Skip to main content

2019 | OriginalPaper | Buchkapitel

Interpreting and Predicting Experimental Responses of Micro- and Nano-Devices via Dynamical Integrity

verfasst von : Laura Ruzziconi, Stefano Lenci, Mohammad I. Younis

Erschienen in: Global Nonlinear Dynamics for Engineering Design and System Safety

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present chapter highlights the importance of the dynamical integrity theory for micro and nanoapplications. Three case-studies of devices at different scales are presented (a capacitive accelerometer, a microbeam-based micro-electro-mechanical system, and a single-walled slacked carbon nanotube) and different issues commonly addressed in the engineering design are examined via dynamical integrity concepts. The iso-integrity curves are observed to follow exactly the experimental data. They are able to detect the parameter range where each attractor can be reliably observed in practice and where, instead, becomes vulnerable. Also, they may be used to simulate and predict the expected dynamics under different (smaller or larger) experimental disturbances. While referring to particular case-studies, we show the relevance of the dynamical integrity analysis for the engineering design of a mechanical system, in order to operate it in safe conditions, according to the desired outcome and depending on the expected disturbances.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdel-Rahman, E. M., Younis, M. I., & Nayfeh, A. H. (2002). Characterization of the mechanical behavior of an electrically actuated microbeam. Journal of Micromechanics and Microengineering, 12, 759–766.CrossRef Abdel-Rahman, E. M., Younis, M. I., & Nayfeh, A. H. (2002). Characterization of the mechanical behavior of an electrically actuated microbeam. Journal of Micromechanics and Microengineering, 12, 759–766.CrossRef
Zurück zum Zitat Alsaleem, F. M., Younis, M. I., & Ouakad, H. M. (2009). On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. Journal of Micromechanics and Microengineering, 19(4), 045013.CrossRef Alsaleem, F. M., Younis, M. I., & Ouakad, H. M. (2009). On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. Journal of Micromechanics and Microengineering, 19(4), 045013.CrossRef
Zurück zum Zitat Alsaleem, F. M., Younis, M. I., & Ruzziconi, L. (2010). An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. Journal of Microelectromechanical Systems, 19(4), 794–806.CrossRef Alsaleem, F. M., Younis, M. I., & Ruzziconi, L. (2010). An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. Journal of Microelectromechanical Systems, 19(4), 794–806.CrossRef
Zurück zum Zitat Belardinelli, P., Lenci, S., & Brocchini, M. (2014). Modeling and analysis of an electrically actuated microbeam based on nonclassical beam theory. Journal of Computational and Nonlinear Dynamics, 9(3), 031016-1–031016-10.CrossRef Belardinelli, P., Lenci, S., & Brocchini, M. (2014). Modeling and analysis of an electrically actuated microbeam based on nonclassical beam theory. Journal of Computational and Nonlinear Dynamics, 9(3), 031016-1–031016-10.CrossRef
Zurück zum Zitat Cho, H., Jeong, B., Yu, M.-F., Vakakis, A. F., McFarland, D. M., & Bergman, L. A. (2012). Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities. International Journal of Solids and Structures, 49(15–16), 2059–2065.CrossRef Cho, H., Jeong, B., Yu, M.-F., Vakakis, A. F., McFarland, D. M., & Bergman, L. A. (2012). Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities. International Journal of Solids and Structures, 49(15–16), 2059–2065.CrossRef
Zurück zum Zitat Cho, H., Yu, M.-F., Vakakis, A. F., Bergman, L. A., & McFarland, D. M. (2010). Tunable, broadband nonlinear nanomechanical resonator. Nano Letters, 10(5), 1793–1798.CrossRef Cho, H., Yu, M.-F., Vakakis, A. F., Bergman, L. A., & McFarland, D. M. (2010). Tunable, broadband nonlinear nanomechanical resonator. Nano Letters, 10(5), 1793–1798.CrossRef
Zurück zum Zitat Castellanos-Gomez, A., Meerwaldt, H. B., Venstra, W. J., van der Zant, H. S. J., & Steele, G. A. (2012). Strong and tunable mode coupling in carbon nanotube resonators. Physical Review B, 86, 041402.CrossRef Castellanos-Gomez, A., Meerwaldt, H. B., Venstra, W. J., van der Zant, H. S. J., & Steele, G. A. (2012). Strong and tunable mode coupling in carbon nanotube resonators. Physical Review B, 86, 041402.CrossRef
Zurück zum Zitat Das, K., & Batra, R. C. (2009a). Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. Journal of Micromechanics and Microengineering, 19, 035008.CrossRef Das, K., & Batra, R. C. (2009a). Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. Journal of Micromechanics and Microengineering, 19, 035008.CrossRef
Zurück zum Zitat Das, K., & Batra, R. C. (2009b). Symmetry breaking, snap-through, and pull-in instabilities under dynamic loading of microelectromechanical shallow arch. Smart Materials and Structures, 18, 115008.CrossRef Das, K., & Batra, R. C. (2009b). Symmetry breaking, snap-through, and pull-in instabilities under dynamic loading of microelectromechanical shallow arch. Smart Materials and Structures, 18, 115008.CrossRef
Zurück zum Zitat Gonçalves, P. B., Silva, F. M. A., Rega, G., & Lenci, S. (2011). Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dynamics, 63, 61–82.MathSciNetCrossRef Gonçalves, P. B., Silva, F. M. A., Rega, G., & Lenci, S. (2011). Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dynamics, 63, 61–82.MathSciNetCrossRef
Zurück zum Zitat Gottlieb, O., & Champneys, A. (2005). Global bifurcations of nonlinear thermoelastic microbeams subject to electrodynamic actuation. In G. Rega & F. Vestroni (Eds.), IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics (pp. 117–126). Solid Mechanics and Its Applications. Dordrecht: Springer. Gottlieb, O., & Champneys, A. (2005). Global bifurcations of nonlinear thermoelastic microbeams subject to electrodynamic actuation. In G. Rega & F. Vestroni (Eds.), IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics (pp. 117–126). Solid Mechanics and Its Applications. Dordrecht: Springer.
