Skip to main content
Erschienen in: Neural Computing and Applications 8/2020

07.06.2019 | Original Article

Interface depth modelling of gravity data and altitude variations: a Bayesian neural network approach

verfasst von: Saumen Maiti, Ch. Ravi Kumar, Prasenjit Sarkar, R. K. Tiwari, Uppala Srinu

Erschienen in: Neural Computing and Applications | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modelling of anomalous geological source from the gravity data is vital for understanding the crustal/sub-crustal interface depths and associated hazard assessment. Two-dimensional radial power spectra have usually been used to infer average depth of protuberant geological structures, which lack details of dimensional comprehension of lateral interfaces. Here in this study, we implement jointly scaled conjugate gradient-based Bayesian neural network (SCG-BNN) scheme with variogram modelling to carve out shallow and deeper interfaces of complex geological terrain of Eastern Indian Shield, India, using Bouguer gravity anomaly (BGA) and altitude variations data. Our “learner codes” uses the SCG-BNN optimization algorithm to build up a statistical model involving appropriate control parameters for the modelling of shallow and deeper interfaces. We have also compared the proposed SCG-BNN modelling results with the results of both conventional artificial neural networks (ANNs) schemes (e.g. conjugate gradient-based ANNs (CG-ANN) and SCG-ANN) and support vector regression (SVR) modelling to demonstrate the robustness of the underlying method. Comparative analysis suggests that the SCG-BNN model produced superior results than the results of CG-ANN, SCG-ANN and SVR models. The results based on SCG-BNN analysis and variogram modelling have identified the existence of three conspicuous fault structures, namely Malda–Kishanganj Fault, Munger–Saharsha Ridge Marginal Fault and Katihar Fault. The analyses also significantly minimize prediction error in three independent datasets (viz. training, validation and test), enhancing the precision of estimated shallow and deeper interface depths and thereby extenuating feasibility of “SCG-BNN” learner code. We, therefore, conclude that the underlying approach is robust to model various interface depths and generate precisely variation in the shallow and deeper interfaces with appropriate input data from altitude variation and BGA. The “SCG-BNN learner scheme” may potentially be used to exploit interface depths from several other complex tectonic regions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Talwani M, Worzel JL, Landisman M (1959) Rapid gravity computations for two dimensional bodies with application to the Mendocino Submarine Fracture Zone. J Geophys Res 64:49–59 Talwani M, Worzel JL, Landisman M (1959) Rapid gravity computations for two dimensional bodies with application to the Mendocino Submarine Fracture Zone. J Geophys Res 64:49–59
2.
Zurück zum Zitat Cordell L, Henderson RG (1968) Iterative three-dimensional solution of gravity anomaly data using a digital computer. Geophysics 33(4):596–601 Cordell L, Henderson RG (1968) Iterative three-dimensional solution of gravity anomaly data using a digital computer. Geophysics 33(4):596–601
3.
Zurück zum Zitat Lowrie W (2007) Fundamentals of geophysics, 2nd edn. Cambridge University Press, New York Lowrie W (2007) Fundamentals of geophysics, 2nd edn. Cambridge University Press, New York
4.
Zurück zum Zitat Bott MHP (1960) The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophys J R Astron Soc 3:63–67 Bott MHP (1960) The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophys J R Astron Soc 3:63–67
5.
Zurück zum Zitat Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302 Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302
6.
Zurück zum Zitat Maus S, Dimri V (1996) Depth estimation from the scaling power spectrum of potential fields? Geophys J Int 124:113–120 Maus S, Dimri V (1996) Depth estimation from the scaling power spectrum of potential fields? Geophys J Int 124:113–120
7.
Zurück zum Zitat Bhattacharyya BK (1966) Continuous spectrum of the total magnetic anomaly due to a rectangular prismatic body. Geophysics 31:97–121 Bhattacharyya BK (1966) Continuous spectrum of the total magnetic anomaly due to a rectangular prismatic body. Geophysics 31:97–121
8.
