Skip to main content
main-content

Zeitschrift

International Journal of Computer Vision

International Journal of Computer Vision 3/2021

Ausgabe 3/2021

Inhaltsverzeichnis ( 11 Artikel )

22.10.2020 | Ausgabe 3/2021

Progressive Multi-granularity Analysis for Video Prediction

Jingwei Xu, Bingbing Ni, Xiaokang Yang

24.10.2020 | Ausgabe 3/2021

Residual Dual Scale Scene Text Spotting by Fusing Bottom-Up and Top-Down Processing

Wei Feng, Fei Yin, Xu-Yao Zhang, Wenhao He, Cheng-Lin Liu

03.11.2020 | Ausgabe 3/2021

Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild

Xin Chen, Lingxi Xie, Jun Wu, Qi Tian

06.11.2020 | Ausgabe 3/2021 Open Access

Entrack: Probabilistic Spherical Regression with Entropy Regularization for Fiber Tractography

Viktor Wegmayr, Joachim M. Buhmann

09.11.2020 | Ausgabe 3/2021

Weakly Supervised Group Mask Network for Object Detection

Lingyun Song, Jun Liu, Mingxuan Sun, Xuequn Shang

16.11.2020 | Ausgabe 3/2021

AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in the Wild

Zhe Zhang, Chunyu Wang, Weichao Qiu, Wenhu Qin, Wenjun Zeng

24.11.2020 | Ausgabe 3/2021

Viewpoint and Scale Consistency Reinforcement for UAV Vehicle Re-Identification

Shangzhi Teng, Shiliang Zhang, Qingming Huang, Nicu Sebe

24.11.2020 | Ausgabe 3/2021

Compositional Convolutional Neural Networks: A Robust and Interpretable Model for Object Recognition Under Occlusion

Adam Kortylewski, Qing Liu, Angtian Wang, Yihong Sun, Alan Yuille

24.11.2020 | Ausgabe 3/2021

CDTD: A Large-Scale Cross-Domain Benchmark for Instance-Level Image-to-Image Translation and Domain Adaptive Object Detection

Zhiqiang Shen, Mingyang Huang, Jianping Shi, Zechun Liu, Harsh Maheshwari, Yutong Zheng, Xiangyang Xue, Marios Savvides, Thomas S. Huang

27.11.2020 | Ausgabe 3/2021

Deep Nets: What have They Ever Done for Vision?

Alan L. Yuille, Chenxi Liu

16.10.2020 | Correction | Ausgabe 3/2021

Correction to: Rooted Spanning Superpixels

Dengfeng Chai

Aktuelle Ausgaben

Premium Partner

    Bildnachweise