Zurück zum Zitat Guckenheimer, J., & Holmes, P. J. (1983). Nonlinear oscillations, dynamical systems and bifurcation of vector fields. New York: Springer.CrossRef Guckenheimer, J., & Holmes, P. J. (1983). Nonlinear oscillations, dynamical systems and bifurcation of vector fields. New York: Springer.CrossRef
Zurück zum Zitat Hajjaj, A. Z., Ramini, A. H., Alcheikh, N., & Younis, M. I. (2017). Electrothermally tunable arch resonator. Journal of Microelectromechanical Systems, 26(4), 837–845.CrossRef Hajjaj, A. Z., Ramini, A. H., Alcheikh, N., & Younis, M. I. (2017). Electrothermally tunable arch resonator. Journal of Microelectromechanical Systems, 26(4), 837–845.CrossRef
Zurück zum Zitat Hornstein, S., & Gottlieb, O. (2008). Nonlinear dynamics, stability and control of the scan process in noncontacting atomic force microscopy. Nonlinear Dynamics, 54(1), 93–122.MathSciNetCrossRef Hornstein, S., & Gottlieb, O. (2008). Nonlinear dynamics, stability and control of the scan process in noncontacting atomic force microscopy. Nonlinear Dynamics, 54(1), 93–122.MathSciNetCrossRef
Zurück zum Zitat Jeong, B., Cho, H., Keum, H., Kim, S., McFarland, M. D., Bergman, L. A., et al. (2014). Complex nonlinear dynamics in the limit of weak coupling of a system of microcantilevers connected by a geometrically nonlinear tunable nanomembrane. Nanotechnology, 25, 465501.CrossRef Jeong, B., Cho, H., Keum, H., Kim, S., McFarland, M. D., Bergman, L. A., et al. (2014). Complex nonlinear dynamics in the limit of weak coupling of a system of microcantilevers connected by a geometrically nonlinear tunable nanomembrane. Nanotechnology, 25, 465501.CrossRef
Zurück zum Zitat Kacem, N., Baguet, S., Hentz, S., & Dufour, R. (2011). Computational and quasi-analytical models for non-linear vibrations of resonant MEMS and NEMS sensors. International Journal of Non-Linear Mechanics, 46, 532–542.CrossRef Kacem, N., Baguet, S., Hentz, S., & Dufour, R. (2011). Computational and quasi-analytical models for non-linear vibrations of resonant MEMS and NEMS sensors. International Journal of Non-Linear Mechanics, 46, 532–542.CrossRef
Zurück zum Zitat Kacem, N., & Hentz, S. (2009). Bifurcation topology tuning of a mixed behavior in nonlinear micromechanical resonators. Applied Physics Letters, 95(18), 183104.CrossRef Kacem, N., & Hentz, S. (2009). Bifurcation topology tuning of a mixed behavior in nonlinear micromechanical resonators. Applied Physics Letters, 95(18), 183104.CrossRef
Zurück zum Zitat Karabalin, R. B., Cross, M. C., & Roukes, M. L. (2009). Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Physical Review B, 79, 165309.CrossRef Karabalin, R. B., Cross, M. C., & Roukes, M. L. (2009). Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Physical Review B, 79, 165309.CrossRef
Zurück zum Zitat Kozinsky, I., Postma, H. W. C., Kogan, O., Husain, A., & Roukes, M. L. (2007). Basins of attraction of a nonlinear nanomechanical resonator. Physical Review Letters, 99, 207201.CrossRef Kozinsky, I., Postma, H. W. C., Kogan, O., Husain, A., & Roukes, M. L. (2007). Basins of attraction of a nonlinear nanomechanical resonator. Physical Review Letters, 99, 207201.CrossRef
Zurück zum Zitat Krylov, S., & Dick, N. (2010). Dynamic stability of electrostatically actuated initially curved shallow micro beams. Continuum Mechanics and Thermodynamics, 22(6–8), 445–468.MathSciNetCrossRef Krylov, S., & Dick, N. (2010). Dynamic stability of electrostatically actuated initially curved shallow micro beams. Continuum Mechanics and Thermodynamics, 22(6–8), 445–468.MathSciNetCrossRef
Zurück zum Zitat Krylov, S., Ilic, B. R., & Lulinsky, S. (2011). Bistability of curved microbeams actuated by fringing electrostatic fields. Nonlinear Dynamics, 3(66), 403–426.MathSciNetCrossRef Krylov, S., Ilic, B. R., & Lulinsky, S. (2011). Bistability of curved microbeams actuated by fringing electrostatic fields. Nonlinear Dynamics, 3(66), 403–426.MathSciNetCrossRef
