array and ultralow-power wireless interface in CMOS for ingestible electronic applications. IEEE Sensors J 22(24):24060–24074CrossRef Zhu C, Hong L, Yang H, Sengupta K (2022) A packaged multiplexed fluorescent biomolecular sensor array and ultralow-power wireless interface in CMOS for ingestible electronic applications. IEEE Sensors J 22(24):24060–24074CrossRef
246.
Zurück zum Zitat Aghimand F, Hu C, Sharma S, Pochana KK, Murray RM, Emami A (2023) 21.1 A 65nm CMOS living-cell dynamic fluorescence sensor with 1.05 fA sensitivity at 600/700nm wavelengths. In: 2023 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp 312–314CrossRef Aghimand F, Hu C, Sharma S, Pochana KK, Murray RM, Emami A (2023) 21.1 A 65nm CMOS living-cell dynamic fluorescence sensor with 1.05 fA sensitivity at 600/700nm wavelengths. In: 2023 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp 312–314CrossRef
247.
Zurück zum Zitat Aghlmand F, Hu CY, Sharma S, Pochana K, Murray RM, Emami A (2023) A 65-nm CMOS fluorescence sensor for dynamic monitoring of living cells. IEEE J Solid State Circuits Aghlmand F, Hu CY, Sharma S, Pochana K, Murray RM, Emami A (2023) A 65-nm CMOS fluorescence sensor for dynamic monitoring of living cells. IEEE J Solid State Circuits
248.
Zurück zum Zitat C. Zhu, Y. Wen, T. Liu, H. Yang, and K. Sengupta, "An ingestible pill with CMOS fluorescence sensor array, bi-directional wireless interface and packaged optics for in-vivo bio-molecular sensing,". IEEE Trans Biomed Circuits Syst, 2023.CrossRef C. Zhu, Y. Wen, T. Liu, H. Yang, and K. Sengupta, "An ingestible pill with CMOS fluorescence sensor array, bi-directional wireless interface and packaged optics for in-vivo bio-molecular sensing,". IEEE Trans Biomed Circuits Syst, 2023.CrossRef
249.
Zurück zum Zitat Awan MA, Wang B, Quadir NA, Bermak A (2021) Review and analysis of CMOS current readout circuits for biosensing applications. In: 2021 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–5 Awan MA, Wang B, Quadir NA, Bermak A (2021) Review and analysis of CMOS current readout circuits for biosensing applications. In: 2021 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–5
250.
Zurück zum Zitat Khiarak MN, Martel S, De Koninck Y, Gosselin B (2017) A high-sensitivity CMOS biophotometry sensor with embedded continuous-time ΣΔ modulation. In: 2017 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–4 Khiarak MN, Martel S, De Koninck Y, Gosselin B (2017) A high-sensitivity CMOS biophotometry sensor with embedded continuous-time ΣΔ modulation. In: 2017 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–4
251.
Zurück zum Zitat Manickam A et al (2017) A fully integrated CMOS fluorescence biochip for DNA and RNA testing. IEEE J Solid State Circuits 52:2857–2870CrossRef Manickam A et al (2017) A fully integrated CMOS fluorescence biochip for DNA and RNA testing. IEEE J Solid State Circuits 52:2857–2870CrossRef
252.
Zurück zum Zitat Salama K (2005) CMOS luminescence detection lab-on-chip: modeling, design, and characterization. Stanford University Salama K (2005) CMOS luminescence detection lab-on-chip: modeling, design, and characterization. Stanford University
253.
Zurück zum Zitat Rabbani R et al (2023) Towards a wireless image sensor for real-time fluorescence microscopy in cancer therapy. bioRxiv Rabbani R et al (2023) Towards a wireless image sensor for real-time fluorescence microscopy in cancer therapy. bioRxiv
254.
Zurück zum Zitat Alam MW, Vedaei SS, Wahid KA (2020) A fluorescence-based wireless capsule endoscopy system for detecting colorectal cancer. Cancers 12(4):890CrossRef Alam MW, Vedaei SS, Wahid KA (2020) A fluorescence-based wireless capsule endoscopy system for detecting colorectal cancer. Cancers 12(4):890CrossRef
255.
Zurück zum Zitat Lee Y-C et al (2021) CMOS-MEMS technologies for the applications of environment sensors and environment sensing hubs. J Micromech Microeng 31(7):074004CrossRef Lee Y-C et al (2021) CMOS-MEMS technologies for the applications of environment sensors and environment sensing hubs. J Micromech Microeng 31(7):074004CrossRef
256.
Zurück zum Zitat Eltoukhy H, Salama K, Gamal AE (2006) A 0.18 um CMOS bioluminescence detection lab-on-chip. IEEE J Solid State Circuits 41(3):651–662CrossRef Eltoukhy H, Salama K, Gamal AE (2006) A 0.18 um CMOS bioluminescence detection lab-on-chip. IEEE J Solid State Circuits 41(3):651–662CrossRef
257.
Zurück zum Zitat Jang B, Cao P, Chevalier A, Ellington A, Hassibi A. A CMOS fluorescent-based biosensor microarray Jang B, Cao P, Chevalier A, Ellington A, Hassibi A. A CMOS fluorescent-based biosensor microarray
258.
Zurück zum Zitat Seo M-W et al (2015) A 10 ps time-resolution CMOS image sensor with two-tap true-CDS lock-in pixels for fluorescence lifetime imaging. IEEE J Solid State Circuits 51(1):141–154CrossRef Seo M-W et al (2015) A 10 ps time-resolution CMOS image sensor with two-tap true-CDS lock-in pixels for fluorescence lifetime imaging. IEEE J Solid State Circuits 51(1):141–154CrossRef
259.
Zurück zum Zitat Kobayashi T et al (2016) Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging. Sci Rep 6(1):21247CrossRef Kobayashi T et al (2016) Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging. Sci Rep 6(1):21247CrossRef
260.
Zurück zum Zitat Choi J et al (2020) Fully integrated time-gated 3D fluorescence imager for deep neural imaging. IEEE Trans Biomed Circuits Syst 14(4):636–645CrossRef Choi J et al (2020) Fully integrated time-gated 3D fluorescence imager for deep neural imaging. IEEE Trans Biomed Circuits Syst 14(4):636–645CrossRef
261.
Zurück zum Zitat Pollmann EH et al., Subdural CMOS optical probe (SCOPe) for bidirectional neural interfacing. BioRxiv, p. 2023.02. 07.527500, 2023. Pollmann EH et al., Subdural CMOS optical probe (SCOPe) for bidirectional neural interfacing. BioRxiv, p. 2023.02. 07.527500, 2023.
262.
Zurück zum Zitat Rabbani R et al (2022) A 36 ⨉ 40 wireless fluorescence image sensor for real-time microscopy in cancer therapy. In: 2022 IEEE custom integrated circuits conference (CICC). IEEE, pp 1–2 Rabbani R et al (2022) A 36 ⨉ 40 wireless fluorescence image sensor for real-time microscopy in cancer therapy. In: 2022 IEEE custom integrated circuits conference (CICC). IEEE, pp 1–2
263.
Zurück zum Zitat Liu Q et al (2022) A threshold-based bioluminescence detector with a CMOS-integrated photodiode array in 65 nm for a multi-diagnostic ingestible capsule. IEEE J Solid State Circuits 58(3):838–851CrossRef Liu Q et al (2022) A threshold-based bioluminescence detector with a CMOS-integrated photodiode array in 65 nm for a multi-diagnostic ingestible capsule. IEEE J Solid State Circuits 58(3):838–851CrossRef
264.
