Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2021 | OriginalPaper | Buchkapitel

13. Intermediates in Ammonothermal Synthesis and Crystal Growth

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mineralizers possess a central relevance in ammonothermal synthesis and formation of soluble species for material transport and crystal growth in particular, governing the solubility, transport direction and deposition processes. In this chapter we review the knowledge on solubilities and chemical behavior of common mineralizers for ammonothermal synthesis. Additionally, we present the current knowledge on intermediates during ammonothermal gallium nitride crystal growth, depending on the nature of the applied mineralizer, as well as during a conceivable ammonothermal synthesis of zinc nitride. Additionally, crystal growth of indium nitride is discussed with focus on chemical processes within the ammonia medium.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Juza, H. Jacobs, Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966) CrossRef R. Juza, H. Jacobs, Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966) CrossRef
2.
Zurück zum Zitat T.M.M. Richter, R. Niewa, Chemistry of ammonothermal synthesis. Inorganics 2, 29–78 (2014) CrossRef T.M.M. Richter, R. Niewa, Chemistry of ammonothermal synthesis. Inorganics 2, 29–78 (2014) CrossRef
3.
Zurück zum Zitat S. Zhang, D.A. Zherebtsov, F.J. DiSalvo, R. Niewa, Na 5[CN 2] 2[CN], (Li, Na) 5[CN 2] 2[CN], and K 2[CN 2]: carbodiimides from high-pressure synthesis. Z. Anorg. Allg. Chem. 638, 2111–2116 (2012) CrossRef S. Zhang, D.A. Zherebtsov, F.J. DiSalvo, R. Niewa, Na 5[CN 2] 2[CN], (Li, Na) 5[CN 2] 2[CN], and K 2[CN 2]: carbodiimides from high-pressure synthesis. Z. Anorg. Allg. Chem. 638, 2111–2116 (2012) CrossRef
4.
Zurück zum Zitat M. Mallmann, J. Häusler, N. Cordes, W. Schnick, Ammonothermal synthesis of alkali-alkaline earth metal and akali-rare earth metal carbodiimides: K 5–x M x(CN 2) 2+x(HCN 2) 1–x ( M=Sr, Eu) and Na 4.32Sr 0.68(CN 2) 2.68(HCN 2) 0.32. Z. Anorg. Allg. Chem. 643, 1956–1961 (2017) M. Mallmann, J. Häusler, N. Cordes, W. Schnick, Ammonothermal synthesis of alkali-alkaline earth metal and akali-rare earth metal carbodiimides: K 5–x M x(CN 2) 2+x(HCN 2) 1–x ( M=Sr, Eu) and Na 4.32Sr 0.68(CN 2) 2.68(HCN 2) 0.32. Z. Anorg. Allg. Chem. 643, 1956–1961 (2017)
5.
Zurück zum Zitat A.P. Purdy, S. Case, C. George, Ammonothermal crystal growth of Germanium and its alloys: synthesis of a hollow metallic crystal. Cryst. Growth Design 3, 121–124 (2003) CrossRef A.P. Purdy, S. Case, C. George, Ammonothermal crystal growth of Germanium and its alloys: synthesis of a hollow metallic crystal. Cryst. Growth Design 3, 121–124 (2003) CrossRef
6.
Zurück zum Zitat H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry. Curr. Top. Mater. Sci. 8, 387–427 (1982) H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry. Curr. Top. Mater. Sci. 8, 387–427 (1982)
7.
Zurück zum Zitat H. Jacobs, H. Kistrup, Über das System Kalium/Samarium/Ammoniak. Z. Anorg. Allg. Chem. 435, 127–136 (1977) CrossRef H. Jacobs, H. Kistrup, Über das System Kalium/Samarium/Ammoniak. Z. Anorg. Allg. Chem. 435, 127–136 (1977) CrossRef
8.
Zurück zum Zitat H. Jacobs, U. Fink, Untersuchung des Systems Kalium/Europium/Ammoniak. Z. Anorg. Allg. Chem. 438, 151–159 (1978) CrossRef H. Jacobs, U. Fink, Untersuchung des Systems Kalium/Europium/Ammoniak. Z. Anorg. Allg. Chem. 438, 151–159 (1978) CrossRef
9.
Zurück zum Zitat G. Linde, R. Juza, Amidometallate von Lanthan und Gadolinium und Umsetzung von Lanthan, Gadolinium und Scandium mit Ammoniak. Z. Anorg. Allg. Chem. 409, 191–198 (1974) CrossRef G. Linde, R. Juza, Amidometallate von Lanthan und Gadolinium und Umsetzung von Lanthan, Gadolinium und Scandium mit Ammoniak. Z. Anorg. Allg. Chem. 409, 191–198 (1974) CrossRef
10.
Zurück zum Zitat A. Stuhr, H. Jacobs, R. Juza, Amide des Yttriums. Z. Anorg. Allg. Chem. 395, 291–300 (1973) CrossRef A. Stuhr, H. Jacobs, R. Juza, Amide des Yttriums. Z. Anorg. Allg. Chem. 395, 291–300 (1973) CrossRef
11.
Zurück zum Zitat H. Jacobs, D. Schmidt, Struktur und Eigenschaften von perowskitartigen Caesiumamido-metallaten des Cers, Neodyms und Samariums Cs 3Ln 2(NH 2) 9. J. Less-Common Met. 76, 227–244 (1980) CrossRef H. Jacobs, D. Schmidt, Struktur und Eigenschaften von perowskitartigen Caesiumamido-metallaten des Cers, Neodyms und Samariums Cs 3Ln 2(NH 2) 9. J. Less-Common Met. 76, 227–244 (1980) CrossRef
12.
Zurück zum Zitat B. Harbrecht, H. Jacobs, Hochdrucksynthese von Caesiumamidazid, Cs 2(NH 2)N 3 aus Caesiummetall und Ammoniak. Z. Anorg. Allg. Chem. 500, 181–187 (1983) CrossRef B. Harbrecht, H. Jacobs, Hochdrucksynthese von Caesiumamidazid, Cs 2(NH 2)N 3 aus Caesiummetall und Ammoniak. Z. Anorg. Allg. Chem. 500, 181–187 (1983) CrossRef
13.
Zurück zum Zitat S. Pimputkar, T.F. Malkowski, S. Griffiths, A. Espenlaub, S. Suihkonen, J.S. Speck, S. Nakamura, Stability of materials in supercritical solutions. J. Supercrit. Fluids 110, 193–229 (2016) CrossRef S. Pimputkar, T.F. Malkowski, S. Griffiths, A. Espenlaub, S. Suihkonen, J.S. Speck, S. Nakamura, Stability of materials in supercritical solutions. J. Supercrit. Fluids 110, 193–229 (2016) CrossRef
14.
Zurück zum Zitat K. Yoshida, K. Aoki, T. Fukuda, High-temperature acidic ammonothermal method for GaN crystal growth. J. Cryst. Growth 393, 93–97 (2013) CrossRef K. Yoshida, K. Aoki, T. Fukuda, High-temperature acidic ammonothermal method for GaN crystal growth. J. Cryst. Growth 393, 93–97 (2013) CrossRef
15.
Zurück zum Zitat R. Dwiliński, J.M. Baranowski, M. Kamińska, R. Doradziński, J. Garczyński, L. Sierzputowski, On GaN crystallization by ammonotherma method. Acta Phys. Pol., A 90, 763–766 (1996) CrossRef R. Dwiliński, J.M. Baranowski, M. Kamińska, R. Doradziński, J. Garczyński, L. Sierzputowski, On GaN crystallization by ammonotherma method. Acta Phys. Pol., A 90, 763–766 (1996) CrossRef
16.
Zurück zum Zitat D. Ketchum, J. Kolis, Crystal growth of gallium nitride in supercritical ammonia. J. Cryst. Growth 222, 431–434 (2001) CrossRef D. Ketchum, J. Kolis, Crystal growth of gallium nitride in supercritical ammonia. J. Cryst. Growth 222, 431–434 (2001) CrossRef
17.
Zurück zum Zitat R.J. Jouet, A.P. Purdy, R.L. Wells, J.F. Janik, Preparation of phase pure cubic gallium nitride, c-GaN, by ammonothermal conversion of gallium imide, {Ga(NH) 3/2} n. J. Clust. Sci. 13, 469–486 (2002) CrossRef R.J. Jouet, A.P. Purdy, R.L. Wells, J.F. Janik, Preparation of phase pure cubic gallium nitride, c-GaN, by ammonothermal conversion of gallium imide, {Ga(NH) 3/2} n. J. Clust. Sci. 13, 469–486 (2002) CrossRef
18.
Zurück zum Zitat M. Zając, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski, Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd. 456, 324–338 (2008) CrossRef M. Zając, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski, Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd. 456, 324–338 (2008) CrossRef
19.
Zurück zum Zitat D. Peters, Ammonothermal synthesis of aluminum nitride. J. Cryst. Growth 104, 411–418 (1990) CrossRef D. Peters, Ammonothermal synthesis of aluminum nitride. J. Cryst. Growth 104, 411–418 (1990) CrossRef
20.
Zurück zum Zitat Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L. Xun, T. Xu, J.K. Liang, Low-temperature synthesis and photoluminescence of AlN. J. Cryst. Growth 207, 247–250 (1999) CrossRef Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L. Xun, T. Xu, J.K. Liang, Low-temperature synthesis and photoluminescence of AlN. J. Cryst. Growth 207, 247–250 (1999) CrossRef
21.