Zurück zum Zitat Connard G, Couch R, Gemperle M (1983) Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics 48:376–390 Connard G, Couch R, Gemperle M (1983) Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics 48:376–390
9.
Zurück zum Zitat Naidu PS (1968) Spectrum of the potential field due to randomly distributed sources. Geophysics 33:337–345 Naidu PS (1968) Spectrum of the potential field due to randomly distributed sources. Geophysics 33:337–345
10.
Zurück zum Zitat Bansal AR, Dimri VP (2001) Depth estimation from the scaling power spectral density of nonstationary gravity profile. Pure appl Geophys 158:799–812 Bansal AR, Dimri VP (2001) Depth estimation from the scaling power spectral density of nonstationary gravity profile. Pure appl Geophys 158:799–812
11.
Zurück zum Zitat Dash NB, Panda SN, Remesan R, Sahoo N (2010) Hybrid neural modeling for groundwater level prediction. Neural Comput Appl 19:1251–1263 Dash NB, Panda SN, Remesan R, Sahoo N (2010) Hybrid neural modeling for groundwater level prediction. Neural Comput Appl 19:1251–1263
14.
Zurück zum Zitat Najah A, El-Shafie A, Karim OA, El-Shafie AH (2013) Application of artificial neural networks for water quality prediction. Neural Comput Appl 22(Suppl 1):S187–S201 Najah A, El-Shafie A, Karim OA, El-Shafie AH (2013) Application of artificial neural networks for water quality prediction. Neural Comput Appl 22(Suppl 1):S187–S201
15.
Zurück zum Zitat Poulton M (2001) Computational neural networks for geophysical data processing. Pergamon, Oxford Poulton M (2001) Computational neural networks for geophysical data processing. Pergamon, Oxford
16.
Zurück zum Zitat Maiti S, Tiwari RK, Kumpel HJ (2007) Neural network modelling and classification of lithofacies using well log data: a case study from KTB borehole site. Geophys J Int 169:733–746 Maiti S, Tiwari RK, Kumpel HJ (2007) Neural network modelling and classification of lithofacies using well log data: a case study from KTB borehole site. Geophys J Int 169:733–746
17.
Zurück zum Zitat Devilee RJR, Curtis A, Roy-Chowdhury K (1999) An efficient probabilistic neural network approach to solving inverse problems: inverting surface wave velocities for Eurasian crustal thickness. J Geophys Res 104(12):28841–28856 Devilee RJR, Curtis A, Roy-Chowdhury K (1999) An efficient probabilistic neural network approach to solving inverse problems: inverting surface wave velocities for Eurasian crustal thickness. J Geophys Res 104(12):28841–28856
18.
Zurück zum Zitat Abdel Zaher M, Senosy MM, Youssef MM, Ehara S (2009) Thickness variation of the sedimentary cover in the SouthWestern Desert of Egypt as deduced from Bouguer gravity and drill-hole data using neural network method. Earth Planets Space 61:659–674 Abdel Zaher M, Senosy MM, Youssef MM, Ehara S (2009) Thickness variation of the sedimentary cover in the SouthWestern Desert of Egypt as deduced from Bouguer gravity and drill-hole data using neural network method. Earth Planets Space 61:659–674
19.
Zurück zum Zitat Abedi M, Afshar A, Ardestani VE, Norouzi GH, Lucas C (2010) Application of various methods for 2D inverse modeling of residual gravity anomalies. Acta Geophys 58(2):317–336 Abedi M, Afshar A, Ardestani VE, Norouzi GH, Lucas C (2010) Application of various methods for 2D inverse modeling of residual gravity anomalies. Acta Geophys 58(2):317–336
20.