Zurück zum Zitat Krylov, S., Ilic, B. R., Schreiber, D., Serentensky, S., & Craighead, H. (2008). The pull-in behavior of electrostatically actuated bistable microstructures. Journal of Micromechanics and Microengineering, 18(5), 055026.CrossRef Krylov, S., Ilic, B. R., Schreiber, D., Serentensky, S., & Craighead, H. (2008). The pull-in behavior of electrostatically actuated bistable microstructures. Journal of Micromechanics and Microengineering, 18(5), 055026.CrossRef
Zurück zum Zitat Lansbury, A. N., Thompson, J. M. T., & Stewart, H. B. (1992). Basin erosion in the twin-well Duffing oscillator: Two distinct bifurcation scenarios. International Journal of Bifurcation and Chaos, 2, 505–532.MathSciNetCrossRef Lansbury, A. N., Thompson, J. M. T., & Stewart, H. B. (1992). Basin erosion in the twin-well Duffing oscillator: Two distinct bifurcation scenarios. International Journal of Bifurcation and Chaos, 2, 505–532.MathSciNetCrossRef
Zurück zum Zitat Lenci, S., & Rega, G. (2003). Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dynamics, 33, 71–86.MathSciNetCrossRef Lenci, S., & Rega, G. (2003). Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dynamics, 33, 71–86.MathSciNetCrossRef
Zurück zum Zitat Lenci, S., & Rega, G. (2004). A unified control framework of the nonregular dynamics of mechanical oscillators. Journal of Sound and Vibration, 278(4–5), 1051–1080.MathSciNetCrossRef Lenci, S., & Rega, G. (2004). A unified control framework of the nonregular dynamics of mechanical oscillators. Journal of Sound and Vibration, 278(4–5), 1051–1080.MathSciNetCrossRef
Zurück zum Zitat Lenci, S., & Rega, G. (2006). Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. Journal of Micromechanics and Microengineering, 16, 390–401.CrossRef Lenci, S., & Rega, G. (2006). Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. Journal of Micromechanics and Microengineering, 16, 390–401.CrossRef
Zurück zum Zitat Lenci, S., & Rega, G. (2011a). Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: A dynamical integrity perspective. Physica D: Nonlinear Phenomena, 240, 814–824.CrossRef Lenci, S., & Rega, G. (2011a). Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: A dynamical integrity perspective. Physica D: Nonlinear Phenomena, 240, 814–824.CrossRef
Zurück zum Zitat Lenci, S., & Rega, G. (2011b). Load carrying capacity of systems within a global safety perspective. Part I. Robustness of stable equilibria under imperfections. International Journal of Non-Linear Mechanics, 46, 1232–1239.CrossRef Lenci, S., & Rega, G. (2011b). Load carrying capacity of systems within a global safety perspective. Part I. Robustness of stable equilibria under imperfections. International Journal of Non-Linear Mechanics, 46, 1232–1239.CrossRef
Zurück zum Zitat Lenci, S., & Rega, G. (2011c). Load carrying capacity of systems within a global safety perspective. Part II. Attractor/basin integrity under dynamic excitations. International Journal of Non-Linear Mechanics, 46, 1240–1251.CrossRef Lenci, S., & Rega, G. (2011c). Load carrying capacity of systems within a global safety perspective. Part II. Attractor/basin integrity under dynamic excitations. International Journal of Non-Linear Mechanics, 46, 1240–1251.CrossRef
Zurück zum Zitat Lenci, S., Rega, G., & Ruzziconi, L. (2013). Dynamical integrity as a conceptual and operating tool for interpreting/predicting experimental behavior. Philosophical Transactions of the Royal Society of London A, 371(1993), 20120423-1–20120423-19. Lenci, S., Rega, G., & Ruzziconi, L. (2013). Dynamical integrity as a conceptual and operating tool for interpreting/predicting experimental behavior. Philosophical Transactions of the Royal Society of London A, 371(1993), 20120423-1–20120423-19.