Zurück zum Zitat B. Wang, M. Callahan, Ammonothermal synthesis of III-nitride crystals. Cryst. Growth Des. 6, 1227–1246 (2006) CrossRef B. Wang, M. Callahan, Ammonothermal synthesis of III-nitride crystals. Cryst. Growth Des. 6, 1227–1246 (2006) CrossRef
22.
Zurück zum Zitat R. Dwilinski, R. Doradzinski, J. Garcynski, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kaminska, AMMONO method of BN, AlN and GaN synthesis and crystal growth. MRS Internet J. Nitride Semicond. Res. 3, e25 (1998) CrossRef R. Dwilinski, R. Doradzinski, J. Garcynski, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kaminska, AMMONO method of BN, AlN and GaN synthesis and crystal growth. MRS Internet J. Nitride Semicond. Res. 3, e25 (1998) CrossRef
23.
Zurück zum Zitat J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Design 148, 2365–2369 (2018) CrossRef J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schlücker, R. Niewa, Ammonothermal crystal growth of indium nitride. Cryst. Growth Design 148, 2365–2369 (2018) CrossRef
24.
Zurück zum Zitat J. Hertrampf, Intermediate in der ammonothermalen GaN-Kristallzucht durch Einsatz neuartiger Mineralisatoren und Synthesestrategie für Indiumnitrid. Doctoral Thesis, Universität Stuttgart, 2017 J. Hertrampf, Intermediate in der ammonothermalen GaN-Kristallzucht durch Einsatz neuartiger Mineralisatoren und Synthesestrategie für Indiumnitrid. Doctoral Thesis, Universität Stuttgart, 2017
25.
Zurück zum Zitat G. Kreiner, H. Jacobs, Magnetische Struktur von η-Mn 3N 2. J. Alloys Compd. 183, 345–362 (1992) CrossRef G. Kreiner, H. Jacobs, Magnetische Struktur von η-Mn 3N 2. J. Alloys Compd. 183, 345–362 (1992) CrossRef
26.
Zurück zum Zitat H. Jacobs, C. Stüve, Hochdrucksynthese der η-Phase im system Mn–N: Mn 3N 2. J. Less-Common Met. 96, 323–329 (1984) CrossRef H. Jacobs, C. Stüve, Hochdrucksynthese der η-Phase im system Mn–N: Mn 3N 2. J. Less-Common Met. 96, 323–329 (1984) CrossRef
27.
Zurück zum Zitat A. Leineweber, H. Jacobs, S. Hull, Ordering of nitrogen in nickel nitride Ni 3N determined by neutron diffraction. Inorg. Chem. 40, 5818–5822 (2001) CrossRef A. Leineweber, H. Jacobs, S. Hull, Ordering of nitrogen in nickel nitride Ni 3N determined by neutron diffraction. Inorg. Chem. 40, 5818–5822 (2001) CrossRef
28.
Zurück zum Zitat U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu 3N. J. Less-Common Met. 161, 175–184 (1990) CrossRef U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu 3N. J. Less-Common Met. 161, 175–184 (1990) CrossRef
29.
Zurück zum Zitat H. Jacobs, D. Rechenbach, U. Zachwieja, Structure determination of γ-Fe 4N and ε-Fe 3N. J. Alloys Compd. 227, 10–17 (1995) CrossRef H. Jacobs, D. Rechenbach, U. Zachwieja, Structure determination of γ-Fe 4N and ε-Fe 3N. J. Alloys Compd. 227, 10–17 (1995) CrossRef
30.
Zurück zum Zitat H. Jacobs, D. Rechenbach, U. Zachwieja, Untersuchungen zur Struktur und zum Zerfall von Eisennitriden—γ′-Fe 4N und ε-Fe 3N. Härterei Techn. Mitt. 50, 205–213 (1995) H. Jacobs, D. Rechenbach, U. Zachwieja, Untersuchungen zur Struktur und zum Zerfall von Eisennitriden—γ′-Fe 4N und ε-Fe 3N. Härterei Techn. Mitt. 50, 205–213 (1995)
31.
Zurück zum Zitat H. Jacobs, J. Bock, Einkristallzüchtung von γ′-Fe 4N in überkritischem Ammoniak. J. Less-Common Met. 134, 215–220 (1987) CrossRef H. Jacobs, J. Bock, Einkristallzüchtung von γ′-Fe 4N in überkritischem Ammoniak. J. Less-Common Met. 134, 215–220 (1987) CrossRef
32.
Zurück zum Zitat H. Jacobs, U. Zachwieja, Kupferpalladiumnitride, Cu 3Pd xN mit x = 0,020 und 0,989, Perowskite mit “bindender 3d 10-4d 10-Wechselwirkung”. J. Less-Common Met. 170, 185–190 (1991) CrossRef H. Jacobs, U. Zachwieja, Kupferpalladiumnitride, Cu 3Pd xN mit x = 0,020 und 0,989, Perowskite mit “bindender 3d 10-4d 10-Wechselwirkung”. J. Less-Common Met. 170, 185–190 (1991) CrossRef
33.
Zurück zum Zitat J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.-C. Kimmel, N.S.A. Alt, E. Schlücker, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: case study on CaGaSiN 3. Chem. Eur. J. 23, 2583–2590 (2017) CrossRef J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.-C. Kimmel, N.S.A. Alt, E. Schlücker, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: case study on CaGaSiN 3. Chem. Eur. J. 23, 2583–2590 (2017) CrossRef
34.
Zurück zum Zitat J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-temperature crystallization of Eu-doped red-emmiting CaAlSiN 3 from alloy-derived ammonometallates. Chem. Mater. 19, 3592–3594 (2007) CrossRef J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-temperature crystallization of Eu-doped red-emmiting CaAlSiN 3 from alloy-derived ammonometallates. Chem. Mater. 19, 3592–3594 (2007) CrossRef
35.
Zurück zum Zitat T. Watanabe, K. Nonaka, J. Li, K. Kishida, M. Yoshimura, Low temperature ammonothermal synthesis of europium-doped SrAlSiN 3 for a nitride red phosphor. J. Ceram. Soc. Jpn. 120, 500–502 (2012) CrossRef T. Watanabe, K. Nonaka, J. Li, K. Kishida, M. Yoshimura, Low temperature ammonothermal synthesis of europium-doped SrAlSiN 3 for a nitride red phosphor. J. Ceram. Soc. Jpn. 120, 500–502 (2012) CrossRef
36.
Zurück zum Zitat Y. Maruyama, Y. Yanase, T. Watanabe, Ammonothermal synthesis of charge-compensated SrAlSiN 3:Ce 3+ phosphor. J. Ceramic Soc. Jpn. 125, 399–401 (2017) CrossRef Y. Maruyama, Y. Yanase, T. Watanabe, Ammonothermal synthesis of charge-compensated SrAlSiN 3:Ce 3+ phosphor. J. Ceramic Soc. Jpn. 125, 399–401 (2017) CrossRef
37.
Zurück zum Zitat Y. Maruyama, T. Watanabe, Low-temperature synthesis of CaAlSiN 3:Ce 3+ using the ammonothermal method. J. Ceramic Soc. Jpn. 124, 66–69 (2016) CrossRef Y. Maruyama, T. Watanabe, Low-temperature synthesis of CaAlSiN 3:Ce 3+ using the ammonothermal method. J. Ceramic Soc. Jpn. 124, 66–69 (2016) CrossRef
38.
Zurück zum Zitat J. Li, T. Watanabe, N. Sakamoto, H.S. Wada, T. Setoyama, M. Yoshimura, Synthesis of a multinary nitride, Eu-doped CaAlSiN 3 from alloy at low temperatures. Chem. Mater. 20, 2095–2105 (2008) CrossRef J. Li, T. Watanabe, N. Sakamoto, H.S. Wada, T. Setoyama, M. Yoshimura, Synthesis of a multinary nitride, Eu-doped CaAlSiN 3 from alloy at low temperatures. Chem. Mater. 20, 2095–2105 (2008) CrossRef
39.
Zurück zum Zitat J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of Eu-doped CaAlSiN 3 from ammonometallates: effects of Sodium content and pressure. J. Amer. Ceram. Soc. 92, 344–349 (2009) CrossRef J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of Eu-doped CaAlSiN 3 from ammonometallates: effects of Sodium content and pressure. J. Amer. Ceram. Soc. 92, 344–349 (2009) CrossRef
40.
Zurück zum Zitat K. Nonaka, K. Kishida, C. Izawa, T. Watanabe, Low Temperature ammonothermal synthesis of europium-doped SrAlSiN 3: effect of mineralizers. J. Ceram. Soc. Jpn. 122, 17–20 (2014) CrossRef K. Nonaka, K. Kishida, C. Izawa, T. Watanabe, Low Temperature ammonothermal synthesis of europium-doped SrAlSiN 3: effect of mineralizers. J. Ceram. Soc. Jpn. 122, 17–20 (2014) CrossRef
41.
Zurück zum Zitat U. Zachwieja, H. Jacobs, Kollumnarstrukturen bei Tri- und Diamminnitraten, [M(NH 3) 3]NO 3 und [M(NH 3) 2]NO 3 des einwertigen Kupfers und Silbers. Z. Anorg. Allg. Chem. 571, 37–50 (1989) CrossRef U. Zachwieja, H. Jacobs, Kollumnarstrukturen bei Tri- und Diamminnitraten, [M(NH 3) 3]NO 3 und [M(NH 3) 2]NO 3 des einwertigen Kupfers und Silbers. Z. Anorg. Allg. Chem. 571, 37–50 (1989) CrossRef
42.