Zurück zum Zitat Rabbani R et al (2024) 17.3 a fully wireless, miniaturized, multicolor fluorescence image sensor implant for real-time monitoring in cancer therapy. In: 2024 IEEE international solid-state circuits conference (ISSCC), vol 67. IEEE, pp 318–320CrossRef Rabbani R et al (2024) 17.3 a fully wireless, miniaturized, multicolor fluorescence image sensor implant for real-time monitoring in cancer therapy. In: 2024 IEEE international solid-state circuits conference (ISSCC), vol 67. IEEE, pp 318–320CrossRef
265.
Zurück zum Zitat Skucha K, Gambini S, Liu P, Megens M, Kim J, Boser BE (2013) Design considerations for CMOS-integrated Hall-effect magnetic bead detectors for biosensor applications. J Microelectromech Syst 22:1327–1338CrossRef Skucha K, Gambini S, Liu P, Megens M, Kim J, Boser BE (2013) Design considerations for CMOS-integrated Hall-effect magnetic bead detectors for biosensor applications. J Microelectromech Syst 22:1327–1338CrossRef
266.
Zurück zum Zitat Aytur T, Beatty PR, Boser B, Anwar M, Ishikawa T (2002) An immunoassay platform based on CMOS Hall sensors. In: Solid-state sensor, Actuator and Microsystems Workshop, pp 2–6 Aytur T, Beatty PR, Boser B, Anwar M, Ishikawa T (2002) An immunoassay platform based on CMOS Hall sensors. In: Solid-state sensor, Actuator and Microsystems Workshop, pp 2–6
267.
Zurück zum Zitat Liu P, Skucha K, Megens M, Boser B (2011) A CMOS Hall-effect sensor for the characterization and detection of magnetic nanoparticles for biomedical applications. IEEE Trans Magn 47(10):3449–3451CrossRef Liu P, Skucha K, Megens M, Boser B (2011) A CMOS Hall-effect sensor for the characterization and detection of magnetic nanoparticles for biomedical applications. IEEE Trans Magn 47(10):3449–3451CrossRef
268.
Zurück zum Zitat Gambini S, Skucha K, Liu PP, Kim J, Krigel R (2012) A 10 kPixel CMOS hall sensor array with baseline suppression and parallel readout for immunoassays. IEEE J Solid State Circuits 48(1):302–317CrossRef Gambini S, Skucha K, Liu PP, Kim J, Krigel R (2012) A 10 kPixel CMOS hall sensor array with baseline suppression and parallel readout for immunoassays. IEEE J Solid State Circuits 48(1):302–317CrossRef
269.
Zurück zum Zitat Skucha K, Gambini S, Liu P, Megens M, Kim J, Boser B (2013) Design considerations for CMOS-integrated Hall-effect magnetic bead detectors for biosensor applications. J Microelectromech Syst 22(6):1327–1338CrossRef Skucha K, Gambini S, Liu P, Megens M, Kim J, Boser B (2013) Design considerations for CMOS-integrated Hall-effect magnetic bead detectors for biosensor applications. J Microelectromech Syst 22(6):1327–1338CrossRef
270.
Zurück zum Zitat Heidari H, Zuo S, Krasoulis A, Nazarpour K (2018) CMOS magnetic sensors for wearable magnetomyography. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2116–2119CrossRef Heidari H, Zuo S, Krasoulis A, Nazarpour K (2018) CMOS magnetic sensors for wearable magnetomyography. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2116–2119CrossRef
271.
Zurück zum Zitat Girgin A, Bilmez M, Amin HY, Karalar TC (2019) A silicon Hall sensor SoC for current sensors. Microelectron J 90:12–18CrossRef Girgin A, Bilmez M, Amin HY, Karalar TC (2019) A silicon Hall sensor SoC for current sensors. Microelectron J 90:12–18CrossRef
272.
Zurück zum Zitat Fan H et al (2021) Detection techniques of biological and chemical Hall sensors. RSC Adv 11(13):7257–7270CrossRef Fan H et al (2021) Detection techniques of biological and chemical Hall sensors. RSC Adv 11(13):7257–7270CrossRef
273.
Zurück zum Zitat Besse P-A, Boero G, Demierre M, Pott V, Popovic R (2002) Detection of a single magnetic microbead using a miniaturized silicon Hall sensor. Appl Phys Lett 80(22):4199–4201CrossRef Besse P-A, Boero G, Demierre M, Pott V, Popovic R (2002) Detection of a single magnetic microbead using a miniaturized silicon Hall sensor. Appl Phys Lett 80(22):4199–4201CrossRef
274.
Zurück zum Zitat Liu PP et al (2012) Magnetic relaxation detector for microbead labels. IEEE J Solid State Circuits 47(4):1056–1064CrossRef Liu PP et al (2012) Magnetic relaxation detector for microbead labels. IEEE J Solid State Circuits 47(4):1056–1064CrossRef
275.
Zurück zum Zitat Bhalla N et al (2013) Microfluidic platform for enzyme-linked and magnetic particle-based immunoassay. Micromachines 4(2):257–271CrossRef Bhalla N et al (2013) Microfluidic platform for enzyme-linked and magnetic particle-based immunoassay. Micromachines 4(2):257–271CrossRef
276.
Zurück zum Zitat Kuo P-H et al (2015) A smart CMOS assay SoC for rapid blood screening test of risk prediction. IEEE Trans Biomed Circuits Syst 9(6):790–800 Kuo P-H et al (2015) A smart CMOS assay SoC for rapid blood screening test of risk prediction. IEEE Trans Biomed Circuits Syst 9(6):790–800
277.
Zurück zum Zitat Chang T, Juang K-C (2016) CMOS hall sensor with reduced sensitivity drift by synchronous excitation calibration for wearable biomagnetic sensor in system-on-chip. In: 2016 IEEE Sensors. IEEE, pp 1–3 Chang T, Juang K-C (2016) CMOS hall sensor with reduced sensitivity drift by synchronous excitation calibration for wearable biomagnetic sensor in system-on-chip. In: 2016 IEEE Sensors. IEEE, pp 1–3
278.
Zurück zum Zitat Wang H, Chen Y, Hassibi A, Scherer A, Hajimiri A. A frequency-shift CMOS magnetic biosensor array with single-bead sensitivity and no external magnet Wang H, Chen Y, Hassibi A, Scherer A, Hajimiri A. A frequency-shift CMOS magnetic biosensor array with single-bead sensitivity and no external magnet
279.
Zurück zum Zitat Wang H, Kosai S, Sideris C, Hajimiri A. An ultrasensitive CMOS magnetic biosensor array with correlated double counting noise suppression Wang H, Kosai S, Sideris C, Hajimiri A. An ultrasensitive CMOS magnetic biosensor array with correlated double counting noise suppression
280.
Zurück zum Zitat Wang H, Mahdavi A, Tirrell DA, Hajimiri A (2012) A magnetic cell-based sensor. Lab Chip 12:4465–4471CrossRef Wang H, Mahdavi A, Tirrell DA, Hajimiri A (2012) A magnetic cell-based sensor. Lab Chip 12:4465–4471CrossRef
281.
Zurück zum Zitat Sideris C, Khial PP, Hajimiri A (2018) Design and implementation of reference-free drift-cancelling CMOS magnetic sensors for biosensing applications. IEEE J Solid State Circuits 53(11):3065–3075CrossRef Sideris C, Khial PP, Hajimiri A (2018) Design and implementation of reference-free drift-cancelling CMOS magnetic sensors for biosensing applications. IEEE J Solid State Circuits 53(11):3065–3075CrossRef
282.