Zurück zum Zitat Mahboob, I., Dupuy, R., Nishiguchi, K., Fujiwara, A., & Yamaguchi, H. (2016). Hopf and period-doubling bifurcations in an electromechanical resonator. Applied Physics Letters, 109, 073101.CrossRef Mahboob, I., Dupuy, R., Nishiguchi, K., Fujiwara, A., & Yamaguchi, H. (2016). Hopf and period-doubling bifurcations in an electromechanical resonator. Applied Physics Letters, 109, 073101.CrossRef
Zurück zum Zitat Medina, L., Gilat, R., Ilic, B., & Krylov, S. (2014). Experimental investigation of the snap-through buckling of electrostatically actuated initially curved pre-stressed micro beams. Sensors and Actuators, A: Physical, 220, 323–332.CrossRef Medina, L., Gilat, R., Ilic, B., & Krylov, S. (2014). Experimental investigation of the snap-through buckling of electrostatically actuated initially curved pre-stressed micro beams. Sensors and Actuators, A: Physical, 220, 323–332.CrossRef
Zurück zum Zitat Medina, L., Gilat, R., & Krylov, S. (2012). Symmetry breaking in an initially curved micro beam loaded by a distributed electrostatic force. International Journal of Solids and Structures, 49(13), 1864–1876.CrossRef Medina, L., Gilat, R., & Krylov, S. (2012). Symmetry breaking in an initially curved micro beam loaded by a distributed electrostatic force. International Journal of Solids and Structures, 49(13), 1864–1876.CrossRef
Zurück zum Zitat Medina, L., Gilat, R., & Krylov, S. (2016). Bistable behavior of electrostatically actuated initially curved micro plate. Sensors and Actuators, A: Physical, 248, 193–198.CrossRef Medina, L., Gilat, R., & Krylov, S. (2016). Bistable behavior of electrostatically actuated initially curved micro plate. Sensors and Actuators, A: Physical, 248, 193–198.CrossRef
Zurück zum Zitat Mestrom, R. M. C., Fey, R. H. B., Phan, K. L., & Nijmeijer, H. (2010). Simulations and experiments of hardening and softening resonances in a clamped-clamped beam MEMS resonator. Sensors and Actuators, A: Physical, 162(2), 225–234.CrossRef Mestrom, R. M. C., Fey, R. H. B., Phan, K. L., & Nijmeijer, H. (2010). Simulations and experiments of hardening and softening resonances in a clamped-clamped beam MEMS resonator. Sensors and Actuators, A: Physical, 162(2), 225–234.CrossRef
Zurück zum Zitat Mestrom, R. M. C., Fey, R. H. B., van Beek, J. T. M., Phan, K. L., & Nijmeijer, H. (2008). Modelling the dynamics of a MEMS resonator: Simulations and experiments. Sensors and Actuators, A: Physical, 142, 306–315.CrossRef Mestrom, R. M. C., Fey, R. H. B., van Beek, J. T. M., Phan, K. L., & Nijmeijer, H. (2008). Modelling the dynamics of a MEMS resonator: Simulations and experiments. Sensors and Actuators, A: Physical, 142, 306–315.CrossRef
Zurück zum Zitat Nayfeh, A. H., & Balachandran, B. (1995). Applied nonlinear dynamics. New York: Wiley.CrossRef Nayfeh, A. H., & Balachandran, B. (1995). Applied nonlinear dynamics. New York: Wiley.CrossRef
Zurück zum Zitat Nayfeh, A. H., & Younis, M. I. (2005). Dynamics of MEMS resonators under superharmonic and subharmonic excitations. Journal of Micromechanics and Microengineering, 15, 1840–1847.CrossRef Nayfeh, A. H., & Younis, M. I. (2005). Dynamics of MEMS resonators under superharmonic and subharmonic excitations. Journal of Micromechanics and Microengineering, 15, 1840–1847.CrossRef
Zurück zum Zitat Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. (2005). Reduced-order models for MEMS applications. Nonlinear Dynamics, 41, 211–236.MathSciNetCrossRef Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. (2005). Reduced-order models for MEMS applications. Nonlinear Dynamics, 41, 211–236.MathSciNetCrossRef
Zurück zum Zitat Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. (2007). Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dynamics, 48(1–2), 153–163.CrossRef Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. (2007). Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dynamics, 48(1–2), 153–163.CrossRef
Zurück zum Zitat Nguyen, V.-N., Baguet, S., Lamarque, C.-H., & Dufour, R. (2015). Bifurcation-based micro/nanoelectromechanical mass detection. Nonlinear Dynamics, 79, 647–662.CrossRef Nguyen, V.-N., Baguet, S., Lamarque, C.-H., & Dufour, R. (2015). Bifurcation-based micro/nanoelectromechanical mass detection. Nonlinear Dynamics, 79, 647–662.CrossRef
Zurück zum Zitat Nusse, H. E., & Yorke, J. A. (1998). Dynamics: Numerical explorations. New York, Heidelberg, Berlin: Springer.CrossRef Nusse, H. E., & Yorke, J. A. (1998). Dynamics: Numerical explorations. New York, Heidelberg, Berlin: Springer.CrossRef
Zurück zum Zitat Orlando, D., Gonçalves, P. B., Rega, G., & Lenci, S. (2011). Influence of modal coupling on the nonlinear dynamics of Augusti’s model. ASME Journal of Computational and Nonlinear Dynamics, 6, 041014-1–041014-11.CrossRef Orlando, D., Gonçalves, P. B., Rega, G., & Lenci, S. (2011). Influence of modal coupling on the nonlinear dynamics of Augusti’s model. ASME Journal of Computational and Nonlinear Dynamics, 6, 041014-1–041014-11.CrossRef
Zurück zum Zitat Ouakad, H. M., & Younis, M. I. (2010). The dynamic behavior of MEMS arch resonators actuated electrically. International Journal of Non-Linear Mechanics, 45(7), 704–713.CrossRef Ouakad, H. M., & Younis, M. I. (2010). The dynamic behavior of MEMS arch resonators actuated electrically. International Journal of Non-Linear Mechanics, 45(7), 704–713.CrossRef