Zurück zum Zitat J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN 2 and ZnGeN 2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 1–9 (2017) CrossRef J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN 2 and ZnGeN 2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 1–9 (2017) CrossRef
43.
Zurück zum Zitat J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N 2, Mn-IV-N 2 and Li-IV 2-N 3 (IV = Si, Ge). Chem. Eur. J. 24, 1686–1693 (2018) CrossRef J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N 2, Mn-IV-N 2 and Li-IV 2-N 3 (IV = Si, Ge). Chem. Eur. J. 24, 1686–1693 (2018) CrossRef
44.
Zurück zum Zitat T. Toshima, K. Kishida, Y. Maruyama, T. Watanabe, Low-temperature synthesis of BaTaO 2N by an ammonothermal method. J. Ceram. Soc. Jpn. 125, 643–647 (2017) CrossRef T. Toshima, K. Kishida, Y. Maruyama, T. Watanabe, Low-temperature synthesis of BaTaO 2N by an ammonothermal method. J. Ceram. Soc. Jpn. 125, 643–647 (2017) CrossRef
45.
Zurück zum Zitat C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, Ammonothermal synthesis and photocatalytic activity of lower valence cation-doped LaNbON 2. Adv. Mater. Sci. Eng. 465720 (2014) C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, Ammonothermal synthesis and photocatalytic activity of lower valence cation-doped LaNbON 2. Adv. Mater. Sci. Eng. 465720 (2014)
46.
Zurück zum Zitat T. Watanabe, L. Tajima, J.W. Li, N. Matsushita, M. Yoshimura, Low-temperature ammonothermal Synthesis of LaTaO 2N. Chem. Lett. 40, 1101–1102 (2011) CrossRef T. Watanabe, L. Tajima, J.W. Li, N. Matsushita, M. Yoshimura, Low-temperature ammonothermal Synthesis of LaTaO 2N. Chem. Lett. 40, 1101–1102 (2011) CrossRef
47.
Zurück zum Zitat N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON 2 ( Ln=La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410–11415 (2017) CrossRef N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON 2 ( Ln=La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410–11415 (2017) CrossRef
48.
Zurück zum Zitat B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schluecker, Corrosive degeneration of autoclaves for the ammonothermal synthesis: experimental approach and first results. Chem. Eng. Technol. 37, 1903–1906 (2014) CrossRef B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schluecker, Corrosive degeneration of autoclaves for the ammonothermal synthesis: experimental approach and first results. Chem. Eng. Technol. 37, 1903–1906 (2014) CrossRef
49.
Zurück zum Zitat B. Hertweck, S. Zhang, T.G. Steigerwald, N.S.A. Alt, R. Niewa, E. Schluecker, Applicability of metals as liner materials for ammonoacidic crystal growth. Chem. Eng. Technol. 37, 1835–1844 (2014) CrossRef B. Hertweck, S. Zhang, T.G. Steigerwald, N.S.A. Alt, R. Niewa, E. Schluecker, Applicability of metals as liner materials for ammonoacidic crystal growth. Chem. Eng. Technol. 37, 1835–1844 (2014) CrossRef
50.
Zurück zum Zitat B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schluecker, Different corrosion behavior of autoclaves made of nickel base alloy 718 in ammonobasic and ammonoacidic environments. J. Supercrit. Fluids 95, 158–166 (2014) CrossRef B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schluecker, Different corrosion behavior of autoclaves made of nickel base alloy 718 in ammonobasic and ammonoacidic environments. J. Supercrit. Fluids 95, 158–166 (2014) CrossRef
51.
Zurück zum Zitat B. Hertweck, S. Schimmel, T. G. Steigerwald, N.S.A. Alt, P. J. Wellmann E. Schluecker, Ceramic liner technology for ammonoacidic synthesis. J. Supercrit. Fluids. 99, 76–87 (2015) B. Hertweck, S. Schimmel, T. G. Steigerwald, N.S.A. Alt, P. J. Wellmann E. Schluecker, Ceramic liner technology for ammonoacidic synthesis. J. Supercrit. Fluids. 99, 76–87 (2015)
52.
Zurück zum Zitat S. Schimmel, U. Künecke, M. Meisel, B. Hertweck, T.G. Steigerwald, C. Nebel, N.S.A. Alt, E. Schluecker, P. Wellmann, Chemical stability of carbon-based inorganic materials for in situ x-ray investigations of ammonothermal crystal growth of nitrides. J. Cryst. Growth 456, 33–42 (2016) CrossRef S. Schimmel, U. Künecke, M. Meisel, B. Hertweck, T.G. Steigerwald, C. Nebel, N.S.A. Alt, E. Schluecker, P. Wellmann, Chemical stability of carbon-based inorganic materials for in situ x-ray investigations of ammonothermal crystal growth of nitrides. J. Cryst. Growth 456, 33–42 (2016) CrossRef
53.
Zurück zum Zitat T.F. Malkowski, S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Acidic ammonothermal growth of gallium nitride in a liner-free molybdenum alloy autoclave. J. Cryst. Growth 456, 21–26 (2016) CrossRef T.F. Malkowski, S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Acidic ammonothermal growth of gallium nitride in a liner-free molybdenum alloy autoclave. J. Cryst. Growth 456, 21–26 (2016) CrossRef
54.
Zurück zum Zitat S. Pimputkar, J.S. Speck, S. Nakamura, Basic ammonothermal GaN growth in molybdenum capsules. J. Cryst. Growth 456, 15–20 (2016) CrossRef S. Pimputkar, J.S. Speck, S. Nakamura, Basic ammonothermal GaN growth in molybdenum capsules. J. Cryst. Growth 456, 15–20 (2016) CrossRef
55.
Zurück zum Zitat S. Suihkonen, S. Pimputkar, S. Sintonen, F. Tuomisto, Defects in single crystalline ammonothermal gallium nitride. Adv. Electron. Mater. 3, 1600496 (2017) CrossRef S. Suihkonen, S. Pimputkar, S. Sintonen, F. Tuomisto, Defects in single crystalline ammonothermal gallium nitride. Adv. Electron. Mater. 3, 1600496 (2017) CrossRef
56.
Zurück zum Zitat D. Ehrentraut, N. Hoshino, Y. Kagamitani, A. Yoshikawa, T. Fukuda, H. Itoh, S. Kawabata, Temperature effect of ammonium halogenides as mineralizers on the phase stability of gallium nitride synthezised under ammonothermal conditions. J. Mater. Chem. 17, 886–893 (2007) CrossRef D. Ehrentraut, N. Hoshino, Y. Kagamitani, A. Yoshikawa, T. Fukuda, H. Itoh, S. Kawabata, Temperature effect of ammonium halogenides as mineralizers on the phase stability of gallium nitride synthezised under ammonothermal conditions. J. Mater. Chem. 17, 886–893 (2007) CrossRef
57.
Zurück zum Zitat A. Purdy, Growth of cubic GaN crystals from hexagonal GaN feedstock. J. Cryst. Growth 281, 355–363 (2005) CrossRef A. Purdy, Growth of cubic GaN crystals from hexagonal GaN feedstock. J. Cryst. Growth 281, 355–363 (2005) CrossRef
58.
Zurück zum Zitat A.P. Purdy, R.J. Jouet, C.F. George, Ammonothermal recrystallization of gallium nitride with acidic mineralizers. Cryst. Growth Design 2, 141–145 (2002) CrossRef A.P. Purdy, R.J. Jouet, C.F. George, Ammonothermal recrystallization of gallium nitride with acidic mineralizers. Cryst. Growth Design 2, 141–145 (2002) CrossRef
59.
Zurück zum Zitat A.P. Purdy, Ammonothermal synthesis of cubic gallium nitride. Chem. Mater. 11, 1648–1651 (1999) CrossRef A.P. Purdy, Ammonothermal synthesis of cubic gallium nitride. Chem. Mater. 11, 1648–1651 (1999) CrossRef
60.
Zurück zum Zitat J.A. Jegier, S. McKernan, A.P. Purdy, W.L. Gladfelter, Ammonothermal conversion of cyclotrigallazane to GaN: synthesis of nanocrystalline and Cubic GaN from [H 2GaNH 2] 3. Chem. Mater. 12, 1003–1010 (2000) CrossRef J.A. Jegier, S. McKernan, A.P. Purdy, W.L. Gladfelter, Ammonothermal conversion of cyclotrigallazane to GaN: synthesis of nanocrystalline and Cubic GaN from [H 2GaNH 2] 3. Chem. Mater. 12, 1003–1010 (2000) CrossRef
61.
Zurück zum Zitat S. Schimmel, M. Lindner, T.G. Steigerwald, B. Hertweck, T.M.M. Richter, U. Künecke, N.S.A. Alt, R. Niewa, E. Schlücker, P. Wellmann, Determination of GaN solubility in supercritical ammonia with NH 4F and NH 4Cl mineralizer by in situ x-ray imaging of crystal dissolution. J. Cryst. Growth 418, 64–69 (2015) CrossRef S. Schimmel, M. Lindner, T.G. Steigerwald, B. Hertweck, T.M.M. Richter, U. Künecke, N.S.A. Alt, R. Niewa, E. Schlücker, P. Wellmann, Determination of GaN solubility in supercritical ammonia with NH 4F and NH 4Cl mineralizer by in situ x-ray imaging of crystal dissolution. J. Cryst. Growth 418, 64–69 (2015) CrossRef
62.