Zurück zum Zitat Sideris C, Hajimiri A. An integrated magnetic spectrometer for multiplexed biosensing Sideris C, Hajimiri A. An integrated magnetic spectrometer for multiplexed biosensing
283.
Zurück zum Zitat Sun J-H, Ling B, Abdullah-Al Kaiser M, Sideris C (2022) A drift-compensated magnetic spectrometer for point-of-care wash-free immunoassays using a concurrent dual-frequency oscillator. In: ESSCIRC 2022-IEEE 48th european solid state circuits conference (ESSCIRC). IEEE, pp 173–176CrossRef Sun J-H, Ling B, Abdullah-Al Kaiser M, Sideris C (2022) A drift-compensated magnetic spectrometer for point-of-care wash-free immunoassays using a concurrent dual-frequency oscillator. In: ESSCIRC 2022-IEEE 48th european solid state circuits conference (ESSCIRC). IEEE, pp 173–176CrossRef
284.
Zurück zum Zitat Murali P, Izyumin I, Cohen D, Chien J-C, Niknejad AM, Boser B. A CMOS micro-flow cytometer for magnetic label detection and classification Murali P, Izyumin I, Cohen D, Chien J-C, Niknejad AM, Boser B. A CMOS micro-flow cytometer for magnetic label detection and classification
285.
Zurück zum Zitat Murali P, Niknejad AM, Boser BE (2016) CMOS microflow cytometer for magnetic label detection and classification. IEEE J Solid State Circuits 52:543–555CrossRef Murali P, Niknejad AM, Boser BE (2016) CMOS microflow cytometer for magnetic label detection and classification. IEEE J Solid State Circuits 52:543–555CrossRef
286.
Zurück zum Zitat Reisbeck M, Helou MJ, Richter L, Kappes B, Friedrich O, Hayden O (2016) Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood. Sci Rep 6(1):32838CrossRef Reisbeck M, Helou MJ, Richter L, Kappes B, Friedrich O, Hayden O (2016) Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood. Sci Rep 6(1):32838CrossRef
287.
Zurück zum Zitat Soares R et al (2019) Go with the flow: advances and trends in magnetic flow cytometry. Anal Bioanal Chem 411:1839–1862CrossRef Soares R et al (2019) Go with the flow: advances and trends in magnetic flow cytometry. Anal Bioanal Chem 411:1839–1862CrossRef
288.
Zurück zum Zitat Tang H et al (2024) High sensitivity and high throughput magnetic flow CMOS cytometers with 2D oscillator Array and inter-sensor spectrogram cross-correlation. IEEE Trans Biomed Circuits Syst Tang H et al (2024) High sensitivity and high throughput magnetic flow CMOS cytometers with 2D oscillator Array and inter-sensor spectrogram cross-correlation. IEEE Trans Biomed Circuits Syst
289.
Zurück zum Zitat Hall DA (2011) GMR spin-valve biochips and interface electronics for ultrasensitive in-vitro diagnostics. Stanford University Hall DA (2011) GMR spin-valve biochips and interface electronics for ultrasensitive in-vitro diagnostics. Stanford University
290.
Zurück zum Zitat Han S-J, Yu H, Murmann B, Pourmand N, Wang SX. A high-density magnetoresistive biosensor array with drift-compensation mechanism Han S-J, Yu H, Murmann B, Pourmand N, Wang SX. A high-density magnetoresistive biosensor array with drift-compensation mechanism
291.
Zurück zum Zitat Hall DA, Gaster RS, Makinwa KAA, Wang SX, Murmann B (2013) A 256 pixel magnetoresistive biosensor microarray in 0.18 μm CMOS. IEEE J Solid State Circuits 48:1290–1301CrossRef Hall DA, Gaster RS, Makinwa KAA, Wang SX, Murmann B (2013) A 256 pixel magnetoresistive biosensor microarray in 0.18 μm CMOS. IEEE J Solid State Circuits 48:1290–1301CrossRef
292.
Zurück zum Zitat Costa T, Cardoso FA, Germano J, Freitas PP, Piedade MS (2017) A CMOS front-end with integrated magnetoresistive sensors for biomolecular recognition detection applications. IEEE Trans Biomed Circuits Syst 11:988–1000CrossRef Costa T, Cardoso FA, Germano J, Freitas PP, Piedade MS (2017) A CMOS front-end with integrated magnetoresistive sensors for biomolecular recognition detection applications. IEEE Trans Biomed Circuits Syst 11:988–1000CrossRef
293.
Zurück zum Zitat Zhou X, Huang C-C, Hall DA (2017) Giant magnetoresistive biosensor array for detecting magnetorelaxation. IEEE Trans Biomed Circuits Syst 11:755–764CrossRef Zhou X, Huang C-C, Hall DA (2017) Giant magnetoresistive biosensor array for detecting magnetorelaxation. IEEE Trans Biomed Circuits Syst 11:755–764CrossRef
294.
Zurück zum Zitat Zhou X, Sveiven M, Hall DA (2019) A CMOS magnetoresistive sensor front-end with mismatch-tolerance and sub-ppm sensitivity for magnetic immunoassays. IEEE Trans Biomed Circuits Syst 13:1254–1263CrossRef Zhou X, Sveiven M, Hall DA (2019) A CMOS magnetoresistive sensor front-end with mismatch-tolerance and sub-ppm sensitivity for magnetic immunoassays. IEEE Trans Biomed Circuits Syst 13:1254–1263CrossRef
295.
Zurück zum Zitat Zhou X et al (2021) A 9.7-nTrms, 704-ms magnetic biosensor front-end for detecting magneto-relaxation. IEEE J Solid State Circuits 56:2171–2181CrossRef Zhou X et al (2021) A 9.7-nTrms, 704-ms magnetic biosensor front-end for detecting magneto-relaxation. IEEE J Solid State Circuits 56:2171–2181CrossRef
296.
Zurück zum Zitat Pourmodheji H, Ghafar-Zadeh E, Magierowski S (2015) Active nuclear magnetic resonance probe: a new multidiciplinary approach toward highly sensitive biomolecoular spectroscopy. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 473–476CrossRef Pourmodheji H, Ghafar-Zadeh E, Magierowski S (2015) Active nuclear magnetic resonance probe: a new multidiciplinary approach toward highly sensitive biomolecoular spectroscopy. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 473–476CrossRef
297.
Zurück zum Zitat Dreyer F, Yang Q, Krüger D, Anders J (2022) A chip-based NMR relaxometry system for point-of-care analysis. In: 2022 IEEE biomedical circuits and systems conference (BioCAS). IEEE, pp 183–187CrossRef Dreyer F, Yang Q, Krüger D, Anders J (2022) A chip-based NMR relaxometry system for point-of-care analysis. In: 2022 IEEE biomedical circuits and systems conference (BioCAS). IEEE, pp 183–187CrossRef
298.
Zurück zum Zitat Dreyer F, Yang Q, Alnajjar B, Krüger D, Blümich B, Anders J (2023) A portable chip-based NMR relaxometry system with arbitrary phase control for point-of-care blood analysis. IEEE Trans Biomed Circuits Syst Dreyer F, Yang Q, Alnajjar B, Krüger D, Blümich B, Anders J (2023) A portable chip-based NMR relaxometry system with arbitrary phase control for point-of-care blood analysis. IEEE Trans Biomed Circuits Syst
299.