Zurück zum Zitat Ouakad, H. M., & Younis, M. I. (2011). Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation. Journal of Sound and Vibrations, 330, 3182–3195.CrossRef Ouakad, H. M., & Younis, M. I. (2011). Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation. Journal of Sound and Vibrations, 330, 3182–3195.CrossRef
Zurück zum Zitat Ouakad, H. M., & Younis, M. I. (2012). Dynamic response of slacked carbon nanotube resonators. Nonlinear Dynamics, 67, 1419–1436.MathSciNetCrossRef Ouakad, H. M., & Younis, M. I. (2012). Dynamic response of slacked carbon nanotube resonators. Nonlinear Dynamics, 67, 1419–1436.MathSciNetCrossRef
Zurück zum Zitat Ramini, A. H., Bellaredj, M. L. F., Al Hafiz, M. A., & Younis, M. I. (2016a). Experimental investigation of snap-through motion of in-plane MEMS shallow arches under electrostatic excitation. Journal of Micromechanics and Microengineering, 26, 015012.CrossRef Ramini, A. H., Bellaredj, M. L. F., Al Hafiz, M. A., & Younis, M. I. (2016a). Experimental investigation of snap-through motion of in-plane MEMS shallow arches under electrostatic excitation. Journal of Micromechanics and Microengineering, 26, 015012.CrossRef
Zurück zum Zitat Ramini, A. H., Hajjaj, A. Z., & Younis, M. I. (2016b). Tunable resonators for nonlinear modal interactions. Scientific Report, 6, 34717.CrossRef Ramini, A. H., Hajjaj, A. Z., & Younis, M. I. (2016b). Tunable resonators for nonlinear modal interactions. Scientific Report, 6, 34717.CrossRef
Zurück zum Zitat Ramini, A. H., Hennawi, Q. M., & Younis, M. I. (2016c). Theoretical and experimental investigation of the nonlinear behavior of an electrostatically-actuated in-plane MEMS arch. Journal of Microelectromechanical Systems, 25(3), 570–578.CrossRef Ramini, A. H., Hennawi, Q. M., & Younis, M. I. (2016c). Theoretical and experimental investigation of the nonlinear behavior of an electrostatically-actuated in-plane MEMS arch. Journal of Microelectromechanical Systems, 25(3), 570–578.CrossRef
Zurück zum Zitat Rega, G., & Lenci, S. (2005). Identifying, evaluating, and controlling dynamical integrity measures in nonlinear mechanical oscillators. Nonlinear Analysis, 63, 902–914.MathSciNetCrossRef Rega, G., & Lenci, S. (2005). Identifying, evaluating, and controlling dynamical integrity measures in nonlinear mechanical oscillators. Nonlinear Analysis, 63, 902–914.MathSciNetCrossRef
Zurück zum Zitat Rega, G., & Lenci, S. (2008). Dynamical integrity and control of nonlinear mechanical oscillators. Journal of Vibration and Control, 14, 159–179.CrossRef Rega, G., & Lenci, S. (2008). Dynamical integrity and control of nonlinear mechanical oscillators. Journal of Vibration and Control, 14, 159–179.CrossRef
Zurück zum Zitat Rega, G., & Lenci, S. (2015). A global dynamics perspective for system safety from macro- to nanomechanics: Analysis, control, and design engineering. Applied Mechanics Reviews, 67, 050802-1–050802-19.CrossRef Rega, G., & Lenci, S. (2015). A global dynamics perspective for system safety from macro- to nanomechanics: Analysis, control, and design engineering. Applied Mechanics Reviews, 67, 050802-1–050802-19.CrossRef
Zurück zum Zitat Rega, G., & Salvatori, A. (1996). Bifurcation structure at 1/3-subharmonic resonance in an asymmetric nonlinear elastic oscillator. International Journal of Bifurcation and Chaos, 6(8), 1529–1546.CrossRef Rega, G., & Salvatori, A. (1996). Bifurcation structure at 1/3-subharmonic resonance in an asymmetric nonlinear elastic oscillator. International Journal of Bifurcation and Chaos, 6(8), 1529–1546.CrossRef
Zurück zum Zitat Rega, G., Salvatori, A., & Benedettini, F. (1995). Numerical and geometrical analysis of bifurcation and chaos for an asymmetric elastic nonlinear oscillator. Nonlinear Dynamics, 7, 259–272.MathSciNetCrossRef Rega, G., Salvatori, A., & Benedettini, F. (1995). Numerical and geometrical analysis of bifurcation and chaos for an asymmetric elastic nonlinear oscillator. Nonlinear Dynamics, 7, 259–272.MathSciNetCrossRef
Zurück zum Zitat Rega, G., & Settimi, V. (2013). Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dynamics, 73(1–2), 101–123.MathSciNetCrossRef Rega, G., & Settimi, V. (2013). Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dynamics, 73(1–2), 101–123.MathSciNetCrossRef
Zurück zum Zitat Rega, G., & Troger, H. (2005). Dimension reduction of dynamical systems: Methods, models, applications. Nonlinear Dynamics, 41(1–3), 1–15.MathSciNetCrossRef Rega, G., & Troger, H. (2005). Dimension reduction of dynamical systems: Methods, models, applications. Nonlinear Dynamics, 41(1–3), 1–15.MathSciNetCrossRef
Zurück zum Zitat Rhoads, J. F., Kumar, V., Shaw, S. W., & Turner, K. L. (2013). The non-linear dynamics of electromagnetically actuated microbeam resonators with purely parametric excitations. International Journal of Non-Linear Mechanics, 55, 79–89.CrossRef Rhoads, J. F., Kumar, V., Shaw, S. W., & Turner, K. L. (2013). The non-linear dynamics of electromagnetically actuated microbeam resonators with purely parametric excitations. International Journal of Non-Linear Mechanics, 55, 79–89.CrossRef
