Skip to main content

2019 | OriginalPaper | Buchkapitel

18. Interpretable Deep Learning in Drug Discovery

verfasst von : Kristina Preuer, Günter Klambauer, Friedrich Rippmann, Sepp Hochreiter, Thomas Unterthiner

Erschienen in: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Without any means of interpretation, neural networks that predict molecular properties and bioactivities are merely black boxes. We will unravel these black boxes and will demonstrate approaches to understand the learned representations which are hidden inside these models. We show how single neurons can be interpreted as classifiers which determine the presence or absence of pharmacophore- or toxicophore-like structures, thereby generating new insights and relevant knowledge for chemistry, pharmacology and biochemistry. We further discuss how these novel pharmacophores/toxicophores can be determined from the network by identifying the most relevant components of a compound for the prediction of the network. Additionally, we propose a method which can be used to extract new pharmacophores from a model and will show that these extracted structures are consistent with literature findings. We envision that having access to such interpretable knowledge is a crucial aid in the development and design of new pharmaceutically active molecules, and helps to investigate and understand failures and successes of current methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks (2018) Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks (2018)
3.
Zurück zum Zitat Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6541–6549 (2017) Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6541–6549 (2017)
5.
Zurück zum Zitat Cherkasov, A., et al.: QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57(12), 4977–5010 (2014)CrossRef Cherkasov, A., et al.: QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57(12), 4977–5010 (2014)CrossRef
7.
Zurück zum Zitat Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 2224–2232. Curran Associates, Inc. (2015) Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 2224–2232. Curran Associates, Inc. (2015)
8.
Zurück zum Zitat Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, vol. 70, pp. 1263–1272, 06–11 August 2017 Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, PMLR, International Convention Centre, Sydney, Australia, vol. 70, pp. 1263–1272, 06–11 August 2017
9.
Zurück zum Zitat Hansen, K., Baehrens, D., Schroeter, T., Rupp, M., Müller, K.R.: Visual interpretation of kernel-based prediction models. Mol. Inf. 30(9), 817–826 (2011)CrossRef Hansen, K., Baehrens, D., Schroeter, T., Rupp, M., Müller, K.R.: Visual interpretation of kernel-based prediction models. Mol. Inf. 30(9), 817–826 (2011)CrossRef
10.
Zurück zum Zitat Hansen, K., et al.: Benchmark data set for in silico prediction of ames mutagenicity. J. Chem. Inf. Modeling 49(9), 2077–2081 (2009)CrossRef Hansen, K., et al.: Benchmark data set for in silico prediction of ames mutagenicity. J. Chem. Inf. Modeling 49(9), 2077–2081 (2009)CrossRef
11.
Zurück zum Zitat Huang, R., et al.: Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci. Rep. 4 (2014) Huang, R., et al.: Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci. Rep. 4 (2014)
12.
Zurück zum Zitat Kazius, J., McGuire, R., Bursi, R.: Derivation and validation of toxicophores for mutagenicity prediction. J. Med. Chem. 48(1), 312–320 (2005)CrossRef Kazius, J., McGuire, R., Bursi, R.: Derivation and validation of toxicophores for mutagenicity prediction. J. Med. Chem. 48(1), 312–320 (2005)CrossRef
13.
Zurück zum Zitat Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P.: Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30(8), 595–608 (2016)CrossRef Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P.: Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30(8), 595–608 (2016)CrossRef
14.
Zurück zum Zitat Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems 30 (NIPS) (2017) Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems 30 (NIPS) (2017)
15.
Zurück zum Zitat Lavecchia, A.: Machine-learning approaches in drug discovery: methods and applications. Drug Discovery Today 20(3), 318–331 (2015)CrossRef Lavecchia, A.: Machine-learning approaches in drug discovery: methods and applications. Drug Discovery Today 20(3), 318–331 (2015)CrossRef
16.
Zurück zum Zitat Lin, S.: Pharmacophore perception, development and use in drug design. Edited by Osman F. Güner. Molecules 5(7), 987–989 (2000)CrossRef Lin, S.: Pharmacophore perception, development and use in drug design. Edited by Osman F. Güner. Molecules 5(7), 987–989 (2000)CrossRef
17.
Zurück zum Zitat Lionta, E., Spyrou, G., Vassilatis, D.K., Cournia, Z.: Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem. 14(16), 1923–1938 (2014)CrossRef Lionta, E., Spyrou, G., Vassilatis, D.K., Cournia, Z.: Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem. 14(16), 1923–1938 (2014)CrossRef
19.
Zurück zum Zitat Ma, J., Sheridan, R.P., Liaw, A., Dahl, G.E., Svetnik, V.: Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55(2), 263–274 (2015)CrossRef Ma, J., Sheridan, R.P., Liaw, A., Dahl, G.E., Svetnik, V.: Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55(2), 263–274 (2015)CrossRef
20.