Zurück zum Zitat Zhou Q, Fan S, Lei K-M, Ham D, Martins RP, Mak P-I (2024) Miniature magnetic resonance imaging system for in situ monitoring of bacterial growth and biofilm formation. IEEE Trans Biomed Circuits Syst Zhou Q, Fan S, Lei K-M, Ham D, Martins RP, Mak P-I (2024) Miniature magnetic resonance imaging system for in situ monitoring of bacterial growth and biofilm formation. IEEE Trans Biomed Circuits Syst
300.
Zurück zum Zitat Barne A, Malhari S, Lakhani T, Mehendale N 2022) A review on types of NMR micro-coil designs.. Available at SSRN 4116746. Barne A, Malhari S, Lakhani T, Mehendale N 2022) A review on types of NMR micro-coil designs.. Available at SSRN 4116746.
301.
Zurück zum Zitat Anders J, Dreyer F, Krüger D (2022) On-chip nuclear magnetic resonance. In: Handbook of biochips: integrated circuits and systems for biology and medicine. Springer, pp 667–698CrossRef Anders J, Dreyer F, Krüger D (2022) On-chip nuclear magnetic resonance. In: Handbook of biochips: integrated circuits and systems for biology and medicine. Springer, pp 667–698CrossRef
302.
Zurück zum Zitat Krüger D et al (2023) A portable CMOS-based spin resonance system for high-resolution spectroscopy and imaging. IEEE J Solid State Circuits Krüger D et al (2023) A portable CMOS-based spin resonance system for high-resolution spectroscopy and imaging. IEEE J Solid State Circuits
303.
Zurück zum Zitat M. Weiger and T. Speck, "shimming for high-resolution NMR spectroscopy," eMagRes, 2007. M. Weiger and T. Speck, "shimming for high-resolution NMR spectroscopy," eMagRes, 2007.
304.
Zurück zum Zitat Pourmodheji H, Ghafar-Zadeh E, Magierowski S (2017) A CMOS differential receiver dedicated to nuclear magnetic resonance applications. Analog Integr Circ Sig Process 91:97–109CrossRef Pourmodheji H, Ghafar-Zadeh E, Magierowski S (2017) A CMOS differential receiver dedicated to nuclear magnetic resonance applications. Analog Integr Circ Sig Process 91:97–109CrossRef
305.
Zurück zum Zitat Handwerker J et al (2020) A CMOS NMR needle for probing brain physiology with high spatial and temporal resolution. Nat Methods 17(1):64–67CrossRef Handwerker J et al (2020) A CMOS NMR needle for probing brain physiology with high spatial and temporal resolution. Nat Methods 17(1):64–67CrossRef
306.
Zurück zum Zitat Grisi M et al (2017) NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes. Sci Rep 7(1):44670CrossRef Grisi M et al (2017) NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes. Sci Rep 7(1):44670CrossRef
307.
Zurück zum Zitat Lei K-M, Heidari H, Mak P-I, Law M-K, Maloberti F, Martins RP (2016) A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays. IEEE J Solid State Circuits 52(1):284–297CrossRef Lei K-M, Heidari H, Mak P-I, Law M-K, Maloberti F, Martins RP (2016) A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays. IEEE J Solid State Circuits 52(1):284–297CrossRef
308.
Zurück zum Zitat Pourmodheji H, Ghafar-Zadeh E, Magierowski S (2016) A multidisciplinary approach to high throughput nuclear magnetic resonance spectroscopy. Sensors 16(6):850CrossRef Pourmodheji H, Ghafar-Zadeh E, Magierowski S (2016) A multidisciplinary approach to high throughput nuclear magnetic resonance spectroscopy. Sensors 16(6):850CrossRef
309.
Zurück zum Zitat Watzlaw J, Müntjes J, Mokwa W, Schnakenberg U (2011) Multilayer micro coils for thin film analysis with mobile NMR arrays. Procedia Eng 25:395–398CrossRef Watzlaw J, Müntjes J, Mokwa W, Schnakenberg U (2011) Multilayer micro coils for thin film analysis with mobile NMR arrays. Procedia Eng 25:395–398CrossRef
310.
Zurück zum Zitat Zolfaghari A, Chan A, Razavi B (2001) Stacked inductors and transformers in CMOS technology. IEEE J Solid State Circuits 36(4):620–628CrossRef Zolfaghari A, Chan A, Razavi B (2001) Stacked inductors and transformers in CMOS technology. IEEE J Solid State Circuits 36(4):620–628CrossRef
311.
Zurück zum Zitat Metz K, Lam M, Webb A (2000) Reference deconvolution: a simple and effective method for resolution enhancement in nuclear magnetic resonance spectroscopy. Concepts Magn Reson 12(1):21–42CrossRef Metz K, Lam M, Webb A (2000) Reference deconvolution: a simple and effective method for resolution enhancement in nuclear magnetic resonance spectroscopy. Concepts Magn Reson 12(1):21–42CrossRef
312.
Zurück zum Zitat Hoult DI, Richards R (1969) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24(1):71–85 Hoult DI, Richards R (1969) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24(1):71–85
313.
Zurück zum Zitat Sun N, Yoon T-J, Lee H, Andress W, Weissleder R, Ham D (2010) Palm NMR and 1-chip NMR. IEEE J Solid State Circuits 46(1):342–352CrossRef Sun N, Yoon T-J, Lee H, Andress W, Weissleder R, Ham D (2010) Palm NMR and 1-chip NMR. IEEE J Solid State Circuits 46(1):342–352CrossRef
314.
Zurück zum Zitat Slichter CP (2013) Principles of magnetic resonance. Springer Science & Business Media Slichter CP (2013) Principles of magnetic resonance. Springer Science & Business Media
315.
Zurück zum Zitat Ha D, Paulsen J, Sun N, Song Y-Q, Ham D (2014) Scalable NMR spectroscopy with semiconductor chips. Proc Natl Acad Sci 111(33):11955–11960CrossRef Ha D, Paulsen J, Sun N, Song Y-Q, Ham D (2014) Scalable NMR spectroscopy with semiconductor chips. Proc Natl Acad Sci 111(33):11955–11960CrossRef
316.
Zurück zum Zitat Lei K-M, Mak P-I, Law M-K, Martins RP (2016) A uNMR CMOS transceiver using a butterfly-coil input for integration with a digital microfluidic device inside a portable magnet. IEEE J Solid State Circuits 51(10):2274–2286CrossRef Lei K-M, Mak P-I, Law M-K, Martins RP (2016) A uNMR CMOS transceiver using a butterfly-coil input for integration with a digital microfluidic device inside a portable magnet. IEEE J Solid State Circuits 51(10):2274–2286CrossRef
317.
Zurück zum Zitat Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94(3):630CrossRef Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94(3):630CrossRef
318.
Zurück zum Zitat Weiger M, Moskau D, Kerssebaum R, Hull WE (2005) Gradient shimming: principles and practical aspects. Bruker Spin Report:1–27 Weiger M, Moskau D, Kerssebaum R, Hull WE (2005) Gradient shimming: principles and practical aspects. Bruker Spin Report:1–27
319.
Zurück zum Zitat Blasche M, Fischer D, Healthineers S (2017) Magnet homogeneity and shimming. In: Siemens healthineers: siemens healthcare GmbH. White Paper, Erlangen Blasche M, Fischer D, Healthineers S (2017) Magnet homogeneity and shimming. In: Siemens healthineers: siemens healthcare GmbH. White Paper, Erlangen
320.