Zurück zum Zitat Rhoads, J. F., Shaw, S. W., & Turner, K. L. (2006a). The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. Journal of Micromechanics and Microengineering, 16(5), 890–899.CrossRef Rhoads, J. F., Shaw, S. W., & Turner, K. L. (2006a). The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. Journal of Micromechanics and Microengineering, 16(5), 890–899.CrossRef
Zurück zum Zitat Rhoads, J. F., Shaw, S. W., & Turner, K. L. (2010). Nonlinear dynamics and its applications in micro- and nanoresonators. Journal of Dynamic Systems, Measurement, and Control, 132(3), 034001.CrossRef Rhoads, J. F., Shaw, S. W., & Turner, K. L. (2010). Nonlinear dynamics and its applications in micro- and nanoresonators. Journal of Dynamic Systems, Measurement, and Control, 132(3), 034001.CrossRef
Zurück zum Zitat Rhoads, J. F., Shaw, S. W., Turner, K. L., Moehlis, J., & DeMartini, B. E. (2006b). Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. Journal of Sound and Vibration, 296(4–5), 797–829.CrossRef Rhoads, J. F., Shaw, S. W., Turner, K. L., Moehlis, J., & DeMartini, B. E. (2006b). Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. Journal of Sound and Vibration, 296(4–5), 797–829.CrossRef
Zurück zum Zitat Ruzziconi, L., Bataineh, A. M., Younis, M. I., Cui, W., & Lenci, S. (2013a). Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling. Journal of Micromechanics and Microengineering, 23(7), 075012-1–075012-14.CrossRef Ruzziconi, L., Bataineh, A. M., Younis, M. I., Cui, W., & Lenci, S. (2013a). Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling. Journal of Micromechanics and Microengineering, 23(7), 075012-1–075012-14.CrossRef
Zurück zum Zitat Ruzziconi, L., Lenci, S., & Younis, M. I. (2013b). An imperfect microbeam under an axial load and electric excitation: Nonlinear phenomena and dynamical integrity. International Journal of Bifurcation and Chaos, 23(2), 1350026-1–1350026-17.MathSciNetCrossRef Ruzziconi, L., Lenci, S., & Younis, M. I. (2013b). An imperfect microbeam under an axial load and electric excitation: Nonlinear phenomena and dynamical integrity. International Journal of Bifurcation and Chaos, 23(2), 1350026-1–1350026-17.MathSciNetCrossRef
Zurück zum Zitat Ruzziconi, L., Younis, M. I., & Lenci, S. (2012). An efficient reduced-order model to investigate the behavior of an imperfect microbeam under axial load and electric excitation. ASME Journal of Computational and Nonlinear Dynamics, 8, 011014-1–011014-9.CrossRef Ruzziconi, L., Younis, M. I., & Lenci, S. (2012). An efficient reduced-order model to investigate the behavior of an imperfect microbeam under axial load and electric excitation. ASME Journal of Computational and Nonlinear Dynamics, 8, 011014-1–011014-9.CrossRef
Zurück zum Zitat Ruzziconi, L., Younis, M. I., & Lenci, S. (2013c). An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response. Meccanica, 48(7), 1761–1775.MathSciNetCrossRef Ruzziconi, L., Younis, M. I., & Lenci, S. (2013c). An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response. Meccanica, 48(7), 1761–1775.MathSciNetCrossRef
Zurück zum Zitat Ruzziconi, L., Younis, M. I., & Lenci, S. (2013d). Dynamical integrity for interpreting experimental data and ensuring safety in electrostatic MEMS. In M. Wiercigroch & G. Rega (Eds.), IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design (pp. 249–261). IUTAM Bookseries. Dordrecht: Springer. Ruzziconi, L., Younis, M. I., & Lenci, S. (2013d). Dynamical integrity for interpreting experimental data and ensuring safety in electrostatic MEMS. In M. Wiercigroch & G. Rega (Eds.), IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design (pp. 249–261). IUTAM Bookseries. Dordrecht: Springer.
Zurück zum Zitat Ruzziconi, L., Younis, M. I., & Lenci, S. (2013e). Multistability in an electrically actuated carbon nanotube: A dynamical integrity perspective. Nonlinear Dynamics, 74(3), 533–549.MathSciNetCrossRef Ruzziconi, L., Younis, M. I., & Lenci, S. (2013e). Multistability in an electrically actuated carbon nanotube: A dynamical integrity perspective. Nonlinear Dynamics, 74(3), 533–549.MathSciNetCrossRef
Zurück zum Zitat Ruzziconi, L., Younis, M. I., & Lenci, S. (2013f). Parameter identification of an electrically actuated imperfect microbeam. International Journal of Non-Linear Mechanics, 57, 208–219.CrossRef Ruzziconi, L., Younis, M. I., & Lenci, S. (2013f). Parameter identification of an electrically actuated imperfect microbeam. International Journal of Non-Linear Mechanics, 57, 208–219.CrossRef
Zurück zum Zitat Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T. A., & McEuen, P. L. (2004). A tunable carbon nanotubes electromechanical oscillator. Nature, 431, 284–287.CrossRef Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T. A., & McEuen, P. L. (2004). A tunable carbon nanotubes electromechanical oscillator. Nature, 431, 284–287.CrossRef
Zurück zum Zitat Seleim, A., Towfighian, S., Delande, E., Abdel-Rahman, E. M., & Heppler, G. (2012). Dynamics of a close-loop controlled MEMS resonator. Nonlinear Dynamics, 69, 615–633.CrossRef Seleim, A., Towfighian, S., Delande, E., Abdel-Rahman, E. M., & Heppler, G. (2012). Dynamics of a close-loop controlled MEMS resonator. Nonlinear Dynamics, 69, 615–633.CrossRef
Zurück zum Zitat Senturia, S. D. (2001). Microsystem design. Dordrecht: Kluwer Academic Publishers. Senturia, S. D. (2001). Microsystem design. Dordrecht: Kluwer Academic Publishers.