Zurück zum Zitat D. Ehrentraut, T. Fukuda, Ammonothermal crystal growth of gallium nitride: a brief discussion of critical issues. J. Cryst. Growth 312, 2514–2518 (2010) CrossRef D. Ehrentraut, T. Fukuda, Ammonothermal crystal growth of gallium nitride: a brief discussion of critical issues. J. Cryst. Growth 312, 2514–2518 (2010) CrossRef
63.
Zurück zum Zitat S. Griffiths, S. Pimputkar, J.S. Speck, S. Nakamura, On the solubility of gallium nitride in supercritical ammonia-sodium solutions. J. Cryst. Growth 456, 5–14 (2016) CrossRef S. Griffiths, S. Pimputkar, J.S. Speck, S. Nakamura, On the solubility of gallium nitride in supercritical ammonia-sodium solutions. J. Cryst. Growth 456, 5–14 (2016) CrossRef
64.
Zurück zum Zitat D. Tomida, K. Kuroda, N. Hoshino, K. Suzuki, Y. Kagamitani, T. Ishiguro, T. Fukuda, C. Yokoyama, Solubility of GaN in supercritical ammonia with ammonium chloride as a mineralizer. J. Cryst. Growth 312, 3161–3164 (2010) CrossRef D. Tomida, K. Kuroda, N. Hoshino, K. Suzuki, Y. Kagamitani, T. Ishiguro, T. Fukuda, C. Yokoyama, Solubility of GaN in supercritical ammonia with ammonium chloride as a mineralizer. J. Cryst. Growth 312, 3161–3164 (2010) CrossRef
65.
Zurück zum Zitat D. Tomida, T. Kuribayashi, K. Suzuki, Y. Kagamitani, T. Ishiguro, T. Fukuda, C. Yokoyama, Effect of halogen species of acidic mineralizer on solubility of GaN in supercritical ammonia. J. Cryst. Growth 325, 52–54 (2011) CrossRef D. Tomida, T. Kuribayashi, K. Suzuki, Y. Kagamitani, T. Ishiguro, T. Fukuda, C. Yokoyama, Effect of halogen species of acidic mineralizer on solubility of GaN in supercritical ammonia. J. Cryst. Growth 325, 52–54 (2011) CrossRef
66.
Zurück zum Zitat S. Schimmel, M. Koch, P. Macher, A.-C.L. Kimmel, T.C. Steigerwald, N.S.A. Alt, E. Schlücker, P. Wellmann, Solubility and dissolution kinetics of GaN in supercritical ammonia in presence of ammonoacidic and ammonobasic mineralizers. J. Cryst. Growth 479, 59–66 (2017) CrossRef S. Schimmel, M. Koch, P. Macher, A.-C.L. Kimmel, T.C. Steigerwald, N.S.A. Alt, E. Schlücker, P. Wellmann, Solubility and dissolution kinetics of GaN in supercritical ammonia in presence of ammonoacidic and ammonobasic mineralizers. J. Cryst. Growth 479, 59–66 (2017) CrossRef
67.
Zurück zum Zitat H. Hunt, L. Boncyk, Liquid ammonia as a solvent. III. The solubility of inorganic salts at 25°. J. Amer. Chem. Soc. 55, 3528–3530 (1933) H. Hunt, L. Boncyk, Liquid ammonia as a solvent. III. The solubility of inorganic salts at 25°. J. Amer. Chem. Soc. 55, 3528–3530 (1933)
68.
Zurück zum Zitat H. Hunt, Liquid ammonia as a solvent. I. The solubility of inorganic salts at 25°. J. Am. Chem. Soc. 54, 3509–3512 (1932) H. Hunt, Liquid ammonia as a solvent. I. The solubility of inorganic salts at 25°. J. Am. Chem. Soc. 54, 3509–3512 (1932)
69.
Zurück zum Zitat J.B. Shim, G.H. Kim, Y.K. Lee, Basic ammonothermal growth of bulk GaN single crystal using sodium mineralizers. J. Cryst. Growth 478, 85–88 (2017) CrossRef J.B. Shim, G.H. Kim, Y.K. Lee, Basic ammonothermal growth of bulk GaN single crystal using sodium mineralizers. J. Cryst. Growth 478, 85–88 (2017) CrossRef
70.
Zurück zum Zitat J. Hertrampf, N.S.A. Alt, E. Schlücker, M. Knetzger, E. Meissner, R. Niewa, Ammonothermal synthesis of GaN using Ba(NH 2) 2 as mineralizer. J. Cryst. Growth 456, 2–4 (2016) CrossRef J. Hertrampf, N.S.A. Alt, E. Schlücker, M. Knetzger, E. Meissner, R. Niewa, Ammonothermal synthesis of GaN using Ba(NH 2) 2 as mineralizer. J. Cryst. Growth 456, 2–4 (2016) CrossRef
71.
Zurück zum Zitat J. Hertrampf, N. S. A. Alt, E. Schlücker, R. Niewa, Three solid modifications of Ba[Ga(NH 2) 4] 2: a soluble intermediate in ammonothermal GaN crystal growth. Eur. J. Inorg. Chem. 902–909 (2017) J. Hertrampf, N. S. A. Alt, E. Schlücker, R. Niewa, Three solid modifications of Ba[Ga(NH 2) 4] 2: a soluble intermediate in ammonothermal GaN crystal growth. Eur. J. Inorg. Chem. 902–909 (2017)
72.
Zurück zum Zitat B. Fröhling, G. Kreiner, H. Jacobs, Synthese und Kristallstruktur von Mangan(II)- und Zinkamid, Mn(NH 2) 2 und Zn(NH 2) 2. Z. Anorg. Allg. Chem. 625, 211–216 (1999) CrossRef B. Fröhling, G. Kreiner, H. Jacobs, Synthese und Kristallstruktur von Mangan(II)- und Zinkamid, Mn(NH 2) 2 und Zn(NH 2) 2. Z. Anorg. Allg. Chem. 625, 211–216 (1999) CrossRef
73.
Zurück zum Zitat P.W. Schenk, H. Tulhoff, Zur Kenntnis von Lösungssystemen in tief siedenden Lösungsmitteln 2. Mitteilung: Die Systeme Alkaliamid/Ammonia. Ber. Bunsenges. 71, 210–214 (1967) P.W. Schenk, H. Tulhoff, Zur Kenntnis von Lösungssystemen in tief siedenden Lösungsmitteln 2. Mitteilung: Die Systeme Alkaliamid/Ammonia. Ber. Bunsenges. 71, 210–214 (1967)
74.
Zurück zum Zitat S. Zhang, F. Hintze, W. Schnick, R. Niewa, Intermediates in ammonothermal GaN crystal growth under ammonoacidic conditions. Eur. J. Inorg. Chem. 5387–5399 (2013) S. Zhang, F. Hintze, W. Schnick, R. Niewa, Intermediates in ammonothermal GaN crystal growth under ammonoacidic conditions. Eur. J. Inorg. Chem. 5387–5399 (2013)
75.
Zurück zum Zitat S. Zhang, N.S.A. Alt, E. Schlücker, R. Niewa, Novel alkali metal amidogallates as intermediates in ammonothermal GaN crystal growth. J. Cryst. Growth 403, 22–28 (2014) CrossRef S. Zhang, N.S.A. Alt, E. Schlücker, R. Niewa, Novel alkali metal amidogallates as intermediates in ammonothermal GaN crystal growth. J. Cryst. Growth 403, 22–28 (2014) CrossRef
76.
Zurück zum Zitat G. Demazeau, G. Goglio, A. Denis, A. Largeteau, Solvothermal synthesis: a new route for preparing nitrides. J. Phys. Cond. Matter. 14, 11085–11088 (2002) CrossRef G. Demazeau, G. Goglio, A. Denis, A. Largeteau, Solvothermal synthesis: a new route for preparing nitrides. J. Phys. Cond. Matter. 14, 11085–11088 (2002) CrossRef
77.
Zurück zum Zitat C. Yokoyama, T. Hashimoto, Q. Bao, Y. Kagamitani, K. Qiao, Ammonothermal crystal growth of gallium nitride using ZnCl 2 as mineralizer. Cryst. Eng. Commun. 13, 5306–5308 (2011) CrossRef C. Yokoyama, T. Hashimoto, Q. Bao, Y. Kagamitani, K. Qiao, Ammonothermal crystal growth of gallium nitride using ZnCl 2 as mineralizer. Cryst. Eng. Commun. 13, 5306–5308 (2011) CrossRef
78.
Zurück zum Zitat J. Jander, Anorganische und allgemeine Chemie in flüssigem Ammoniak, in Chemistry in Nonaqueos Ionizing Solvents, vol. 1 Chemistry in Anhydrous Liquid Ammonia, ed. by G. Jander, H. Spandau, C. C. Addison (Vieweg & Sohn, Braunschweig, 1966), pp. 1–561 J. Jander, Anorganische und allgemeine Chemie in flüssigem Ammoniak, in Chemistry in Nonaqueos Ionizing Solvents, vol. 1 Chemistry in Anhydrous Liquid Ammonia, ed. by G. Jander, H. Spandau, C. C. Addison (Vieweg & Sohn, Braunschweig, 1966), pp. 1–561
79.