Zurück zum Zitat Günther H (2013) NMR spectroscopy: basic principles, concepts and applications in chemistry. Wiley Günther H (2013) NMR spectroscopy: basic principles, concepts and applications in chemistry. Wiley
321.
Zurück zum Zitat Leupold HA, Potenziani E, Tilak A (1993) Adjustable multi-tesla permanent magnet field sources. IEEE Trans Magn 29(6):2902–2904CrossRef Leupold HA, Potenziani E, Tilak A (1993) Adjustable multi-tesla permanent magnet field sources. IEEE Trans Magn 29(6):2902–2904CrossRef
322.
Zurück zum Zitat Danieli E, Mauler J, Perlo J, Blümich B, Casanova F (2009) Mobile sensor for high resolution NMR spectroscopy and imaging. J Magn Reson 198(1):80–87CrossRef Danieli E, Mauler J, Perlo J, Blümich B, Casanova F (2009) Mobile sensor for high resolution NMR spectroscopy and imaging. J Magn Reson 198(1):80–87CrossRef
323.
Zurück zum Zitat Alnajjar BM, Buchau A, Baumgärtner L, Anders J (2021) NMR magnets for portable applications using 3D printed materials. J Magn Reson 326:106934CrossRef Alnajjar BM, Buchau A, Baumgärtner L, Anders J (2021) NMR magnets for portable applications using 3D printed materials. J Magn Reson 326:106934CrossRef
324.
Zurück zum Zitat Hibino Y, Sugahara K, Muro Y, Tanaka H, Sato T, Kondo Y (2018) Simple and low-cost tabletop NMR system for chemical-shift-resolution spectra measurements. J Magn Reson 294:128–132CrossRef Hibino Y, Sugahara K, Muro Y, Tanaka H, Sato T, Kondo Y (2018) Simple and low-cost tabletop NMR system for chemical-shift-resolution spectra measurements. J Magn Reson 294:128–132CrossRef
325.
Zurück zum Zitat Anders J, Chiaramonte G, SanGiorgio P, Boero G (2009) A single-chip array of NMR receivers. J Magn Reson 201(2):239–249CrossRef Anders J, Chiaramonte G, SanGiorgio P, Boero G (2009) A single-chip array of NMR receivers. J Magn Reson 201(2):239–249CrossRef
326.
Zurück zum Zitat Saunders MG (2011) Enhancing the sensitivity of NMR by dynamic nuclear polarisation. University of Birmingham Saunders MG (2011) Enhancing the sensitivity of NMR by dynamic nuclear polarisation. University of Birmingham
327.
Zurück zum Zitat Ardenkjaer-Larsen JH (2016) On the present and future of dissolution-DNP. J Magn Reson 264:3–12CrossRef Ardenkjaer-Larsen JH (2016) On the present and future of dissolution-DNP. J Magn Reson 264:3–12CrossRef
328.
Zurück zum Zitat Sahin Solmaz N, Grisi M, Matheoud AV, Gualco G, Boero G (2020) Single-chip dynamic nuclear polarization microsystem. Anal Chem 92(14):9782–9789CrossRef Sahin Solmaz N, Grisi M, Matheoud AV, Gualco G, Boero G (2020) Single-chip dynamic nuclear polarization microsystem. Anal Chem 92(14):9782–9789CrossRef
329.
Zurück zum Zitat Meijer GC, Wang G, Fruett F (2001) Temperature sensors and voltage references implemented in CMOS technology. IEEE Sensors J 1(3):225–234CrossRef Meijer GC, Wang G, Fruett F (2001) Temperature sensors and voltage references implemented in CMOS technology. IEEE Sensors J 1(3):225–234CrossRef
330.
Zurück zum Zitat Pertijs MA, Niederkorn A, Ma X, McKillop B, Bakker A, Huijsing JH (2005) A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5 °C from 50 °C to 120 °C. IEEE J Solid State Circuits 40(2) Pertijs MA, Niederkorn A, Ma X, McKillop B, Bakker A, Huijsing JH (2005) A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5 °C from 50 °C to 120 °C. IEEE J Solid State Circuits 40(2)
331.
Zurück zum Zitat Pertijs MA, Makinwa KA, Huijsing JH (2005) A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1 °C from −55 °C to 125 °C. IEEE J Solid State Circuits 40(12) Pertijs MA, Makinwa KA, Huijsing JH (2005) A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1 °C from −55 °C to 125 °C. IEEE J Solid State Circuits 40(12)
332.
Zurück zum Zitat Yousefzadeh B, Shalmany SH, Makinwa KA (2017) A BJT-based temperature-to-digital converter with ±60 mK (3σ) inaccuracy from −55 °C to +125 °C in 0.16-μm CMOS. IEEE J Solid State Circuits 52(4):1044–1052CrossRef Yousefzadeh B, Shalmany SH, Makinwa KA (2017) A BJT-based temperature-to-digital converter with ±60 mK (3σ) inaccuracy from −55 °C to +125 °C in 0.16-μm CMOS. IEEE J Solid State Circuits 52(4):1044–1052CrossRef
333.
Zurück zum Zitat Hedayatipour A, Shanta AS, McFarlane N (2017) A sub-μW CMOS temperature to frequency sensor for implantable devices. In: 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). IEEE, pp 253–256CrossRef Hedayatipour A, Shanta AS, McFarlane N (2017) A sub-μW CMOS temperature to frequency sensor for implantable devices. In: 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). IEEE, pp 253–256CrossRef
334.
Zurück zum Zitat Hong HP (2017) A 0.5 V BJT-based CMOS thermal sensor in 10-nm FinFET technology. In: 2017 IEEE asian solid-state circuits conference (A-SSCC). IEEE, pp 41–44 Hong HP (2017) A 0.5 V BJT-based CMOS thermal sensor in 10-nm FinFET technology. In: 2017 IEEE asian solid-state circuits conference (A-SSCC). IEEE, pp 41–44
335.
Zurück zum Zitat Park J-H, Hwang J-H, Shin C, Kim S-J (2022) A BJT-based temperature-to-frequency converter with ±1 °C (3σ) inaccuracy from −40 °C to 140 °C for on-Chip thermal monitoring. IEEE J Solid State Circuits 57(10):2909–2918CrossRef Park J-H, Hwang J-H, Shin C, Kim S-J (2022) A BJT-based temperature-to-frequency converter with ±1 °C (3σ) inaccuracy from −40 °C to 140 °C for on-Chip thermal monitoring. IEEE J Solid State Circuits 57(10):2909–2918CrossRef
336.
Zurück zum Zitat Lee T-J, Tu K-H (2023) High-sensitivity PTAT current generator using PTAT and CTAT current subtraction method for temperature sensor with frequency-output. IEEE Trans Circuits Syst II: Express Briefs Lee T-J, Tu K-H (2023) High-sensitivity PTAT current generator using PTAT and CTAT current subtraction method for temperature sensor with frequency-output. IEEE Trans Circuits Syst II: Express Briefs
337.
Zurück zum Zitat Xu Z, Zhang X, Chen S, Cheong J, Yao L (2023) A temperature-to-frequency converter-based on-Chip temperature sensor with an inaccuracy of +0.65 °C/ – 0.49 °C. Sensors 23(11):5169CrossRef Xu Z, Zhang X, Chen S, Cheong J, Yao L (2023) A temperature-to-frequency converter-based on-Chip temperature sensor with an inaccuracy of +0.65 °C/ – 0.49 °C. Sensors 23(11):5169CrossRef
338.