Zurück zum Zitat Settimi, V., Gottlieb, O., & Rega, G. (2015). Asymptotic analysis of a noncontact AFM microcantilever sensor with external feedback control. Nonlinear Dynamics, 79(4), 2675–2698.MathSciNetCrossRef Settimi, V., Gottlieb, O., & Rega, G. (2015). Asymptotic analysis of a noncontact AFM microcantilever sensor with external feedback control. Nonlinear Dynamics, 79(4), 2675–2698.MathSciNetCrossRef
Zurück zum Zitat Settimi, V., & Rega, G. (2016a). Exploiting global dynamics of a noncontact atomic force microcantilever to enhance its dynamical robustness via numerical control. International Journal of Bifurcation and Chaos, 26, 1630018-1–1630018-17.MathSciNetCrossRef Settimi, V., & Rega, G. (2016a). Exploiting global dynamics of a noncontact atomic force microcantilever to enhance its dynamical robustness via numerical control. International Journal of Bifurcation and Chaos, 26, 1630018-1–1630018-17.MathSciNetCrossRef
Zurück zum Zitat Settimi, V., & Rega, G. (2016b). Global dynamics and integrity in noncontacting atomic force microscopy with feedback control. Nonlinear Dynamics, 86(4), 2261–2277.CrossRef Settimi, V., & Rega, G. (2016b). Global dynamics and integrity in noncontacting atomic force microscopy with feedback control. Nonlinear Dynamics, 86(4), 2261–2277.CrossRef
Zurück zum Zitat Settimi, V., & Rega, G. (2016c). Influence of a locally-tailored external feedback control on the overall dynamics of a non-contact AFM model. International Journal of Non-Linear Mechanics, 80, 144–159.CrossRef Settimi, V., & Rega, G. (2016c). Influence of a locally-tailored external feedback control on the overall dynamics of a non-contact AFM model. International Journal of Non-Linear Mechanics, 80, 144–159.CrossRef
Zurück zum Zitat Soliman, M. S., & Thompson, J. M. T. (1989). Integrity measures quantifying the erosion of smooth and fractal basins of attraction. Journal of Sound and Vibration, 135, 453–475.MathSciNetCrossRef Soliman, M. S., & Thompson, J. M. T. (1989). Integrity measures quantifying the erosion of smooth and fractal basins of attraction. Journal of Sound and Vibration, 135, 453–475.MathSciNetCrossRef
Zurück zum Zitat Soliman, M. S., & Thompson, J. M. T. (1992). Global dynamics underlying sharp basin erosion in nonlinear driven oscillators. Physical Review A, 45(6), 3425–3431.CrossRef Soliman, M. S., & Thompson, J. M. T. (1992). Global dynamics underlying sharp basin erosion in nonlinear driven oscillators. Physical Review A, 45(6), 3425–3431.CrossRef
Zurück zum Zitat Sumali, H., Younis, M. I., & Abdel-Rahman, E. M. (2008). Special issue on micro- and nano-electromechanical systems. Nonlinear Dynamics, 54, 1–2.CrossRef Sumali, H., Younis, M. I., & Abdel-Rahman, E. M. (2008). Special issue on micro- and nano-electromechanical systems. Nonlinear Dynamics, 54, 1–2.CrossRef
Zurück zum Zitat Szemplińska-Stupnicka, W. (1992). Cross-well chaos and escape phenomena in driven oscillators. Nonlinear Dynamics, 3, 225–243.CrossRef Szemplińska-Stupnicka, W. (1992). Cross-well chaos and escape phenomena in driven oscillators. Nonlinear Dynamics, 3, 225–243.CrossRef
Zurück zum Zitat Szemplińska-Stupnicka, W., & Tyrkiel, E. (1997). Sequences of global bifurcations and the related outcomes after crisis of the resonant attractor in a nonlinear oscillator. International Journal of Bifurcation and Chaos, 7, 2537–2557.MathSciNetMATH Szemplińska-Stupnicka, W., & Tyrkiel, E. (1997). Sequences of global bifurcations and the related outcomes after crisis of the resonant attractor in a nonlinear oscillator. International Journal of Bifurcation and Chaos, 7, 2537–2557.MathSciNetMATH
Zurück zum Zitat Thompson, J. M. T. (1989). Chaotic phenomena triggering the escape from a potential well. Proceedings of the Royal Society of London A, 421, 195–225.MathSciNetCrossRef Thompson, J. M. T. (1989). Chaotic phenomena triggering the escape from a potential well. Proceedings of the Royal Society of London A, 421, 195–225.MathSciNetCrossRef
Zurück zum Zitat Thompson, J. M. T., Rainey, R. C. T., & Soliman, M. S. (1990). Ship stability criteria based on chaotic transients from incursive fractals. Philosophical Transactions of the Royal Society of London A, 332(1624), 149–167.MathSciNetCrossRef Thompson, J. M. T., Rainey, R. C. T., & Soliman, M. S. (1990). Ship stability criteria based on chaotic transients from incursive fractals. Philosophical Transactions of the Royal Society of London A, 332(1624), 149–167.MathSciNetCrossRef