Zurück zum Zitat S.R. Gunn, L.G. Green, Heats of solution in liquid ammonia at 25 °C. J. Phys. Chem. 64, 1066–1069 (1960) CrossRef S.R. Gunn, L.G. Green, Heats of solution in liquid ammonia at 25 °C. J. Phys. Chem. 64, 1066–1069 (1960) CrossRef
80.
Zurück zum Zitat R. Dwiliński, A. Wysmolek, J. Baranowski, A. Kamińska, R. Doradziński, J. Garczyński, L. Sierzputowski, GaN synthesis by ammonothermal method. Acta Phys. Pol., A 88, 833–836 (1995) CrossRef R. Dwiliński, A. Wysmolek, J. Baranowski, A. Kamińska, R. Doradziński, J. Garczyński, L. Sierzputowski, GaN synthesis by ammonothermal method. Acta Phys. Pol., A 88, 833–836 (1995) CrossRef
81.
Zurück zum Zitat T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, A GaN bulk crystal with improved structural quality grown by the ammonothermal method. Nat. Mater. 6, 568–571 (2007) CrossRef T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, A GaN bulk crystal with improved structural quality grown by the ammonothermal method. Nat. Mater. 6, 568–571 (2007) CrossRef
82.
Zurück zum Zitat T. Hashimoto, F. Wu, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, Status and perspectives of the ammonothermal growth of GaN substrates. J. Cryst. Growth 310, 876–880 (2008) CrossRef T. Hashimoto, F. Wu, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, Status and perspectives of the ammonothermal growth of GaN substrates. J. Cryst. Growth 310, 876–880 (2008) CrossRef
83.
Zurück zum Zitat S. Pimputkar, S. Suihkonen, M. Imade, Y. Mori, J.S. Speck, S. Nakamura, Free electron concentration dependent sub-bandgap optical adsorption characterization of bulk GaN crystals. J. Cryst. Growth 432, 49–53 (2015) CrossRef S. Pimputkar, S. Suihkonen, M. Imade, Y. Mori, J.S. Speck, S. Nakamura, Free electron concentration dependent sub-bandgap optical adsorption characterization of bulk GaN crystals. J. Cryst. Growth 432, 49–53 (2015) CrossRef
84.
Zurück zum Zitat W. Lin, J. Huang, D. Chen, L. Zhang, J. Huang, F. Huang, Synthesis and characterization of nanocrystalline GaN by ammonothermal method using CsNH 2 as mineralizer. J. Nanosci. Nanotechnol. 10, 5741–5745 (2010) CrossRef W. Lin, J. Huang, D. Chen, L. Zhang, J. Huang, F. Huang, Synthesis and characterization of nanocrystalline GaN by ammonothermal method using CsNH 2 as mineralizer. J. Nanosci. Nanotechnol. 10, 5741–5745 (2010) CrossRef
85.
Zurück zum Zitat P. Molinie, R. Brec, J. Rouxel, P. Herpin, Structures des Amidoaluminates Alcalins MAl(NH 2) 4 (M = Na, K, Cs). Structure de l’ Amidogallate de Sodium NaGa(NH 2) 4. Acta Crystallogr. B 29, 925–934 (1973) P. Molinie, R. Brec, J. Rouxel, P. Herpin, Structures des Amidoaluminates Alcalins MAl(NH 2) 4 (M = Na, K, Cs). Structure de l’ Amidogallate de Sodium NaGa(NH 2) 4. Acta Crystallogr. B 29, 925–934 (1973)
86.
Zurück zum Zitat R. Guarino, J. Rouxel, L’amidogallate de sodium. C. R. Acad. Sci. Paris Série C 264, 1488–1491 (1967) R. Guarino, J. Rouxel, L’amidogallate de sodium. C. R. Acad. Sci. Paris Série C 264, 1488–1491 (1967)
87.
Zurück zum Zitat G. Lucazeau, A. Novak, P. Molinie, J. Rouxel, Spectres de vibration et structure d’un cristal d’amidogallate de sodium. J. Mol. Struct. 20, 303–311 (1974) CrossRef G. Lucazeau, A. Novak, P. Molinie, J. Rouxel, Spectres de vibration et structure d’un cristal d’amidogallate de sodium. J. Mol. Struct. 20, 303–311 (1974) CrossRef
88.
Zurück zum Zitat H. Jacobs, B. Nöcker, Redetermination of structure and properties of the isotypic sodium tetramide metallates of aluminium and gallium. Z. Anorg. Allg. Chem. 619, 381–386 (1993) CrossRef H. Jacobs, B. Nöcker, Redetermination of structure and properties of the isotypic sodium tetramide metallates of aluminium and gallium. Z. Anorg. Allg. Chem. 619, 381–386 (1993) CrossRef
89.
Zurück zum Zitat P. Molinie, R. Brec, J. Rouxel, Le pentaamidogallate de sodium Na 2Ga(NH) 5. C. R. Acad. Sci. Paris Série C 274, 1388–1391 (1972) P. Molinie, R. Brec, J. Rouxel, Le pentaamidogallate de sodium Na 2Ga(NH) 5. C. R. Acad. Sci. Paris Série C 274, 1388–1391 (1972)
90.
Zurück zum Zitat Y. Lan, X.L. Chen, Y. Xu, Y. Cao, F. Huang, Syntheses and structure of nanocrystalline gallium nitride obtained from ammonothermal method using lithium metal as mineralizator. Mater. Res. Bull. 35, 2325–2330 (2000) CrossRef Y. Lan, X.L. Chen, Y. Xu, Y. Cao, F. Huang, Syntheses and structure of nanocrystalline gallium nitride obtained from ammonothermal method using lithium metal as mineralizator. Mater. Res. Bull. 35, 2325–2330 (2000) CrossRef
91.
Zurück zum Zitat B. Wang, M.J. Callahan, Transport growth of GaN crystals by the ammonothermal technique using various nutrients. J. Cryst. Growth 291, 455–460 (2006) CrossRef B. Wang, M.J. Callahan, Transport growth of GaN crystals by the ammonothermal technique using various nutrients. J. Cryst. Growth 291, 455–460 (2006) CrossRef
92.
Zurück zum Zitat S. Zhang, Intermediates during the Formation of GaN under Ammonothermal Conditions. Doctoral Dissertation, Universität Stuttgart, 2014 S. Zhang, Intermediates during the Formation of GaN under Ammonothermal Conditions. Doctoral Dissertation, Universität Stuttgart, 2014
93.
Zurück zum Zitat A. Tenten, Amide und Nitride von Nickel, Palladium und Platin sowie von Aluminium, Gallium und Indium. Doctoral Dissertation, Universität Dortmund, 1991 A. Tenten, Amide und Nitride von Nickel, Palladium und Platin sowie von Aluminium, Gallium und Indium. Doctoral Dissertation, Universität Dortmund, 1991
94.
Zurück zum Zitat R. Guarino, J. Rouxel, L’amidogallate de potassium KGa(NH 2) 4 et l’imidogallate KGa(NH) 2. L’obtention de l’amidure de gallium Ga(NH 2) 3. Bull. Soc. Chim. Fr. 7, 2284–2287 (1969) R. Guarino, J. Rouxel, L’amidogallate de potassium KGa(NH 2) 4 et l’imidogallate KGa(NH) 2. L’obtention de l’amidure de gallium Ga(NH 2) 3. Bull. Soc. Chim. Fr. 7, 2284–2287 (1969)
95.
Zurück zum Zitat B. Wang, M.J. Callahan, K.D. Rakes, L.O. Bouthillette, S.-Q. Wang, D.F. Bliss, J.W. Kolis, Ammonothermal growth of GaN crystals in alkaline solutions. J. Cryst. Growth 287, 376–380 (2006) CrossRef B. Wang, M.J. Callahan, K.D. Rakes, L.O. Bouthillette, S.-Q. Wang, D.F. Bliss, J.W. Kolis, Ammonothermal growth of GaN crystals in alkaline solutions. J. Cryst. Growth 287, 376–380 (2006) CrossRef
96.
Zurück zum Zitat T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, Growth of bulk GaN Crystals by the basic ammonothermal method. Jpn. J. Appl. Phys. 2, 889–891 (2007) CrossRef T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, Growth of bulk GaN Crystals by the basic ammonothermal method. Jpn. J. Appl. Phys. 2, 889–891 (2007) CrossRef
97.
Zurück zum Zitat H. Jacobs, K. Jänichen, C. Hadenfeldt, R. Juza, Lithiumaluminiumamid, LiAl(NH 2) 4, Darstellung, röntgenographische Untersuchung, Infrarotspektrum und thermische Zersetzung. Z. Anorg. Allg. Chem. 531, 125–139 (1985) CrossRef H. Jacobs, K. Jänichen, C. Hadenfeldt, R. Juza, Lithiumaluminiumamid, LiAl(NH 2) 4, Darstellung, röntgenographische Untersuchung, Infrarotspektrum und thermische Zersetzung. Z. Anorg. Allg. Chem. 531, 125–139 (1985) CrossRef
98.
Zurück zum Zitat A. Tenten, H. Jacobs, Strukturen und thermisches Verhalten von Kaliumtetraaluminat, α- und β-K[Al(NH 2) 4]. 28. Diskussionstagung der Arbeitsgemeinschaft Kristallographie, Hannover, Germany, 1989, pp. 289–290 A. Tenten, H. Jacobs, Strukturen und thermisches Verhalten von Kaliumtetraaluminat, α- und β-K[Al(NH 2) 4]. 28. Diskussionstagung der Arbeitsgemeinschaft Kristallographie, Hannover, Germany, 1989, pp. 289–290
99.