Zurück zum Zitat Heidary A, Wang G, Makinwa K, Meijer G (2014) 12.8 A BJT-based CMOS temperature sensor with a 3.6 pJ· K 2-resolution FoM. In: 2014 IEEE international solid-state circuits conference digest of technical papers (ISSCC). IEEE, pp 224–225CrossRef Heidary A, Wang G, Makinwa K, Meijer G (2014) 12.8 A BJT-based CMOS temperature sensor with a 3.6 pJ· K 2-resolution FoM. In: 2014 IEEE international solid-state circuits conference digest of technical papers (ISSCC). IEEE, pp 224–225CrossRef
339.
Zurück zum Zitat Wang G, Heidari A, Makinwa KA, Meijer GC (2016) An accurate BJT-based CMOS temperature sensor with duty-cycle-modulated output. IEEE Trans Ind Electron 64(2):1572–1580CrossRef Wang G, Heidari A, Makinwa KA, Meijer GC (2016) An accurate BJT-based CMOS temperature sensor with duty-cycle-modulated output. IEEE Trans Ind Electron 64(2):1572–1580CrossRef
340.
Zurück zum Zitat Tang Z, Fang Y, Yu X, Shi Z, Tan N (2018) Capacitor-reused CMOS temperature sensor with duty-cycle-modulated output and 0.38 °C (3σ) inaccuracy. Electron Lett 54(9):568–570CrossRef Tang Z, Fang Y, Yu X, Shi Z, Tan N (2018) Capacitor-reused CMOS temperature sensor with duty-cycle-modulated output and 0.38 °C (3σ) inaccuracy. Electron Lett 54(9):568–570CrossRef
341.
Zurück zum Zitat Guo A-Q, Sun Q, Qi M, Qiao D (2020) A CMOS temperature sensor based on duty-cycle modulation with calibration. Analog Integr Circ Sig Process 102(1):79–89CrossRef Guo A-Q, Sun Q, Qi M, Qiao D (2020) A CMOS temperature sensor based on duty-cycle modulation with calibration. Analog Integr Circ Sig Process 102(1):79–89CrossRef
342.
Zurück zum Zitat Huang Z, Tang Z, Yu X-P, Shi Z, Lin L, Tan NN (2021) A BJT-based CMOS temperature sensor with duty-cycle-modulated output and ±0.5 °C (3σ) inaccuracy from− 40 °C to 125 °C.IEEE Trans Circuits Syst II: Express Briefs 68(8):2780–2784 Huang Z, Tang Z, Yu X-P, Shi Z, Lin L, Tan NN (2021) A BJT-based CMOS temperature sensor with duty-cycle-modulated output and ±0.5 °C (3σ) inaccuracy from− 40 °C to 125 °C.IEEE Trans Circuits Syst II: Express Briefs 68(8):2780–2784
343.
Zurück zum Zitat Souri K, Chae Y, Thus F, Makinwa K (2014) 12.7 A 0.85 V 600nW all-CMOS temperature sensor with an inaccuracy of±0.4° C (3σ) from− 40 to 125° C. In: 2014 IEEE international solid-state circuits conference digest of technical papers (ISSCC). IEEE, pp 222–223CrossRef Souri K, Chae Y, Thus F, Makinwa K (2014) 12.7 A 0.85 V 600nW all-CMOS temperature sensor with an inaccuracy of±0.4° C (3σ) from− 40 to 125° C. In: 2014 IEEE international solid-state circuits conference digest of technical papers (ISSCC). IEEE, pp 222–223CrossRef
344.
Zurück zum Zitat Assaderaghi F, Sinitsky D, Parke SA, Bokor J, Ko PK, Hu C (1997) Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI. IEEE Trans Electron Dev 44(3):414–422CrossRef Assaderaghi F, Sinitsky D, Parke SA, Bokor J, Ko PK, Hu C (1997) Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI. IEEE Trans Electron Dev 44(3):414–422CrossRef
345.
Zurück zum Zitat Bashir M, Sreehari Rao P, "A low power, miniature temperature sensor with one-point calibrated accuracy of ±0.25 °C from −55 °C to 125 °C in 65 nm CMOS process. Bashir M, Sreehari Rao P, "A low power, miniature temperature sensor with one-point calibrated accuracy of ±0.25 °C from −55 °C to 125 °C in 65 nm CMOS process.
346.
Zurück zum Zitat Li H, Yang Z, Kong D, Yin A, Peng J, Zhang P (2024) A 840-μm2 low-power all-MOS temperature sensor front-end with real-time voltage calibration. IEICE Electron Express:21.20240055 Li H, Yang Z, Kong D, Yin A, Peng J, Zhang P (2024) A 840-μm2 low-power all-MOS temperature sensor front-end with real-time voltage calibration. IEICE Electron Express:21.20240055
347.
Zurück zum Zitat Kim J, Kim J, Park C, Yang M, Jung W (2023) A wide range, energy-efficient temperature sensor based on direct temperature–voltage comparison. IEEE Solid-State Circuits Lett 6:113–116CrossRef Kim J, Kim J, Park C, Yang M, Jung W (2023) A wide range, energy-efficient temperature sensor based on direct temperature–voltage comparison. IEEE Solid-State Circuits Lett 6:113–116CrossRef
348.
Zurück zum Zitat Jeong S, Foo Z, Lee Y, Sim J-Y, Blaauw D, Sylvester D (2014) A fully-integrated 71 nW CMOS temperature sensor for low power wireless sensor nodes. IEEE J Solid State Circuits 49(8):1682–1693CrossRef Jeong S, Foo Z, Lee Y, Sim J-Y, Blaauw D, Sylvester D (2014) A fully-integrated 71 nW CMOS temperature sensor for low power wireless sensor nodes. IEEE J Solid State Circuits 49(8):1682–1693CrossRef
349.
Zurück zum Zitat Yang K et al (2017) 9.2 A 0.6 nJ -0.22/+0.19 °C inaccuracy temperature sensor using exponential subthreshold oscillation dependence. In: 2017 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp 160–161CrossRef Yang K et al (2017) 9.2 A 0.6 nJ -0.22/+0.19 °C inaccuracy temperature sensor using exponential subthreshold oscillation dependence. In: 2017 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp 160–161CrossRef
350.
Zurück zum Zitat Azcona C, Calvo B, Medrano N, Celma S (2015) 1.2 V–0.18 μm CMOS temperature sensors with quasi-digital output for portable systems. IEEE Trans Instrum Meas 64(9):2565–2573CrossRef Azcona C, Calvo B, Medrano N, Celma S (2015) 1.2 V–0.18 μm CMOS temperature sensors with quasi-digital output for portable systems. IEEE Trans Instrum Meas 64(9):2565–2573CrossRef
351.
Zurück zum Zitat Someya T, Islam AM, Sakurai T, Takamiya M (2019) An 11-nW CMOS temperature-to-digital converter utilizing sub-threshold current at sub-thermal drain voltage. IEEE J Solid State Circuits 54(3):613–622CrossRef Someya T, Islam AM, Sakurai T, Takamiya M (2019) An 11-nW CMOS temperature-to-digital converter utilizing sub-threshold current at sub-thermal drain voltage. IEEE J Solid State Circuits 54(3):613–622CrossRef
352.
Zurück zum Zitat Zhu D, Siek L, Zheng Y (2016) High-accuracy time-mode duty-cycle-modulation-based temperature sensor for energy-efficient system applications. Circuits, Syst Signal Process 35(7):2317–2330CrossRef Zhu D, Siek L, Zheng Y (2016) High-accuracy time-mode duty-cycle-modulation-based temperature sensor for energy-efficient system applications. Circuits, Syst Signal Process 35(7):2317–2330CrossRef
353.
