Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2015

01.06.2015

Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation

verfasst von: LieJune Shiau, Tilo Schwalger, Benjamin Lindner

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the spike statistics of an adaptive exponential integrate-and-fire neuron stimulated by white Gaussian current noise. We derive analytical approximations for the coefficient of variation and the serial correlation coefficient of the interspike interval assuming that the neuron operates in the mean-driven tonic firing regime and that the stochastic input is weak. Our result for the serial correlation coefficient has the form of a geometric sequence and is confirmed by the comparison to numerical simulations. The theory predicts various patterns of interval correlations (positive or negative at lag one, monotonically decreasing or oscillating) depending on the strength of the spike-triggered and subthreshold components of the adaptation current. In particular, for pure subthreshold adaptation we find strong positive ISI correlations that are usually ascribed to positive correlations in the input current. Our results i) provide an alternative explanation for interspike-interval correlations observed in vivo, ii) may be useful in fitting point neuron models to experimental data, and iii) may be instrumental in exploring the role of adaptation currents for signal detection and signal transmission in single neurons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In this case, the unstable subthreshold limit cycle still exists, while the unstable spike-associated limit cycle involving the voltage reset has become unstable itself. Perturbations around the spike limit cycle will grow in an oscillatory manner, can then overcome the inner unstable limit cycle due to the reset rule and go eventually to the stable focus.
 
2
Choosing a very small noise intensity for all parameters entails other difficulties: if the jitter of the interspike interval (order of C VT ) becomes very small (of the order of the discrete time step Δt), numerical errors in the simulation results due to the discrete nature of our integration scheme can be expected. These errors can be reduced by decreasing the time step, which may become computationally expensive.
 