Zurück zum Zitat H. Cao, J. Guo, F. Chang, C. Pistidda, W. Zhou, X. Zhang, A. Santoru, H. Wu, N. Schell, R. Niewa, P. Chen, T. Klassen, M. Dornheim, Transition and Alkali metal complex ternary amides for ammonia synthesis and decomposition. Chem. Eur. J. 23, 9766–9771 (2017) CrossRef H. Cao, J. Guo, F. Chang, C. Pistidda, W. Zhou, X. Zhang, A. Santoru, H. Wu, N. Schell, R. Niewa, P. Chen, T. Klassen, M. Dornheim, Transition and Alkali metal complex ternary amides for ammonia synthesis and decomposition. Chem. Eur. J. 23, 9766–9771 (2017) CrossRef
100.
Zurück zum Zitat T.M.M. Richter, S. Zhang, R. Niewa, Ammonothermal synthesis of dimorphic K 2[Zn(NH 2) 4]. Z. Kristallogr. 228, 351–358 (2013) T.M.M. Richter, S. Zhang, R. Niewa, Ammonothermal synthesis of dimorphic K 2[Zn(NH 2) 4]. Z. Kristallogr. 228, 351–358 (2013)
101.
Zurück zum Zitat B. Fröhling, H. Jacobs, Positions of the protons in potassium tetraamidozincate, K 2[Zn(NH 2) 4]. Z. Anorg. Allg. Chem. 623, 1103–1107 (1997) CrossRef B. Fröhling, H. Jacobs, Positions of the protons in potassium tetraamidozincate, K 2[Zn(NH 2) 4]. Z. Anorg. Allg. Chem. 623, 1103–1107 (1997) CrossRef
102.
Zurück zum Zitat L. Brisseau, J. Rouxel, Les amidozincates Na 2Zn(NH 2) 4 et K 2Zn(NH 2) 4. C. R. Acad. Sci. Paris Série C 268, 2308–2311 (1969) L. Brisseau, J. Rouxel, Les amidozincates Na 2Zn(NH 2) 4 et K 2Zn(NH 2) 4. C. R. Acad. Sci. Paris Série C 268, 2308–2311 (1969)
103.
Zurück zum Zitat L. Guémas, P. Palvadeau, Étude structurale de l’amidozincate de potassium K 2Zn(NH 2) 4. Rev. Chim. Min. 14, 381–386 (1977) L. Guémas, P. Palvadeau, Étude structurale de l’amidozincate de potassium K 2Zn(NH 2) 4. Rev. Chim. Min. 14, 381–386 (1977)
104.
Zurück zum Zitat J. Hertrampf, E. Schlücker, D. Gudat, R. Niewa, Dissolved species in ammonothermal GaN crystal growth: stepwise condensation of [Ga(NH 2) 4] −. Cryst. Growth Design 17, 4855–4863 (2017) CrossRef J. Hertrampf, E. Schlücker, D. Gudat, R. Niewa, Dissolved species in ammonothermal GaN crystal growth: stepwise condensation of [Ga(NH 2) 4] . Cryst. Growth Design 17, 4855–4863 (2017) CrossRef
105.
Zurück zum Zitat D. Zahn, On the solvation of metal ions in liquid ammonia: a molecular simulation study of M(NH 2) x(NH 3) y complexes as functions of pH. RSC Adv. 7, 54063–54067 (2017) CrossRef D. Zahn, On the solvation of metal ions in liquid ammonia: a molecular simulation study of M(NH 2) x(NH 3) y complexes as functions of pH. RSC Adv. 7, 54063–54067 (2017) CrossRef
106.
Zurück zum Zitat J. Rouxel, P. Palvadeau, Les amidoaluminates SrAl 2(NH 2) 8 et BaAl 2(NH 2) 8. C. R. Acad. Sci. Paris Série C 272, 63–66 (1971) J. Rouxel, P. Palvadeau, Les amidoaluminates SrAl 2(NH 2) 8 et BaAl 2(NH 2) 8. C. R. Acad. Sci. Paris Série C 272, 63–66 (1971)
107.
Zurück zum Zitat J. Rouxel, R. Brec, L’amidoaluminate et L’imidoaluminate de lithium. C. R. Acad. Sci. Paris Série C 262, 1070–1074 (1966) J. Rouxel, R. Brec, L’amidoaluminate et L’imidoaluminate de lithium. C. R. Acad. Sci. Paris Série C 262, 1070–1074 (1966)
108.
Zurück zum Zitat P. Palvadeau, M. Drew, G. Charlesworth, J. Rouxel, Structure de l’amidoaluminate CaAl 2(NH 2) 8, NH 3. C. R. Acad. Sci. Paris Série C 275, 881–884 (1972) P. Palvadeau, M. Drew, G. Charlesworth, J. Rouxel, Structure de l’amidoaluminate CaAl 2(NH 2) 8, NH 3. C. R. Acad. Sci. Paris Série C 275, 881–884 (1972)
109.
Zurück zum Zitat T. Ono, K. Shimoda, M. Tsubota, S. Kohara, T. Ichikawa, K.-I. Kojima, M. Tansho, T. Shimizu, Y. Kojima, Ammonia desorption property and structural changes of LiAl(NH 2) 4 on thermal decomposition. J. Phys. Chem. C 115, 10284–10291 (2011) CrossRef T. Ono, K. Shimoda, M. Tsubota, S. Kohara, T. Ichikawa, K.-I. Kojima, M. Tansho, T. Shimizu, Y. Kojima, Ammonia desorption property and structural changes of LiAl(NH 2) 4 on thermal decomposition. J. Phys. Chem. C 115, 10284–10291 (2011) CrossRef
110.
Zurück zum Zitat K. Ikeda, T. Otomo, H. Ohshita, N. Kaneko, M. Tsubota, K. Suzuya, F. Fujisaki, T. Ono, T. Yamanaka, K. Shimoda, Local structural analysis on decomposition process of LiAl(ND 2) 4. Mater. Trans. 55, 1129–1133 (2014) CrossRef K. Ikeda, T. Otomo, H. Ohshita, N. Kaneko, M. Tsubota, K. Suzuya, F. Fujisaki, T. Ono, T. Yamanaka, K. Shimoda, Local structural analysis on decomposition process of LiAl(ND 2) 4. Mater. Trans. 55, 1129–1133 (2014) CrossRef
111.
Zurück zum Zitat D. Ehrentraut, Y. Kagamitani, C. Yokoyama, T. Fukuda, Physico-chemical features of the ammonothermal growth of GaN. J. Cryst. Growth 310, 891–895 (2008) CrossRef D. Ehrentraut, Y. Kagamitani, C. Yokoyama, T. Fukuda, Physico-chemical features of the ammonothermal growth of GaN. J. Cryst. Growth 310, 891–895 (2008) CrossRef
112.
Zurück zum Zitat K. Yoshida, K. Aoki, T. Fukuda, High-temperature acidic ammonothermal method for GaN crystal growth. J. Cryst. Growth 393, 93–97 (2014) CrossRef K. Yoshida, K. Aoki, T. Fukuda, High-temperature acidic ammonothermal method for GaN crystal growth. J. Cryst. Growth 393, 93–97 (2014) CrossRef
113.
Zurück zum Zitat Q. Bao, M. Saito, K. Hazu, K. Furusawa, Y. Kagamitani, R. Kayano, D. Tomida, K. Qiao, T. Ishiguro, C. Yokoyama, S.F. Chichibu, Ammonothermal crystal growth of GaN using an NH 4F mineralizer. Cryst. Growth Design 13, 4158–4161 (2013) CrossRef Q. Bao, M. Saito, K. Hazu, K. Furusawa, Y. Kagamitani, R. Kayano, D. Tomida, K. Qiao, T. Ishiguro, C. Yokoyama, S.F. Chichibu, Ammonothermal crystal growth of GaN using an NH 4F mineralizer. Cryst. Growth Design 13, 4158–4161 (2013) CrossRef
114.
Zurück zum Zitat P. Becker, Chemie der ammonosauren GaN-Synthese. Master-Thesis, Universität Stuttgart, 2017 P. Becker, Chemie der ammonosauren GaN-Synthese. Master-Thesis, Universität Stuttgart, 2017
115.
Zurück zum Zitat H. Yamane, Y. Mikawa, C. Yokoyama, Pentaamminechlorogallium(III) dichloride. Acta Crystallogr. E 63, i59–i61 (2007) CrossRef H. Yamane, Y. Mikawa, C. Yokoyama, Pentaamminechlorogallium(III) dichloride. Acta Crystallogr. E 63, i59–i61 (2007) CrossRef
116.
Zurück zum Zitat S. Schimmel, P. Duchstein, T.G. Steigerwald, A.-C.L. Kimmel, E. Schlücker, D. Zahn, R. Niewa, P. Wellmann, In situ X-ray monitoring of transport and chemistry of Ga-containing intermediates under ammonothermal growth conditions of GaN. J. Cryst. Growth 498, 214–223 (2018) CrossRef S. Schimmel, P. Duchstein, T.G. Steigerwald, A.-C.L. Kimmel, E. Schlücker, D. Zahn, R. Niewa, P. Wellmann, In situ X-ray monitoring of transport and chemistry of Ga-containing intermediates under ammonothermal growth conditions of GaN. J. Cryst. Growth 498, 214–223 (2018) CrossRef
117.