Zurück zum Zitat Osman O, Muhittin AA, Ucan ON (2006) A new approach for residual gravity anomaly profile interpretations: forced Neural Network (FNN). Ann Geofis 49(6):1201–1208 Osman O, Muhittin AA, Ucan ON (2006) A new approach for residual gravity anomaly profile interpretations: forced Neural Network (FNN). Ann Geofis 49(6):1201–1208
21.
Zurück zum Zitat Osman O, Muhittin Albora A, Nuri UO (2007) Forward modeling with forced neural networks for gravity anomaly profile. Math Geol 39:593–605MATH Osman O, Muhittin Albora A, Nuri UO (2007) Forward modeling with forced neural networks for gravity anomaly profile. Math Geol 39:593–605MATH
22.
Zurück zum Zitat Eslam E, Salem A, Ushijima K (2001) Detection of cavities and tunnels from gravity data using a neural network. Explor Geophys 32(3/4):204–208 Eslam E, Salem A, Ushijima K (2001) Detection of cavities and tunnels from gravity data using a neural network. Explor Geophys 32(3/4):204–208
23.
Zurück zum Zitat Kaftan I, Salk M, Senol Y (2011) Evaluation of gravity data by using artificial neural network case study: seferihisar geothermal area (Western Turkey). J Appl Geophys 75(4):711–718 Kaftan I, Salk M, Senol Y (2011) Evaluation of gravity data by using artificial neural network case study: seferihisar geothermal area (Western Turkey). J Appl Geophys 75(4):711–718
24.
Zurück zum Zitat Al-Garni MA (2013) Inversion of residual gravity anomalies using neural network. Arab J Geosci 6:1509–1516 Al-Garni MA (2013) Inversion of residual gravity anomalies using neural network. Arab J Geosci 6:1509–1516
26.
Zurück zum Zitat Calster BV, Timmerman D, Nabney IT, Valentin L, Testa AC, Holsbeke CV, Vergote I, Huffel SV (2008) Using Bayesian neural networks with ARD input selection to detect malignant ovarian masses prior to surgery. Neural Comput Appl 17:489–500 Calster BV, Timmerman D, Nabney IT, Valentin L, Testa AC, Holsbeke CV, Vergote I, Huffel SV (2008) Using Bayesian neural networks with ARD input selection to detect malignant ovarian masses prior to surgery. Neural Comput Appl 17:489–500
28.
Zurück zum Zitat Hippert HS, Tylor JW (2010) An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting. Neural Netw 23:386–395 Hippert HS, Tylor JW (2010) An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting. Neural Netw 23:386–395
33.
Zurück zum Zitat Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, OxfordMATH Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, OxfordMATH
34.
Zurück zum Zitat Nabney IT (2004) Netlab algorithms for pattern recognition. Springer, New YorkMATH Nabney IT (2004) Netlab algorithms for pattern recognition. Springer, New YorkMATH
35.
Zurück zum Zitat Wang W, Xu Z, Lu W, Zhang X (2003) Determination of the spread parameter in the Gaussian kernel for classification and regression. Neuro Comput 55:643–663 Wang W, Xu Z, Lu W, Zhang X (2003) Determination of the spread parameter in the Gaussian kernel for classification and regression. Neuro Comput 55:643–663
36.
Zurück zum Zitat Naskar DC, Das LK, Rai MK (2016) Insight into the tectonic and crustal understanding of lessar Himalayas along Purnea-Sevoke transect through geophysical studies. J Ind Geophys Union 20:506–515 Naskar DC, Das LK, Rai MK (2016) Insight into the tectonic and crustal understanding of lessar Himalayas along Purnea-Sevoke transect through geophysical studies. J Ind Geophys Union 20:506–515
37.
Zurück zum Zitat Verma RK (1991) Geodynamics of the Indian Peninsula and the Indian plate margin. Oxford and IBH Publishing Co. Ltd., New Delhi, p 357. ISBN 978-81-204-0568-4 Verma RK (1991) Geodynamics of the Indian Peninsula and the Indian plate margin. Oxford and IBH Publishing Co. Ltd., New Delhi, p 357. ISBN 978-81-204-0568-4
38.