Literatur
Zurück zum Zitat Avila-Akerberg, O., & Chacron, M.J. (2011). Nonrenewal spike train statistics: causes and consequences on neural coding. Experimental Brain Research, 210, 353.CrossRefPubMed Avila-Akerberg, O., & Chacron, M.J. (2011). Nonrenewal spike train statistics: causes and consequences on neural coding. Experimental Brain Research, 210, 353.CrossRefPubMed
Zurück zum Zitat Bear, M.F., Connors, B.W., & Paradiso, M.A. (2007). Neuroscience: Exploring the brain. Baltimore: Lippincott Williams and Wilkins. Bear, M.F., Connors, B.W., & Paradiso, M.A. (2007). Neuroscience: Exploring the brain. Baltimore: Lippincott Williams and Wilkins.
Zurück zum Zitat Benda, J., & Herz, A.V.M. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15, 2523.CrossRefPubMed Benda, J., & Herz, A.V.M. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15, 2523.CrossRefPubMed
Zurück zum Zitat Benda, J., Longtin, A., & Maler, L. (2005). Spike-frequency adaptation separates transient communication signals from background oscillations. Journal of Neuroscience, 25(9), 2312.CrossRefPubMed Benda, J., Longtin, A., & Maler, L. (2005). Spike-frequency adaptation separates transient communication signals from background oscillations. Journal of Neuroscience, 25(9), 2312.CrossRefPubMed
Zurück zum Zitat Benda, J., Maler, L., & Longtin, A. (2010). Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. Journal of Neurophysiology, 104(5), 2806.CrossRefPubMed Benda, J., Maler, L., & Longtin, A. (2010). Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. Journal of Neurophysiology, 104(5), 2806.CrossRefPubMed
Zurück zum Zitat Brette, R., & Gerstner, W. (2005). Adaptive Exponential Integrate-and-Fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94(5), 3637.CrossRefPubMed Brette, R., & Gerstner, W. (2005). Adaptive Exponential Integrate-and-Fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94(5), 3637.CrossRefPubMed
Zurück zum Zitat Chacron, M.J., Lindner, B., & Longtin, A. (2004). Noise shaping by interval correlations increases information transfer. Physical Review Letters, 92(8), 080601.CrossRefPubMed Chacron, M.J., Lindner, B., & Longtin, A. (2004). Noise shaping by interval correlations increases information transfer. Physical Review Letters, 92(8), 080601.CrossRefPubMed
Zurück zum Zitat Chacron, M.J., Longtin, A., & Maler, L. (2001). Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. Journal of Neuroscience, 21(14), 5328.PubMed Chacron, M.J., Longtin, A., & Maler, L. (2001). Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. Journal of Neuroscience, 21(14), 5328.PubMed
Zurück zum Zitat Chacron, M.J., Longtin, A., St-Hilaire, M., & Maler, L. (2000). Suprathreshold stochastic firing dynamics with memory in p-type electroreceptors. Physical Review Letters, 85(7), 1576.CrossRefPubMed Chacron, M.J., Longtin, A., St-Hilaire, M., & Maler, L. (2000). Suprathreshold stochastic firing dynamics with memory in p-type electroreceptors. Physical Review Letters, 85(7), 1576.CrossRefPubMed
Zurück zum Zitat Clopath, C., Jolivet, R., Rauch, A., Luscher, H., & Gerstner, W. (2007). Predicting neuronal activity with simple models of the threshold type: Adaptive Exponential Integrate-and-Fire model with two compartments. Neurocomputing, 70(10-12), 1668.CrossRef Clopath, C., Jolivet, R., Rauch, A., Luscher, H., & Gerstner, W. (2007). Predicting neuronal activity with simple models of the threshold type: Adaptive Exponential Integrate-and-Fire model with two compartments. Neurocomputing, 70(10-12), 1668.CrossRef
Zurück zum Zitat Cox, D.R., & Lewis, P.A.W. (1966). The Statistical Analysis of Series of Events. London: Chapman and Hall.CrossRef Cox, D.R., & Lewis, P.A.W. (1966). The Statistical Analysis of Series of Events. London: Chapman and Hall.CrossRef
Zurück zum Zitat Dayan, P., & Abbott, L.F. (2001). Theoretical Neuroscience. Cambridge: MIT Press. Dayan, P., & Abbott, L.F. (2001). Theoretical Neuroscience. Cambridge: MIT Press.
Zurück zum Zitat Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews Neuroscience, 4, 739.CrossRefPubMed Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews Neuroscience, 4, 739.CrossRefPubMed
Zurück zum Zitat Engel, T.A., Schimansky-Geier, L., Herz, A.V.M., Schreiber, S., & Erchova, I. (2008). Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. Journal of Neurophysiology, 100 (3), 1576.CrossRefPubMedCentralPubMed Engel, T.A., Schimansky-Geier, L., Herz, A.V.M., Schreiber, S., & Erchova, I. (2008). Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. Journal of Neurophysiology, 100 (3), 1576.CrossRefPubMedCentralPubMed
Zurück zum Zitat Ermentrout, G.B., & Terman, D.H. (2010). Mathematical Foundations of Neuroscience. New York: Springer.CrossRef Ermentrout, G.B., & Terman, D.H. (2010). Mathematical Foundations of Neuroscience. New York: Springer.CrossRef
