Skip to main content
Erschienen in: Topics in Catalysis 4-6/2015

01.04.2015 | Original Paper

Intermediates Arising from the Water–Gas Shift Reaction over Cu Surfaces: From UHV to Near Atmospheric Pressures

verfasst von: K. Mudiyanselage, S. D. Senanayake, P. J. Ramirez, S. Kundu, A. Baber, F. Yang, S. Agnoli, S. Axnanda, Z. Liu, J. Hrbek, J. Evans, J. A. Rodriguez, D. Stacchiola

Erschienen in: Topics in Catalysis | Ausgabe 4-6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The water–gas shift (WGS) reaction \( ({\text{CO}} + {\text{H}}_{ 2} {\text{O}} \to {\text{CO}}_{ 2} + {\text{H}}_{ 2} ) \) is a key process to the production of high purity H2 from gas streams rich in CO. The identification of the WGS reaction mechanism and the probable stable intermediates is critical to design the catalyst structure, optimize composition and tune reaction kinetics/thermodynamics to achieve the optimum selectivity and activity. In this study, first the WGS reaction steps on Cu(111) have been studied using X-ray photoelectron spectroscopy (XPS) and infrared reflection absorption spectroscopy under ultra-high vacuum (UHV) conditions. Then the interactions of H2O with CO on Cu(111) have been studied under elevated pressures (90 mTorr CO + 30 mTorr H2O) at 300–575 K with ambient pressure XPS. Under UHV conditions, non-dissociative adsorption of H2O on Cu(111) and Cu2O/Cu(111) was observed. Whereas H2O readily dissociates, by breaking the O–H bond on a chemisorbed O layer on Cu(111) to form OH species. Even though this OH interacts with adsorbed CO, it does not react to form any associative intermediate and simply desorbs as H2O at 275 K under UHV conditions. At ambient pressures, no associative intermediates species, only CO and OH, were observed in the reaction of CO with H2O although the catalytic production of H2 can be detected under these conditions. Since intermediate species other than CO and OH were not observed on Cu(111) under reaction conditions, we concluded that the redox mechanism is the dominant WGS pathway on Cu(111). The coupling of Cu to an oxide, Cu–CeO2 catalyst, or a carbide, Cu–TiC catalyst, favors an associative mechanism and produces a very large increase in the rate for the production of H2 through the WGS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nakamura J, Campbell JM, Campbell CT (1990) Kinetics and mechanism of the water-gas shift reaction catalysed by the clean and Cs-promoted Cu(110) surface: a comparison with Cu(111). J Chem Soc, Faraday Trans 86(15):2725–2734CrossRef Nakamura J, Campbell JM, Campbell CT (1990) Kinetics and mechanism of the water-gas shift reaction catalysed by the clean and Cs-promoted Cu(110) surface: a comparison with Cu(111). J Chem Soc, Faraday Trans 86(15):2725–2734CrossRef
2.
Zurück zum Zitat Oyama T (ed) (1996) Chemistry of metal carbides and nitrides. Springer, Berlin, p 536 Oyama T (ed) (1996) Chemistry of metal carbides and nitrides. Springer, Berlin, p 536
3.
Zurück zum Zitat Rodriguez JA, Ramirez PJ, Asara GG, Viñes F, Evans J, Liu P, Ricart JM, Illas F (2014) Charge polarization at a Au-TiC interface and the generation of highly active and selective catalysts for the low-temperature water-gas shift reaction. Angew Chem Int Ed 53(42):11270–11274. doi:10.1002/anie.201407208 CrossRef Rodriguez JA, Ramirez PJ, Asara GG, Viñes F, Evans J, Liu P, Ricart JM, Illas F (2014) Charge polarization at a Au-TiC interface and the generation of highly active and selective catalysts for the low-temperature water-gas shift reaction. Angew Chem Int Ed 53(42):11270–11274. doi:10.​1002/​anie.​201407208 CrossRef
4.
Zurück zum Zitat Jakdetchai O, Nakajima T (2002) Mechanism of the water–gas shift reaction over Cu(110), Cu(111) and Cu(100) surfaces: an AM1-d study. J Mol Struc-Theochem 619(1–3):51–58CrossRef Jakdetchai O, Nakajima T (2002) Mechanism of the water–gas shift reaction over Cu(110), Cu(111) and Cu(100) surfaces: an AM1-d study. J Mol Struc-Theochem 619(1–3):51–58CrossRef
5.