Zurück zum Zitat Chouhan SS, Halonen K (2015) Design and implementation of micro-power temperature to duty cycle converter using differential temperature sensing. Microelectron J 46(6):482–489CrossRef Chouhan SS, Halonen K (2015) Design and implementation of micro-power temperature to duty cycle converter using differential temperature sensing. Microelectron J 46(6):482–489CrossRef
354.
Zurück zum Zitat Makinwa KA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less less than ±0.5 °C (3σ) from −40 °C to 105 °C. IEEE J Solid State Circuits 41(12):2992–2997CrossRef Makinwa KA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less less than ±0.5 °C (3σ) from −40 °C to 105 °C. IEEE J Solid State Circuits 41(12):2992–2997CrossRef
355.
Zurück zum Zitat Zhang C, Makinwa KA (2008) Interface electronics for a CMOS electrothermal frequency-locked-loop. IEEE J Solid State Circuits 43(7):1603–1608CrossRef Zhang C, Makinwa KA (2008) Interface electronics for a CMOS electrothermal frequency-locked-loop. IEEE J Solid State Circuits 43(7):1603–1608CrossRef
356.
Zurück zum Zitat van Vroonhoven CP, Makinwa KA (2008) A CMOS Temperature-to-Digital Converter with an Inaccuracy of±0.5°C (3σ) from-55 to 125°C. In: 2008 IEEE international solid-state circuits conference-digest of technical papers. IEEE, pp 576–637CrossRef van Vroonhoven CP, Makinwa KA (2008) A CMOS Temperature-to-Digital Converter with an Inaccuracy of±0.5°C (3σ) from-55 to 125°C. In: 2008 IEEE international solid-state circuits conference-digest of technical papers. IEEE, pp 576–637CrossRef
357.
Zurück zum Zitat Kashmiri SM, Xia S, Makinwa KA (2009) A temperature-to-digital converter based on an optimized electrothermal filter. IEEE J Solid State Circuits 44(7):2026–2035CrossRef Kashmiri SM, Xia S, Makinwa KA (2009) A temperature-to-digital converter based on an optimized electrothermal filter. IEEE J Solid State Circuits 44(7):2026–2035CrossRef
358.
Zurück zum Zitat van Vroonhoven CP, d’Aquino D, Makinwa KA (2010) A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.2°C (3s) from −55°C to 125°C. In: 2010 IEEE international solid-state circuits conference-(ISSCC). IEEE, pp 314–315CrossRef van Vroonhoven CP, d’Aquino D, Makinwa KA (2010) A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.2°C (3s) from −55°C to 125°C. In: 2010 IEEE international solid-state circuits conference-(ISSCC). IEEE, pp 314–315CrossRef
359.
Zurück zum Zitat Pan S, Jiang H, Makinwa KA (2017) A CMOS temperature sensor with a 49fJK 2 resolution FoM. In: 2017 Symposium on VLSI circuits. IEEE, pp C82–C83CrossRef Pan S, Jiang H, Makinwa KA (2017) A CMOS temperature sensor with a 49fJK 2 resolution FoM. In: 2017 Symposium on VLSI circuits. IEEE, pp C82–C83CrossRef
360.
Zurück zum Zitat Pan S, Makinwa KA (2018) A 0.25 mm 2-resistor-based temperature sensor with an inaccuracy of 0.12° C (3 σ) from− 55° C to 125° C. IEEE J Solid State Circuits 53(12):3347–3355CrossRef Pan S, Makinwa KA (2018) A 0.25 mm 2-resistor-based temperature sensor with an inaccuracy of 0.12° C (3 σ) from− 55° C to 125° C. IEEE J Solid State Circuits 53(12):3347–3355CrossRef
361.
Zurück zum Zitat Pan S and Makinwa KA 10.4 A wheatstone bridge temperature sensor with a resolution FoM of 20fJ. K 2. In: 2019 IEEE International Solid-State Circuits Conference-(ISSCC), 2019: IEEE, pp. 186–188. Pan S and Makinwa KA 10.4 A wheatstone bridge temperature sensor with a resolution FoM of 20fJ. K 2. In: 2019 IEEE International Solid-State Circuits Conference-(ISSCC), 2019: IEEE, pp. 186–188.
362.
Zurück zum Zitat Pan S, Makinwa KA (2020) A 10 fJ K 2 Wheatstone bridge temperature sensor with a tail-resistor-linearized OTA. IEEE J Solid State Circuits 56(2):501–510CrossRef Pan S, Makinwa KA (2020) A 10 fJ K 2 Wheatstone bridge temperature sensor with a tail-resistor-linearized OTA. IEEE J Solid State Circuits 56(2):501–510CrossRef
363.
Zurück zum Zitat Pan S, Makinwa KA (2020) A 6.6-μW wheatstone-bridge temperature sensor for biomedical applications. IEEE Solid-State Circuits Letters 3:334–337CrossRef Pan S, Makinwa KA (2020) A 6.6-μW wheatstone-bridge temperature sensor for biomedical applications. IEEE Solid-State Circuits Letters 3:334–337CrossRef
364.
Zurück zum Zitat Jiang H, Huang C-C, Chan MR, Hall DA (2020) A 2-in-1 temperature and humidity sensor with a single FLL wheatstone-bridge front-end. IEEE J Solid State Circuits 55(8):2174–2185CrossRef Jiang H, Huang C-C, Chan MR, Hall DA (2020) A 2-in-1 temperature and humidity sensor with a single FLL wheatstone-bridge front-end. IEEE J Solid State Circuits 55(8):2174–2185CrossRef
365.
Zurück zum Zitat Jain A, Jiang H, Pochet C, Hall DA (2021) A 310 nW temperature sensor achieving 9.8 mK resolution using a DFLL-based readout circuit. IEEE Trans Circuits Syst II: Express Briefs 69(3):704–708 Jain A, Jiang H, Pochet C, Hall DA (2021) A 310 nW temperature sensor achieving 9.8 mK resolution using a DFLL-based readout circuit. IEEE Trans Circuits Syst II: Express Briefs 69(3):704–708
366.
Zurück zum Zitat Shahmohammadi M, Souri K, Makinwa KA (2013) A resistor-based temperature sensor for MEMS frequency references. In: 2013 Proceedings of the ESSCIRC (ESSCIRC). IEEE, pp 225–228CrossRef Shahmohammadi M, Souri K, Makinwa KA (2013) A resistor-based temperature sensor for MEMS frequency references. In: 2013 Proceedings of the ESSCIRC (ESSCIRC). IEEE, pp 225–228CrossRef
367.
Zurück zum Zitat Pan S, Luo Y, Shalmany SH, Makinwa KA (2017) A resistor-based temperature sensor with a 0.13 pJ·K2 resolution FoM. IEEE J Solid State Circuits 53(1):164–173CrossRef Pan S, Luo Y, Shalmany SH, Makinwa KA (2017) A resistor-based temperature sensor with a 0.13 pJ·K2 resolution FoM. IEEE J Solid State Circuits 53(1):164–173CrossRef
368.
Zurück zum Zitat Pan S, Gürleyük Ç, Pimenta MF, Makinwa KA (2019) 10.3 A 0.12 mm 2 Wien-Bridge Temperature Sensor with 0.1° C (3σ) Inaccuracy from-40° C to 180° C. In: 2019 IEEE international solid-state circuits conference-(ISSCC). IEEE, pp 184–186CrossRef Pan S, Gürleyük Ç, Pimenta MF, Makinwa KA (2019) 10.3 A 0.12 mm 2 Wien-Bridge Temperature Sensor with 0.1° C (3σ) Inaccuracy from-40° C to 180° C. In: 2019 IEEE international solid-state circuits conference-(ISSCC). IEEE, pp 184–186CrossRef
369.