Zurück zum Zitat Valdiya KS (1976) Himalayan transverse faults and their parallelism with subsurface structures of north Indian plains. Tectonophysics 32:352–386 Valdiya KS (1976) Himalayan transverse faults and their parallelism with subsurface structures of north Indian plains. Tectonophysics 32:352–386
39.
Zurück zum Zitat Jade S et al (2007) Estimates of interseismic deformation in northeast India from GPS measurements. Earth Planet Sci Lett 263:221–234 Jade S et al (2007) Estimates of interseismic deformation in northeast India from GPS measurements. Earth Planet Sci Lett 263:221–234
40.
Zurück zum Zitat Mukul M, Jade S, Ansari K, Matin A (2014) Seismotectonic implications of strike–slip earthquakes in the Darjiling–Sikkim Himalaya. Curr Sci 2(25):198–210 Mukul M, Jade S, Ansari K, Matin A (2014) Seismotectonic implications of strike–slip earthquakes in the Darjiling–Sikkim Himalaya. Curr Sci 2(25):198–210
41.
Zurück zum Zitat Mishra OP (2014) Intricacies of the Himalayan seismotectonics and seismogenesis: need for integrated research. Curr Sci 106(2):176–187 Mishra OP (2014) Intricacies of the Himalayan seismotectonics and seismogenesis: need for integrated research. Curr Sci 106(2):176–187
42.
Zurück zum Zitat Bhukta K, Khan PK, Mandal P (2018) Upper mantle anisotropy inferred from shear wave splitting beneath the Eastern Indian Shield region. Geosci Front 9:1911–1920 Bhukta K, Khan PK, Mandal P (2018) Upper mantle anisotropy inferred from shear wave splitting beneath the Eastern Indian Shield region. Geosci Front 9:1911–1920
43.
Zurück zum Zitat Agarwal RP, Bhoj R (1992) Evolution of Kosi river fan, India: structural implications and geomorphic significance. Int J Remote Sens 13(10):1891–1901 Agarwal RP, Bhoj R (1992) Evolution of Kosi river fan, India: structural implications and geomorphic significance. Int J Remote Sens 13(10):1891–1901
44.
Zurück zum Zitat Mohanty WK, Verma AK, Vaccari F, Panza GF (2013) Influence of epicentral distance on local seismic response in Kolkata city, India. J Earth Syst Sci 2:321–338 Mohanty WK, Verma AK, Vaccari F, Panza GF (2013) Influence of epicentral distance on local seismic response in Kolkata city, India. J Earth Syst Sci 2:321–338
45.
Zurück zum Zitat Gupta H, Gahalaut VK (2014) Seismotectonics and large earthquake generation in the Himalayan region. Gondwana Res 25:204–213 Gupta H, Gahalaut VK (2014) Seismotectonics and large earthquake generation in the Himalayan region. Gondwana Res 25:204–213
46.
Zurück zum Zitat Singh DD, Gupta HK (1980) Source dynamics of two great earthquakes of the Indian subcontinent: the Bihar-Nepal earthquake of January 15, 1934 and the earthquake of May 30, 1935. Bull Seismol Soc Am 70(3):757–773 Singh DD, Gupta HK (1980) Source dynamics of two great earthquakes of the Indian subcontinent: the Bihar-Nepal earthquake of January 15, 1934 and the earthquake of May 30, 1935. Bull Seismol Soc Am 70(3):757–773
47.
Zurück zum Zitat Dasgupta S (1993) In Bihar-Nepal earthquake August 20 1988. Geological Survey of India Special Publication No. 31, pp 60–81 Dasgupta S (1993) In Bihar-Nepal earthquake August 20 1988. Geological Survey of India Special Publication No. 31, pp 60–81
48.