Zurück zum Zitat Lin C-H, Chen C-L, Wang J-H (2011) Mechanistic studies of water–gas-shift reaction on transition metals. J Phys Chem C 115(38):18582–18588CrossRef Lin C-H, Chen C-L, Wang J-H (2011) Mechanistic studies of water–gas-shift reaction on transition metals. J Phys Chem C 115(38):18582–18588CrossRef
6.
Zurück zum Zitat Tang Q-L, Chen Z-X, He X (2009) A theoretical study of the water gas shift reaction mechanism on Cu(111) model system. Surf Sci 603(13):2138–2144CrossRef Tang Q-L, Chen Z-X, He X (2009) A theoretical study of the water gas shift reaction mechanism on Cu(111) model system. Surf Sci 603(13):2138–2144CrossRef
7.
Zurück zum Zitat Gokhale AA, Dumesic JA, Mavrikakis M (2008) On the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc 130(4):1402–1414CrossRef Gokhale AA, Dumesic JA, Mavrikakis M (2008) On the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc 130(4):1402–1414CrossRef
8.
Zurück zum Zitat Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46(1–8):1–308CrossRef Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46(1–8):1–308CrossRef
9.
Zurück zum Zitat Thiel PA, Madey TE (1987) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7(6–8):211–385CrossRef Thiel PA, Madey TE (1987) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7(6–8):211–385CrossRef
10.
Zurück zum Zitat Rodriguez JA, Graciani J, Evans J, Park JB, Yang F, Stacchiola D, Senanayake SD, Ma S, Pérez M, Liu P, Sanz JF, Hrbek J (2009) Water-gas shift reaction on a highly active inverse CeOx/Cu(111) catalyst: unique role of ceria nanoparticles. Angew Chem Int Ed 48(43):8047–8050CrossRef Rodriguez JA, Graciani J, Evans J, Park JB, Yang F, Stacchiola D, Senanayake SD, Ma S, Pérez M, Liu P, Sanz JF, Hrbek J (2009) Water-gas shift reaction on a highly active inverse CeOx/Cu(111) catalyst: unique role of ceria nanoparticles. Angew Chem Int Ed 48(43):8047–8050CrossRef
11.
Zurück zum Zitat Hinch BJ, Dubois LH (1992) Stable and metastable phases of water adsorbed on Cu(111). J Chem Phys 96(4):3262–3268CrossRef Hinch BJ, Dubois LH (1992) Stable and metastable phases of water adsorbed on Cu(111). J Chem Phys 96(4):3262–3268CrossRef
12.
Zurück zum Zitat Yamamoto S, Andersson K, Bluhm H, Ketteler G, Starr DE, Schiros T, Ogasawara H, Pettersson LGM, Salmeron M, Nilsson A (2007) Hydroxyl-induced wetting of metals by water at near-ambient conditions. J Phys Chem C 111(22):7848–7850CrossRef Yamamoto S, Andersson K, Bluhm H, Ketteler G, Starr DE, Schiros T, Ogasawara H, Pettersson LGM, Salmeron M, Nilsson A (2007) Hydroxyl-induced wetting of metals by water at near-ambient conditions. J Phys Chem C 111(22):7848–7850CrossRef
13.
Zurück zum Zitat Wang G-C, Nakamura J (2010) Structure sensitivity for forward and reverse water-gas shift reactions on copper surfaces: a DFT study. J Phy Chem Lett 1(20):3053–3057CrossRef Wang G-C, Nakamura J (2010) Structure sensitivity for forward and reverse water-gas shift reactions on copper surfaces: a DFT study. J Phy Chem Lett 1(20):3053–3057CrossRef
14.
Zurück zum Zitat Hollins P, Pritchard J (1979) Interactions of CO molecules adsorbed on Cu(111). Surf Sci 89(1–3):486–495CrossRef Hollins P, Pritchard J (1979) Interactions of CO molecules adsorbed on Cu(111). Surf Sci 89(1–3):486–495CrossRef
15.
Zurück zum Zitat Senanayake SD, Mullins DR (2008) Redox pathways for HCOOH decomposition over CeO2 surfaces. J Phys Chem C 112(26):9744–9752CrossRef Senanayake SD, Mullins DR (2008) Redox pathways for HCOOH decomposition over CeO2 surfaces. J Phys Chem C 112(26):9744–9752CrossRef
16.
Zurück zum Zitat Hrbek J, Hoffmann FM, Park JB, Liu P, Stacchiola D, Hoo YS, Ma S, Nambu A, Rodriguez JA, White MG (2008) Adsorbate-driven morphological changes of a gold surface at low temperatures. J Am Chem Soc 130(51):17272–17273CrossRef Hrbek J, Hoffmann FM, Park JB, Liu P, Stacchiola D, Hoo YS, Ma S, Nambu A, Rodriguez JA, White MG (2008) Adsorbate-driven morphological changes of a gold surface at low temperatures. J Am Chem Soc 130(51):17272–17273CrossRef
17.
Zurück zum Zitat Grass ME, Karlsson PG, Aksoy F, Lundqvist M, Wannberg B, Mun BS, Hussain Z, Liu Z (2010) New ambient pressure photoemission endstation at advanced light source beamline 9.3.2. Rev Sci Instrum 81(5):053106. doi:10.1063/1.3427218 CrossRef Grass ME, Karlsson PG, Aksoy F, Lundqvist M, Wannberg B, Mun BS, Hussain Z, Liu Z (2010) New ambient pressure photoemission endstation at advanced light source beamline 9.3.2. Rev Sci Instrum 81(5):053106. doi:10.​1063/​1.​3427218 CrossRef