Zurück zum Zitat Tusset, A. M., Balthazar, J. M., Bassinello, D. G., Pontes, B. R., Jr., & Felix, J. L. P. (2012). Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator. Nonlinear Dynamics, 69, 1837–1857.MathSciNetCrossRef Tusset, A. M., Balthazar, J. M., Bassinello, D. G., Pontes, B. R., Jr., & Felix, J. L. P. (2012). Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator. Nonlinear Dynamics, 69, 1837–1857.MathSciNetCrossRef
Zurück zum Zitat Üstünel, H., Roundy, D., & Arias, T. A. (2005). Modeling a suspended nanotube oscillator. Nano Letters, 5(3), 523–526.CrossRef Üstünel, H., Roundy, D., & Arias, T. A. (2005). Modeling a suspended nanotube oscillator. Nano Letters, 5(3), 523–526.CrossRef
Zurück zum Zitat Venstra, W. J., Westra, H. J. R., & van der Zant, H. S. J. (2010). Mechanical stiffening, bistability, and bit operations in a microcantilever. Applied Physics Letters, 97(19), 193107.CrossRef Venstra, W. J., Westra, H. J. R., & van der Zant, H. S. J. (2010). Mechanical stiffening, bistability, and bit operations in a microcantilever. Applied Physics Letters, 97(19), 193107.CrossRef
Zurück zum Zitat Villaggio, P. (1997). Mathematical models for elastic structures. Cambridge: Cambridge University Press.CrossRef Villaggio, P. (1997). Mathematical models for elastic structures. Cambridge: Cambridge University Press.CrossRef
Zurück zum Zitat Villanueva, L. G., Karabalin, R. B., Matheny, M. H., Chi, D., Sader, J. E., & Roukes, M. L. (2013). Nonlinearity in nanomechanical cantilevers. Physical Review B, 87(2), 024304.CrossRef Villanueva, L. G., Karabalin, R. B., Matheny, M. H., Chi, D., Sader, J. E., & Roukes, M. L. (2013). Nonlinearity in nanomechanical cantilevers. Physical Review B, 87(2), 024304.CrossRef
Zurück zum Zitat Westra, H. J. R., Poot, M., van der Zant, H. S. J., & Venstra, W. J. (2010). Nonlinear modal interactions in clamped-clamped mechanical resonators. Physical Review Letters, 105, 117205.CrossRef Westra, H. J. R., Poot, M., van der Zant, H. S. J., & Venstra, W. J. (2010). Nonlinear modal interactions in clamped-clamped mechanical resonators. Physical Review Letters, 105, 117205.CrossRef
Zurück zum Zitat Xu, T., Ruzziconi, L., & Younis, M. I. (2017). Global investigation of the nonlinear dynamics of carbon nanotubes. Acta Mechanica, 228(3), 1029–1043.MathSciNetCrossRef Xu, T., Ruzziconi, L., & Younis, M. I. (2017). Global investigation of the nonlinear dynamics of carbon nanotubes. Acta Mechanica, 228(3), 1029–1043.MathSciNetCrossRef
Zurück zum Zitat Younis, M. I. (2011). MEMS linear and nonlinear statics and dynamics. New York: Springer.CrossRef Younis, M. I. (2011). MEMS linear and nonlinear statics and dynamics. New York: Springer.CrossRef
Zurück zum Zitat Younis, M. I., Abdel-Rahman, E. M., & Nayfeh, A. H. (2003). A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechnical Systems, 12(5), 672–680.CrossRef Younis, M. I., Abdel-Rahman, E. M., & Nayfeh, A. H. (2003). A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechnical Systems, 12(5), 672–680.CrossRef
Zurück zum Zitat Younis, M. I., & Alsaleem, F. M. (2009). Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. ASME Journal of Computational and Nonlinear Dynamics, 4, 021010.CrossRef Younis, M. I., & Alsaleem, F. M. (2009). Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. ASME Journal of Computational and Nonlinear Dynamics, 4, 021010.CrossRef
Zurück zum Zitat Younis, M. I., & Nayfeh, A. H. (2003). A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics, 31(1), 91–117.CrossRef Younis, M. I., & Nayfeh, A. H. (2003). A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics, 31(1), 91–117.CrossRef
Zurück zum Zitat Younis, M. I., Ouakad, H., Alsaleem, F. M., Miles, R., & Cui, W. (2010). Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. Journal of Microelectromechanical Systems, 19(3), 647–656.CrossRef Younis, M. I., Ouakad, H., Alsaleem, F. M., Miles, R., & Cui, W. (2010). Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. Journal of Microelectromechanical Systems, 19(3), 647–656.CrossRef
Zurück zum Zitat Zhang, W., Baskaran, R., & Turner, K. (2002). Tuning the dynamic behavior of parametric resonance in a micromechanical oscillator. Applied Physics Letters, 82(1), 130–132.CrossRef Zhang, W., Baskaran, R., & Turner, K. (2002). Tuning the dynamic behavior of parametric resonance in a micromechanical oscillator. Applied Physics Letters, 82(1), 130–132.CrossRef
Metadaten
Titel
Interpreting and Predicting Experimental Responses of Micro- and Nano-Devices via Dynamical Integrity
verfasst von
Laura Ruzziconi
Stefano Lenci
Mohammad I. Younis
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-99710-0_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.