Zurück zum Zitat Dasgupta S, Pande D, Ganguly Z, Iqbal K, Sanyal K, Venkatraman NV, Sural B, Harendranath L, Mazumder K, Sanyal S, Roy A, Das LK, Misra PS, Gupta HK (2000) Seismotectonic atlas of India and its environs. Geological Survey of India, Bangalore Dasgupta S, Pande D, Ganguly Z, Iqbal K, Sanyal K, Venkatraman NV, Sural B, Harendranath L, Mazumder K, Sanyal S, Roy A, Das LK, Misra PS, Gupta HK (2000) Seismotectonic atlas of India and its environs. Geological Survey of India, Bangalore
49.
Zurück zum Zitat Dasgupta S, Mukhopadhyay B, Mukhopadhyay M, Nandy DR (2013) Role of transverse tectonics in the Himalayan collision: further evidences from two contemporary earthquakes. J Geol Soc India 81:241–247 Dasgupta S, Mukhopadhyay B, Mukhopadhyay M, Nandy DR (2013) Role of transverse tectonics in the Himalayan collision: further evidences from two contemporary earthquakes. J Geol Soc India 81:241–247
50.
Zurück zum Zitat Gansser A (1964) Geology of the Himalayas. Interscience Publishers, London, p 289 Gansser A (1964) Geology of the Himalayas. Interscience Publishers, London, p 289
51.
Zurück zum Zitat Jain V, Sinha R (2005) Response of active tectonics on the alluvial Baghmati river, Himalayan foreland basin, eastern India. Geomorphology 70:339–356 Jain V, Sinha R (2005) Response of active tectonics on the alluvial Baghmati river, Himalayan foreland basin, eastern India. Geomorphology 70:339–356
52.
Zurück zum Zitat Singh AP, Kumar N, Singh B (2004) Magmatic underplating beneath the Rajmahal Traps: gravity signature and derived 3-D configuration. Earth Plant Sci 113:759–769 Singh AP, Kumar N, Singh B (2004) Magmatic underplating beneath the Rajmahal Traps: gravity signature and derived 3-D configuration. Earth Plant Sci 113:759–769
53.
Zurück zum Zitat Roy AK, Paine DP, Sett S, Bhattacharya HN (2012) Gravity-magnetic and magneto-telluric surveys in Purnea Onland Basin, India: a case history. In: 9th Biennial international conference and exposition on petroleum geophysics, Hyderabad, p 281 Roy AK, Paine DP, Sett S, Bhattacharya HN (2012) Gravity-magnetic and magneto-telluric surveys in Purnea Onland Basin, India: a case history. In: 9th Biennial international conference and exposition on petroleum geophysics, Hyderabad, p 281
54.
Zurück zum Zitat Dasgupta S, Mukhopadhyay M, Nandy DR (1987) Active tectonic feature in the central part of Himalaya. Tectonophysics 136:255–264 Dasgupta S, Mukhopadhyay M, Nandy DR (1987) Active tectonic feature in the central part of Himalaya. Tectonophysics 136:255–264
56.
Zurück zum Zitat MacKay DJC (1992) A practical Bayesian framework for back-propagation networks. Neural Comput 4(3):448–472 MacKay DJC (1992) A practical Bayesian framework for back-propagation networks. Neural Comput 4(3):448–472
57.
Zurück zum Zitat Van der Baan M, Jutten C (2000) Neural networks in geophysical applications. Geophysics 65:1032–1047 Van der Baan M, Jutten C (2000) Neural networks in geophysical applications. Geophysics 65:1032–1047
58.
Zurück zum Zitat Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194 Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194
Metadaten
Titel
Interface depth modelling of gravity data and altitude variations: a Bayesian neural network approach
verfasst von
Saumen Maiti
Ch. Ravi Kumar
Prasenjit Sarkar
R. K. Tiwari
Uppala Srinu
Publikationsdatum
07.06.2019
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 8/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04276-9

Weitere Artikel der Ausgabe 8/2020

Neural Computing and Applications 8/2020 Zur Ausgabe