18.
Zurück zum Zitat Tillborg H, Nilsson A, Mårtensson N (1993) Shake-up and shake-off structures in core level photoemission spectra from adsorbates. J Electron Spectrosc Relat Phenom 62(1–2):73–93CrossRef Tillborg H, Nilsson A, Mårtensson N (1993) Shake-up and shake-off structures in core level photoemission spectra from adsorbates. J Electron Spectrosc Relat Phenom 62(1–2):73–93CrossRef
19.
Zurück zum Zitat Yang F, Choi Y, Liu P, Hrbek J, Rodriguez JA (2010) Autocatalytic reduction of a Cu2O/Cu(111) surface by CO: sTM, XPS, and DFT studies. J Phys Chem C 114(40):17042–17050CrossRef Yang F, Choi Y, Liu P, Hrbek J, Rodriguez JA (2010) Autocatalytic reduction of a Cu2O/Cu(111) surface by CO: sTM, XPS, and DFT studies. J Phys Chem C 114(40):17042–17050CrossRef
20.
Zurück zum Zitat Senanayake SD, Stacchiola D, Evans J, Estrella M, Barrio L, Pérez M, Hrbek J, Rodriguez JA (2010) Probing the reaction intermediates for the water–gas shift over inverse CeOx/Au(111) catalysts. J Catal 271(2):392–400CrossRef Senanayake SD, Stacchiola D, Evans J, Estrella M, Barrio L, Pérez M, Hrbek J, Rodriguez JA (2010) Probing the reaction intermediates for the water–gas shift over inverse CeOx/Au(111) catalysts. J Catal 271(2):392–400CrossRef
21.
Zurück zum Zitat Senanayake SD, Waterhouse GIN, Chan ASY, Madey TE, Mullins DR, Idriss H (2007) The reactions of water vapour on the surfaces of stoichiometric and reduced uranium dioxide: a high resolution XPS study. Catal Today 120(2):151–157CrossRef Senanayake SD, Waterhouse GIN, Chan ASY, Madey TE, Mullins DR, Idriss H (2007) The reactions of water vapour on the surfaces of stoichiometric and reduced uranium dioxide: a high resolution XPS study. Catal Today 120(2):151–157CrossRef
22.
Zurück zum Zitat Hoffmann FM (1983) Infrared reflection-absorption spectroscopy of adsorbed molecules. Surf Sci Rep 3(2–3):107–192CrossRef Hoffmann FM (1983) Infrared reflection-absorption spectroscopy of adsorbed molecules. Surf Sci Rep 3(2–3):107–192CrossRef
23.
Zurück zum Zitat Mudiyanselage K, Senanayake SD, Feria L et al (2013) Importance of the metal-oxide interface in catalysis: in situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 52:5101–5105CrossRef Mudiyanselage K, Senanayake SD, Feria L et al (2013) Importance of the metal-oxide interface in catalysis: in situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 52:5101–5105CrossRef
24.
Zurück zum Zitat Rodriguez JA, Illas F (2012) Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions. Phys Chem Chem Phys 14:427–438CrossRef Rodriguez JA, Illas F (2012) Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions. Phys Chem Chem Phys 14:427–438CrossRef
25.
Zurück zum Zitat Rodriguez JA, Evans J, Feria L, Vidal AB, Liu P, Nakamura K, Illas F (2013) CO2 hydrogenation on Au/TiC, Cu/TiC and Ni/TiC: production of CO, methane and methanol. J Catal 307:162–169CrossRef Rodriguez JA, Evans J, Feria L, Vidal AB, Liu P, Nakamura K, Illas F (2013) CO2 hydrogenation on Au/TiC, Cu/TiC and Ni/TiC: production of CO, methane and methanol. J Catal 307:162–169CrossRef
26.
Zurück zum Zitat Moon DJ, Ryu JW (2004) Molybdenum carbide water-gas shift catalyst for fuel cell-powered vehicles applications. Catal Lett 92(1–2):17–24CrossRef Moon DJ, Ryu JW (2004) Molybdenum carbide water-gas shift catalyst for fuel cell-powered vehicles applications. Catal Lett 92(1–2):17–24CrossRef
Metadaten
Titel
Intermediates Arising from the Water–Gas Shift Reaction over Cu Surfaces: From UHV to Near Atmospheric Pressures
verfasst von
K. Mudiyanselage
S. D. Senanayake
P. J. Ramirez
S. Kundu
A. Baber
F. Yang
S. Agnoli
S. Axnanda
Z. Liu
J. Hrbek
J. Evans
J. A. Rodriguez
D. Stacchiola
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 4-6/2015
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-015-0368-y

Weitere Artikel der Ausgabe 4-6/2015

Topics in Catalysis 4-6/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.