Zurück zum Zitat Pan S, Angevare JA, Makinwa KA (2021) 5.4 a hybrid thermal-diffusivity/resistor-based temperature sensor with a self-calibrated inaccuracy of±0.25° C (3 Σ) from-55° C to 125° C. In: 2021 IEEE international solid-state circuits conference (ISSCC), vol 64. IEEE, pp 78–80CrossRef Pan S, Angevare JA, Makinwa KA (2021) 5.4 a hybrid thermal-diffusivity/resistor-based temperature sensor with a self-calibrated inaccuracy of±0.25° C (3 Σ) from-55° C to 125° C. In: 2021 IEEE international solid-state circuits conference (ISSCC), vol 64. IEEE, pp 78–80CrossRef
370.
Zurück zum Zitat Park P, Ruffieux D, Makinwa KA (2015) A thermistor-based temperature sensor for a real-time clock with ± 2 ppm frequency stability. IEEE J Solid State Circuits 50(7):1571–1580CrossRef Park P, Ruffieux D, Makinwa KA (2015) A thermistor-based temperature sensor for a real-time clock with ± 2 ppm frequency stability. IEEE J Solid State Circuits 50(7):1571–1580CrossRef
371.
Zurück zum Zitat Angevare JA, Chae Y, Makinwa KA (2021) 5.3 a highly digital 2210μm 2 resistor-based temperature sensor with a 1-point trimmed inaccuracy of±1.3° C (3 σ) from-55° C to 125° C in 65nm CMOS. In: 2021 IEEE international solid-state circuits conference (ISSCC), vol 64. IEEE, pp 76–78CrossRef Angevare JA, Chae Y, Makinwa KA (2021) 5.3 a highly digital 2210μm 2 resistor-based temperature sensor with a 1-point trimmed inaccuracy of±1.3° C (3 σ) from-55° C to 125° C in 65nm CMOS. In: 2021 IEEE international solid-state circuits conference (ISSCC), vol 64. IEEE, pp 76–78CrossRef
372.
Zurück zum Zitat Choi W et al (2018) A compact resistor-based CMOS temperature sensor with an inaccuracy of 0.12° C (3σ) and a resolution FoM of 0.43 pJ·K 2 in 65-nm CMOS. IEEE J Solid State Circuits 53(12):3356–3367CrossRef Choi W et al (2018) A compact resistor-based CMOS temperature sensor with an inaccuracy of 0.12° C (3σ) and a resolution FoM of 0.43 pJ·K 2 in 65-nm CMOS. IEEE J Solid State Circuits 53(12):3356–3367CrossRef
373.
Zurück zum Zitat Lee Y, Kim T, Chae Y (2023) A 0.9 V 6,400-μm2 resistor-based temperature sensor with a one-point trimmed 3σ inaccuracy of 10.64°C from. 50 to 125°C. IEEE Trans Circuits Syst II: Express Briefs Lee Y, Kim T, Chae Y (2023) A 0.9 V 6,400-μm2 resistor-based temperature sensor with a one-point trimmed 3σ inaccuracy of 10.64°C from. 50 to 125°C. IEEE Trans Circuits Syst II: Express Briefs
374.
Zurück zum Zitat Van Herwaarden A, Sarro P (1986) Thermal sensors based on the Seebeck effect. Sensors Actuators 10(3–4):321–346CrossRef Van Herwaarden A, Sarro P (1986) Thermal sensors based on the Seebeck effect. Sensors Actuators 10(3–4):321–346CrossRef
375.
Zurück zum Zitat Van Herwaarden A, Van Duyn D, Van Oudheusden B, Sarro P (1990) Integrated thermopile sensors. Sensors Actuators A Phys 22(1–3):621–630CrossRef Van Herwaarden A, Van Duyn D, Van Oudheusden B, Sarro P (1990) Integrated thermopile sensors. Sensors Actuators A Phys 22(1–3):621–630CrossRef
376.
Zurück zum Zitat Bataillard P, Steffgen E, Haemmerli S, Manz A, Widmer H (1993) An integrated silicon thermopile as biosensor for the thermal monitoring of glucose, urea and penicillin. Biosens Bioelectron 8(2):89–98CrossRef Bataillard P, Steffgen E, Haemmerli S, Manz A, Widmer H (1993) An integrated silicon thermopile as biosensor for the thermal monitoring of glucose, urea and penicillin. Biosens Bioelectron 8(2):89–98CrossRef
377.
Zurück zum Zitat Sarro P, Van Herwaarden A, Van der Vlist W (1994) A silicon-silicon nitride membrane fabrication process for smart thermal sensors. Sensors Actuators A Phys 42(1–3):666–671CrossRef Sarro P, Van Herwaarden A, Van der Vlist W (1994) A silicon-silicon nitride membrane fabrication process for smart thermal sensors. Sensors Actuators A Phys 42(1–3):666–671CrossRef
378.
Zurück zum Zitat Jaeggi D, Funk J, Halberli A, Baltes H (1995) Overall system analysis of a CMOS thermal converter. In: Proceedings of the International Solid-State Sensors and Actuators Conference-TRANSDUCERS’95, vol 2. IEEE, pp 112–115CrossRef Jaeggi D, Funk J, Halberli A, Baltes H (1995) Overall system analysis of a CMOS thermal converter. In: Proceedings of the International Solid-State Sensors and Actuators Conference-TRANSDUCERS’95, vol 2. IEEE, pp 112–115CrossRef
379.
Zurück zum Zitat Koll A et al (1999) Micromachined CMOS calorimetric chemical sensor with on-chip low noise amplifier. In: Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291). IEEE, pp 547–551CrossRef Koll A et al (1999) Micromachined CMOS calorimetric chemical sensor with on-chip low noise amplifier. In: Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291). IEEE, pp 547–551CrossRef
380.
Zurück zum Zitat Kerness N et al (2000) N-well based CMOS calorimetric chemical sensors. In: Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No. 00CH36308). IEEE, pp 96–101CrossRef Kerness N et al (2000) N-well based CMOS calorimetric chemical sensors. In: Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No. 00CH36308). IEEE, pp 96–101CrossRef
381.
Zurück zum Zitat Voiculescu I, Zaghloul M, McGill RA (2003) Design and fabrication of a temperature sensor based on thermopile in CMOS technology. In: ASME international mechanical engineering congress and exposition, vol 37211, pp 597–601 Voiculescu I, Zaghloul M, McGill RA (2003) Design and fabrication of a temperature sensor based on thermopile in CMOS technology. In: ASME international mechanical engineering congress and exposition, vol 37211, pp 597–601
382.
Zurück zum Zitat Aldrete-Vidrio E, Mateo D, Altet J (2007) Differential temperature sensors fully compatible with a 0.35-um CMOS process. IEEE Trans Compon Packag Technol 30(4):618–626CrossRef Aldrete-Vidrio E, Mateo D, Altet J (2007) Differential temperature sensors fully compatible with a 0.35-um CMOS process. IEEE Trans Compon Packag Technol 30(4):618–626CrossRef
Metadaten
Titel
Interface Circuits
verfasst von
Ebrahim Ghafar-Zadeh
Saghi Forouhi
Tayebeh Azadmousavi
Copyright-Jahr
2025
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0099-4_4