2014 | OriginalPaper | Buchkapitel
Interpolation Based Deformation Model for Minimally Invasive Beating Heart Surgery
verfasst von : A. I. Aviles, A. Casals
Erschienen in: XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
Heart motion compensation is a key issue in medical robotics due to the benefits that minimally invasive beating heart surgery offers over traditional cardiac surgery. Although different proposals have been presented, nowadays, there is not yet a suitable solution working in real clinical environments due to the lack of robustness of existing methods. The process of heart motion estimation required to produce the compensation actions can be tackled as a process of three iterative steps. The first based on generating a deformation model from the processing of a video sequence of the beating heart. The selection of a deformation model is crucial in the sense that it has to offer both valuable information and good computational performance. These characteristics are required when the reaction time has a significant repercussion over the system behavior, as in this case. This paper, presents a computational analysis of deformation model based on interpolation methods. In particular, wavelet and thin-plate splines are evaluated. The significance of this study relies on the fact that it is a reference starting point of reference for creating both a common framework and a robust solution. In addition, the obtained results will contribute to increase the robustness from the initial stage of the solution.