Zurück zum Zitat Mayr, A., Klambauer, G., Unterthiner, T., Hochreiter, S.: DeepTox: toxicity prediction using deep learning. Frontiers Environ. Sci. 3, 80 (2016)CrossRef Mayr, A., Klambauer, G., Unterthiner, T., Hochreiter, S.: DeepTox: toxicity prediction using deep learning. Frontiers Environ. Sci. 3, 80 (2016)CrossRef
21.
Zurück zum Zitat Mayr, A., et al.: Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. 9(24), 5441–5451 (2018)CrossRef Mayr, A., et al.: Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. 9(24), 5441–5451 (2018)CrossRef
22.
Zurück zum Zitat Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H.: Molecular de-novo design through deep reinforcement learning. J. Cheminform. 9(1), 48 (2017)CrossRef Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H.: Molecular de-novo design through deep reinforcement learning. J. Cheminform. 9(1), 48 (2017)CrossRef
23.
Zurück zum Zitat Plošnik, A., Vračko, M., Dolenc, M.S.: Mutagenic and carcinogenic structural alerts and their mechanisms of action. Arch. Ind. Hyg. Toxicol. 67(3), 169–182 (2016) Plošnik, A., Vračko, M., Dolenc, M.S.: Mutagenic and carcinogenic structural alerts and their mechanisms of action. Arch. Ind. Hyg. Toxicol. 67(3), 169–182 (2016)
24.
Zurück zum Zitat Preuer, K., Lewis, R.P.I., Hochreiter, S., Bender, A., Bulusu, K.C., Klambauer, G.: DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 34(9), 1538–1546 (2017)CrossRef Preuer, K., Lewis, R.P.I., Hochreiter, S., Bender, A., Bulusu, K.C., Klambauer, G.: DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 34(9), 1538–1546 (2017)CrossRef
25.
Zurück zum Zitat Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., Klambauer, G.: Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery. J. Chem. Inf. Model. 58(9), 1736–1741 (2018)CrossRef Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., Klambauer, G.: Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery. J. Chem. Inf. Model. 58(9), 1736–1741 (2018)CrossRef
26.
Zurück zum Zitat Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model. 50(5), 742–754 (2010)CrossRef Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model. 50(5), 742–754 (2010)CrossRef
27.
Zurück zum Zitat Schütt, K.T., Arbabzadah, F., Chmiela, S., Müller, K.R., Tkatchenko, A.: Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)CrossRef Schütt, K.T., Arbabzadah, F., Chmiela, S., Müller, K.R., Tkatchenko, A.: Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)CrossRef
28.
Zurück zum Zitat Segler, M.H., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Sci. (2017) Segler, M.H., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Sci. (2017)
29.
Zurück zum Zitat Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML) (2017) Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML) (2017)
30.
Zurück zum Zitat Sushko, I., Salmina, E., Potemkin, V.A., Poda, G., Tetko, I.V.: ToxAlerts: a web server of structural alerts for toxic chemicals and compounds with potential adverse reactions. J. Chem. Inf. Model. 52(8), 2310–2316 (2012)CrossRef Sushko, I., Salmina, E., Potemkin, V.A., Poda, G., Tetko, I.V.: ToxAlerts: a web server of structural alerts for toxic chemicals and compounds with potential adverse reactions. J. Chem. Inf. Model. 52(8), 2310–2316 (2012)CrossRef
31.
Zurück zum Zitat Unterthiner, T., et al.: Multi-task deep networks for drug target prediction. In: Workshop on Transfer and Multi-task Learning of NIPS 2014, vol. 2014, pp. 1–4 (2014) Unterthiner, T., et al.: Multi-task deep networks for drug target prediction. In: Workshop on Transfer and Multi-task Learning of NIPS 2014, vol. 2014, pp. 1–4 (2014)
32.
Zurück zum Zitat Unterthiner, T., et al.: Deep learning as an opportunity in virtual screening. In: Deep Learning and Representation Learning Workshop (NIPS 2014) (2014) Unterthiner, T., et al.: Deep learning as an opportunity in virtual screening. In: Deep Learning and Representation Learning Workshop (NIPS 2014) (2014)
33.
Zurück zum Zitat Unterthiner, T., Nessler, B., Klambauer, G., Heusel, M., Ramsauer, H., Hochreiter, S.: Coulomb GANs: provably optimal Nash equilibria viapotential fields. In: International Conference of Learning Representations (ICLR) (2018) Unterthiner, T., Nessler, B., Klambauer, G., Heusel, M., Ramsauer, H., Hochreiter, S.: Coulomb GANs: provably optimal Nash equilibria viapotential fields. In: International Conference of Learning Representations (ICLR) (2018)
34.
Zurück zum Zitat Yang, H., Li, J., Wu, Z., Li, W., Liu, G., Tang, Y.: Evaluation of different methods for identification of structural alerts using chemical ames mutagenicity data set as a benchmark. Chem. Res. Toxicol. 30(6), 1355–1364 (2017)CrossRef Yang, H., Li, J., Wu, Z., Li, W., Liu, G., Tang, Y.: Evaluation of different methods for identification of structural alerts using chemical ames mutagenicity data set as a benchmark. Chem. Res. Toxicol. 30(6), 1355–1364 (2017)CrossRef
35.
Zurück zum Zitat Yang, X., Zhang, J., Yoshizoe, K., Terayama, K., Tsuda, K.: ChemTS: an efficient python library for de novo molecular generation. Sci. Technol. Adv. Mater. 18(1), 972–976 (2017)CrossRef Yang, X., Zhang, J., Yoshizoe, K., Terayama, K., Tsuda, K.: ChemTS: an efficient python library for de novo molecular generation. Sci. Technol. Adv. Mater. 18(1), 972–976 (2017)CrossRef
Metadaten
Titel
Interpretable Deep Learning in Drug Discovery
verfasst von
Kristina Preuer
Günter Klambauer
Friedrich Rippmann
Sepp Hochreiter
Thomas Unterthiner
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-28954-6_18