Zurück zum Zitat J.W. Trainor, K. Rose, Some properties of InN films prepared by reactive evaporation. J. Electron. Mater. 3, 821–828 (1974) CrossRef J.W. Trainor, K. Rose, Some properties of InN films prepared by reactive evaporation. J. Electron. Mater. 3, 821–828 (1974) CrossRef
118.
Zurück zum Zitat M.R. Ranade, F. Tessier, A. Navrotsky, R. Marchand, Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. J. Mater. Res. 16, 2824–2831 (2001) CrossRef M.R. Ranade, F. Tessier, A. Navrotsky, R. Marchand, Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. J. Mater. Res. 16, 2824–2831 (2001) CrossRef
119.
Zurück zum Zitat T.A. Komissarova, V.N. Jmerik, S.V. Ivanov, O. Drachenko, X. Wang, A. Yoshikawa, Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. Phys. Rev. B 84, 035205 (2011) CrossRef T.A. Komissarova, V.N. Jmerik, S.V. Ivanov, O. Drachenko, X. Wang, A. Yoshikawa, Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. Phys. Rev. B 84, 035205 (2011) CrossRef
120.
Zurück zum Zitat X.M. Duan, C. Stampfl, Nitrogen vacancies in InN: Vacancy clustering and metallic bonding from first principles. Phys. Rev. B 77, 115207 (2008) CrossRef X.M. Duan, C. Stampfl, Nitrogen vacancies in InN: Vacancy clustering and metallic bonding from first principles. Phys. Rev. B 77, 115207 (2008) CrossRef
121.
Zurück zum Zitat D.R. Ketchum, G.L. Schimek, W.T. Pennington, J.W. Kolis, Synthesis of new Group III fluoride–ammonia adducts in supercritical ammonia: structures of AlF 3(NH 2) 2 and InF 2(NH 2)(NH 3). Inorg. Chim. Acta 294, 200–206 (1999) CrossRef D.R. Ketchum, G.L. Schimek, W.T. Pennington, J.W. Kolis, Synthesis of new Group III fluoride–ammonia adducts in supercritical ammonia: structures of AlF 3(NH 2) 2 and InF 2(NH 2)(NH 3). Inorg. Chim. Acta 294, 200–206 (1999) CrossRef
122.
Zurück zum Zitat S. Bremm, G. Meyer, Triamminetrichloroindium(III), [InCl 3(NH 3) 3]. Acta Crystallogr. E 59, i110–i111 (2003) CrossRef S. Bremm, G. Meyer, Triamminetrichloroindium(III), [InCl 3(NH 3) 3]. Acta Crystallogr. E 59, i110–i111 (2003) CrossRef
123.
Zurück zum Zitat A.P. Purdy, Indium(III) amides and nitrides. Inorg. Chem. 33, 282–286 (1994) CrossRef A.P. Purdy, Indium(III) amides and nitrides. Inorg. Chem. 33, 282–286 (1994) CrossRef
124.
Zurück zum Zitat T. Suda, K. Kakishita, Band-gap energy and electron effective mass of polycrystalline Zn 3N 2. J. Appl. Phys. 99, 076101 (2006) CrossRef T. Suda, K. Kakishita, Band-gap energy and electron effective mass of polycrystalline Zn 3N 2. J. Appl. Phys. 99, 076101 (2006) CrossRef
125.
Zurück zum Zitat S.-H. Yoo, A. Walsh, D.O. Scanlon, A. Soon, Electronic structure and band alignment of zinc nitride, Zn 3N 2. RSC Adv. 4, 3306–3311 (2014) CrossRef S.-H. Yoo, A. Walsh, D.O. Scanlon, A. Soon, Electronic structure and band alignment of zinc nitride, Zn 3N 2. RSC Adv. 4, 3306–3311 (2014) CrossRef
126.
Zurück zum Zitat M. Futsuhara, K. Yoshioka, O. Takai, Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films 322, 274–281 (1998) CrossRef M. Futsuhara, K. Yoshioka, O. Takai, Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films 322, 274–281 (1998) CrossRef
127.
Zurück zum Zitat G. Paniconi, Z. Stoeva, R.I. Smith, P.C. Dippo, B.L. Gallagher, D.H. Gregory, Synthesis, stoichiometry and thermal stability of Zn 3N 2 powders prepared by ammonolysis reactions. J. Solid State Chem. 181, 158–165 (2008) CrossRef G. Paniconi, Z. Stoeva, R.I. Smith, P.C. Dippo, B.L. Gallagher, D.H. Gregory, Synthesis, stoichiometry and thermal stability of Zn 3N 2 powders prepared by ammonolysis reactions. J. Solid State Chem. 181, 158–165 (2008) CrossRef
128.
Zurück zum Zitat T. Endo, Y. Sato, H. Takizawa, M. Shimada, High-pressure synthesis of new compounds, ZnSiN 2 and ZnGeN 2 with distorted wurtzite structure. Mater. Sci. Lett. 11, 424–426 (1992) CrossRef T. Endo, Y. Sato, H. Takizawa, M. Shimada, High-pressure synthesis of new compounds, ZnSiN 2 and ZnGeN 2 with distorted wurtzite structure. Mater. Sci. Lett. 11, 424–426 (1992) CrossRef
129.
Zurück zum Zitat S. Chen, P. Narang, H.A. Atwater, L.-W. Wang, Phase stability and defect physics of a ternary ZnSnN 2 semiconductor: first principles insights. Adv. Mater. 26, 311–315 (2014) CrossRef S. Chen, P. Narang, H.A. Atwater, L.-W. Wang, Phase stability and defect physics of a ternary ZnSnN 2 semiconductor: first principles insights. Adv. Mater. 26, 311–315 (2014) CrossRef
130.
Zurück zum Zitat P.C. Quayle, K. He, J. Shan, K. Kash, Synthesis, lattice structure, and band gap of ZnSnN 2. MRS Commun. 3, 135–138 (2013) CrossRef P.C. Quayle, K. He, J. Shan, K. Kash, Synthesis, lattice structure, and band gap of ZnSnN 2. MRS Commun. 3, 135–138 (2013) CrossRef
131.
Zurück zum Zitat N. Feldberg, J.D. Aldous, W.M. Linhart, L.J. Phillips, K. Durose, P.A. Stampe, R.J. Kennedy, D.O. Scanlon, G. Vardar, R.L. Field, T.Y. Jen, R.S. Goldman, T.D. Veal, S.M. Durbin, Growth, disorder, and physical properties of ZnSnN 2. Appl. Phys. Lett. 103, 042109 (2013) CrossRef N. Feldberg, J.D. Aldous, W.M. Linhart, L.J. Phillips, K. Durose, P.A. Stampe, R.J. Kennedy, D.O. Scanlon, G. Vardar, R.L. Field, T.Y. Jen, R.S. Goldman, T.D. Veal, S.M. Durbin, Growth, disorder, and physical properties of ZnSnN 2. Appl. Phys. Lett. 103, 042109 (2013) CrossRef
132.
Zurück zum Zitat F.F. Fitzgerald, Reactions in liquid ammonia (potassium ammonozincate, cuprous nitride and an ammonobasic mercuric bromide). J. Am. Chem. Soc. 29, 656–665 (1907) CrossRef F.F. Fitzgerald, Reactions in liquid ammonia (potassium ammonozincate, cuprous nitride and an ammonobasic mercuric bromide). J. Am. Chem. Soc. 29, 656–665 (1907) CrossRef
133.
Zurück zum Zitat R. Juza, Concerning the amides of the 1 and 2 groups of the periodic system metal amides I announcement. Z. Anorg. Allg. Chem. 231, 121–135 (1937) CrossRef R. Juza, Concerning the amides of the 1 and 2 groups of the periodic system metal amides I announcement. Z. Anorg. Allg. Chem. 231, 121–135 (1937) CrossRef
134.
Zurück zum Zitat T.M.M. Richter, N.S.A. Alt, E. Schlücker, R. Niewa, Ammonothermal synthesis and characterization of Li 4[Zn(NH 2) 4](NH 2) 2. Z. Anorg. Allg. Chem. 641, 1016–1023 (2015) CrossRef T.M.M. Richter, N.S.A. Alt, E. Schlücker, R. Niewa, Ammonothermal synthesis and characterization of Li 4[Zn(NH 2) 4](NH 2) 2. Z. Anorg. Allg. Chem. 641, 1016–1023 (2015) CrossRef
135.
Zurück zum Zitat B. Fröhling, H. Jacobs, Synthesis and crystal structure of a semiammoniate of sodium tetraamidozincate, Na 2[Zn(NH 2) 4]·0.5NH 3. Z. Anorg. Allg. Chem. 624, 1148–1153 (1997) B. Fröhling, H. Jacobs, Synthesis and crystal structure of a semiammoniate of sodium tetraamidozincate, Na 2[Zn(NH 2) 4]·0.5NH 3. Z. Anorg. Allg. Chem. 624, 1148–1153 (1997)
136.
Zurück zum Zitat G. Lucazeau, L. Guemas, A. Novak, Vibrational spectra and structure of K 2Zn(NH 2) 4 and Rb 2Zn(NH 2) 4 amides. Inorg. Chim. Acta 20, 11–18 (1976) CrossRef G. Lucazeau, L. Guemas, A. Novak, Vibrational spectra and structure of K 2Zn(NH 2) 4 and Rb 2Zn(NH 2) 4 amides. Inorg. Chim. Acta 20, 11–18 (1976) CrossRef
137.
Zurück zum Zitat L. Brisseau, J. Rouxel, Préparation, caractérisation chimique at structural d’amidozincates alcalins. Rev. Chim. Min. 7, 427–450 (1970) L. Brisseau, J. Rouxel, Préparation, caractérisation chimique at structural d’amidozincates alcalins. Rev. Chim. Min. 7, 427–450 (1970)
138.
Zurück zum Zitat T.M.M. Richter, N.S.A. Alt, E. Schlücker, R. Niewa, Ammonothermal synthesis and characterization of Cs 2[Zn(NH 2) 4]. Z. Anorg. Allg. Chem. 642, 1207–1211 (2016) CrossRef T.M.M. Richter, N.S.A. Alt, E. Schlücker, R. Niewa, Ammonothermal synthesis and characterization of Cs 2[Zn(NH 2) 4]. Z. Anorg. Allg. Chem. 642, 1207–1211 (2016) CrossRef
139.
Zurück zum Zitat T.M.M. Richter, Darstellung von Intermediaten in der ammonothermalen Zinknitridsynthese sowie Synthesestrategien für Sc xGa 1–xN (0 ≤ x ≤ 1). Doctoral Dissertation, Universität Stuttgart, 2016 T.M.M. Richter, Darstellung von Intermediaten in der ammonothermalen Zinknitridsynthese sowie Synthesestrategien für Sc xGa 1–xN (0 ≤ x ≤ 1). Doctoral Dissertation, Universität Stuttgart, 2016
140.
Zurück zum Zitat E. Frankland, On a new series of compounds derived from ammonia and its analogues. Lond. Edinb. Dubl. Phil. Mag. Ser. 4(15), 149–152 (1858) E. Frankland, On a new series of compounds derived from ammonia and its analogues. Lond. Edinb. Dubl. Phil. Mag. Ser. 4(15), 149–152 (1858)
141.
Zurück zum Zitat R. Juza, A. Neuber, H. Hahn, Zur Kenntnis des Zinknitrides. Metallamide und Metallnitride, IV. Mitteilung. Z. Anorg. Allg. Chem 239, 273–281 (1938) R. Juza, A. Neuber, H. Hahn, Zur Kenntnis des Zinknitrides. Metallamide und Metallnitride, IV. Mitteilung. Z. Anorg. Allg. Chem 239, 273–281 (1938)
142.
Zurück zum Zitat R. Juza, H. Hahn, Über die Kristallstrukturen von Zn 3N 2, Cd 3N 2 und Ge 3N 4. Metallamide und metallnitride, IX. Mitteilung. Z. Anorg. Allg. Chem. 244, 125–132 (1940) R. Juza, H. Hahn, Über die Kristallstrukturen von Zn 3N 2, Cd 3N 2 und Ge 3N 4. Metallamide und metallnitride, IX. Mitteilung. Z. Anorg. Allg. Chem. 244, 125–132 (1940)
143.
Zurück zum Zitat R. Juza, F. Hund, Die Kristallstrukturen LiMgN, LiZnN, Li 3AlN 2 und Li 3GaN 2. Naturwissenschaften 33, 121–122 (1946) CrossRef R. Juza, F. Hund, Die Kristallstrukturen LiMgN, LiZnN, Li 3AlN 2 und Li 3GaN 2. Naturwissenschaften 33, 121–122 (1946) CrossRef
144.
Zurück zum Zitat H. Cao, T.M.M. Richter, C. Pistidda, A.-L. Chaudhary, A. Santoru, G. Gizer, R. Niewa, P. Chen, T. Klassen, M. Dornheim, Alkali metal amidozincates for hydrogen storage. ChemSusChem 8, 3777–3782 (2015) CrossRef H. Cao, T.M.M. Richter, C. Pistidda, A.-L. Chaudhary, A. Santoru, G. Gizer, R. Niewa, P. Chen, T. Klassen, M. Dornheim, Alkali metal amidozincates for hydrogen storage. ChemSusChem 8, 3777–3782 (2015) CrossRef
145.
Zurück zum Zitat H. Cao, A. Santoru, C. Pistidda, T.M.M. Richter, A.-L. Chaudhary, G. Gizer, R. Niewa, P. Chen, T. Klassen, M. Dornheim, New synthesis route for ternary transition metal amides as well as ultrafast amide-hydride hydrogen storage materials. Chem. Comm. 52, 5100–5103 (2016) CrossRef H. Cao, A. Santoru, C. Pistidda, T.M.M. Richter, A.-L. Chaudhary, G. Gizer, R. Niewa, P. Chen, T. Klassen, M. Dornheim, New synthesis route for ternary transition metal amides as well as ultrafast amide-hydride hydrogen storage materials. Chem. Comm. 52, 5100–5103 (2016) CrossRef
146.
Zurück zum Zitat H. Cao, C. Pistidda, T.M.M. Richter, A. Santoru, C. Milanese, S. Garroni, J. Bednarcik, A.-L. Chaudhary, G. Gizer, H.-P. Liermann, R. Niewa, P. Chen, T. Klassen, M. Dornheim, In situ X-ray diffraction study of the super-fast re-hydrogenation of K 2[Zn(NH 2) 4]-8LiH. J. Phys. Chem. C 121, 1546–1551 (2017) CrossRef H. Cao, C. Pistidda, T.M.M. Richter, A. Santoru, C. Milanese, S. Garroni, J. Bednarcik, A.-L. Chaudhary, G. Gizer, H.-P. Liermann, R. Niewa, P. Chen, T. Klassen, M. Dornheim, In situ X-ray diffraction study of the super-fast re-hydrogenation of K 2[Zn(NH 2) 4]-8LiH. J. Phys. Chem. C 121, 1546–1551 (2017) CrossRef
147.
Zurück zum Zitat C. MacGillavry, J. Bijvoet, Die Kristallstruktur von Zn(NH 3) 2Cl 2 und Zn(NH 3) 2Br 2. Z. Kristallogr. 94, 249–255 (1936) CrossRef C. MacGillavry, J. Bijvoet, Die Kristallstruktur von Zn(NH 3) 2Cl 2 und Zn(NH 3) 2Br 2. Z. Kristallogr. 94, 249–255 (1936) CrossRef
148.
Zurück zum Zitat R. Eßmann, Influence of coordination on N–H···X − hydrogen-bonds. 1. [Zn(NH 3) 4]Br 2 and [Zn(NH 3) 4]I 2. J. Mol. Struct. 356, 201–206 (1995) R. Eßmann, Influence of coordination on N–H···X hydrogen-bonds. 1. [Zn(NH 3) 4]Br 2 and [Zn(NH 3) 4]I 2. J. Mol. Struct. 356, 201–206 (1995)
149.
Zurück zum Zitat T.M.M. Richter, S. Le Tonquesse, N.S.A. Alt, E. Schlücker, R. Niewa, Trigonal-bipyramidal coordination in first ammoniates of ZnF 2: ZnF 2(NH 3) 3 and ZnF 2(NH 3) 2. Inorg. Chem. 55, 2488–2498 (2016) CrossRef T.M.M. Richter, S. Le Tonquesse, N.S.A. Alt, E. Schlücker, R. Niewa, Trigonal-bipyramidal coordination in first ammoniates of ZnF 2: ZnF 2(NH 3) 3 and ZnF 2(NH 3) 2. Inorg. Chem. 55, 2488–2498 (2016) CrossRef
150.
Zurück zum Zitat J. Jander, V. Doetsch, G. Jander, Anorganische und allgemeine Chemie in flüssigem Ammoniak (Akademischer Verlag, Berlin, Germany, 1966) J. Jander, V. Doetsch, G. Jander, Anorganische und allgemeine Chemie in flüssigem Ammoniak (Akademischer Verlag, Berlin, Germany, 1966)
151.
Zurück zum Zitat T.M.M. Richter, S. Strobel, N.S.A. Alt, E. Schlücker, R. Niewa, Ammonothermal synthesis and crystal structures of diamminetriamidodizinc chloride [Zn 2(NH 3) 2(NH 2) 3]Cl and diamminemonoamidozinc bromide [Zn(NH 3) 2(NH 2)]Br. Inorganics 4, 41 (2016) CrossRef T.M.M. Richter, S. Strobel, N.S.A. Alt, E. Schlücker, R. Niewa, Ammonothermal synthesis and crystal structures of diamminetriamidodizinc chloride [Zn 2(NH 3) 2(NH 2) 3]Cl and diamminemonoamidozinc bromide [Zn(NH 3) 2(NH 2)]Br. Inorganics 4, 41 (2016) CrossRef
152.
Zurück zum Zitat P.W. Schenk, H. Tulhoff, Das System Kaliumamid/Ammoniak. Angew. Chem. 74, 943 (1962) CrossRef P.W. Schenk, H. Tulhoff, Das System Kaliumamid/Ammoniak. Angew. Chem. 74, 943 (1962) CrossRef
153.
Zurück zum Zitat P.C. Scherer Jr., Solubility of salts in liquid ammonia. J. Am. Chem. Soc. 53, 3694–3697 (1931) CrossRef P.C. Scherer Jr., Solubility of salts in liquid ammonia. J. Am. Chem. Soc. 53, 3694–3697 (1931) CrossRef
Metadaten
Titel
Intermediates in Ammonothermal Synthesis and Crystal Growth
verfasst von
Rainer Niewa
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-56305-9_13