Zurück zum Zitat Fisch, K., Schwalger, T., Lindner, B., Herz, A., & Benda, J. (2012). Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron. Journal of Neuroscience, 32, 17332.CrossRefPubMed Fisch, K., Schwalger, T., Lindner, B., Herz, A., & Benda, J. (2012). Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron. Journal of Neuroscience, 32, 17332.CrossRefPubMed
Zurück zum Zitat Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628.PubMed Fourcaud-Trocmé, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628.PubMed
Zurück zum Zitat Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Transactions Neural Networks, 6(14), 1569.CrossRef Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Transactions Neural Networks, 6(14), 1569.CrossRef
Zurück zum Zitat Gabbiani, F., & Krapp, H.G. (2006). Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. Journal of Neurophysiology, 96(6), 2951.CrossRefPubMedCentralPubMed Gabbiani, F., & Krapp, H.G. (2006). Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. Journal of Neurophysiology, 96(6), 2951.CrossRefPubMedCentralPubMed
Zurück zum Zitat Jolivet, R., Kobayashi, R., Rauch, A., Naud, R., Shinomoto, S., & Gerstner, W. (2008). A benchmark test for a quantitative assessment of simple neuron models. Journal of Neuroscience Methods, 169, 417.CrossRefPubMed Jolivet, R., Kobayashi, R., Rauch, A., Naud, R., Shinomoto, S., & Gerstner, W. (2008). A benchmark test for a quantitative assessment of simple neuron models. Journal of Neuroscience Methods, 169, 417.CrossRefPubMed
Zurück zum Zitat Ladenbauer, J., Augustin, M., Shiau, L., & Obermayer, K. (2012). Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons. PLoS Computational Biology, 8(4). Ladenbauer, J., Augustin, M., Shiau, L., & Obermayer, K. (2012). Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons. PLoS Computational Biology, 8(4).
Zurück zum Zitat Lindner, B. (2004). Interspike interval statistics of neurons driven by colored noise. Physical Review E, 69(21). Lindner, B. (2004). Interspike interval statistics of neurons driven by colored noise. Physical Review E, 69(21).
Zurück zum Zitat Liu, Y.H., & Wang, X.J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience, 10(1), 25.CrossRefPubMed Liu, Y.H., & Wang, X.J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience, 10(1), 25.CrossRefPubMed
Zurück zum Zitat Lowen, S.B., & Teich, M.C. (1992). Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales. Journal of the Acoustical Society of America, 92, 803.CrossRefPubMed Lowen, S.B., & Teich, M.C. (1992). Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales. Journal of the Acoustical Society of America, 92, 803.CrossRefPubMed
Zurück zum Zitat Middleton, J.W., Chacron, M.J., Lindner, B., & Longtin, A. (2003). Firing statistics of a neuron model driven by long-range correlated noise. Physical Review E, 68(21), 021920.CrossRef Middleton, J.W., Chacron, M.J., Lindner, B., & Longtin, A. (2003). Firing statistics of a neuron model driven by long-range correlated noise. Physical Review E, 68(21), 021920.CrossRef
Zurück zum Zitat Naud, R., Marcille, N., Clopath, C., & Gerstner, W. (2008). Firing patterns in the adaptive exponential integrate-and-fire model. Biological Cybernetics, 99, 335.CrossRefPubMedCentralPubMed Naud, R., Marcille, N., Clopath, C., & Gerstner, W. (2008). Firing patterns in the adaptive exponential integrate-and-fire model. Biological Cybernetics, 99, 335.CrossRefPubMedCentralPubMed
Zurück zum Zitat Nawrot, M.P., Boucsein, C., Rodriguez-Molina, V., Aertsen, A., Grün, S., & Rotter, S. (2007). Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro. Neurocomputing, 70(10-12), 1717. Nawrot, M.P., Boucsein, C., Rodriguez-Molina, V., Aertsen, A., Grün, S., & Rotter, S. (2007). Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro. Neurocomputing, 70(10-12), 1717.
Zurück zum Zitat Neiman, A., & Russell, D.F. (2001). Stochastic biperiodic oscillations in the electroreceptors of paddlefish. Physical Review Letters, 86(15), 3443.CrossRefPubMed Neiman, A., & Russell, D.F. (2001). Stochastic biperiodic oscillations in the electroreceptors of paddlefish. Physical Review Letters, 86(15), 3443.CrossRefPubMed
Zurück zum Zitat Nikitin, A., Stocks, N., & Bulsara, A. (2012). Enhancing the resolution of a sensor via negative correlation: a biologically inspired approach. Physical Review Letters, 109, 238103.CrossRefPubMed Nikitin, A., Stocks, N., & Bulsara, A. (2012). Enhancing the resolution of a sensor via negative correlation: a biologically inspired approach. Physical Review Letters, 109, 238103.CrossRefPubMed
Zurück zum Zitat Prescott, S.A., & Sejnowski, T.J. (2008). Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms. Journal of Neuroscience, 28, 13649.CrossRefPubMedCentralPubMed Prescott, S.A., & Sejnowski, T.J. (2008). Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms. Journal of Neuroscience, 28, 13649.CrossRefPubMedCentralPubMed
Zurück zum Zitat Ratnam, R., & Nelson, M.E. (2000). Nonrenewal statistics of electrosensory afferent spike trains: Implications for the detection of weak sensory signals. Journal of Neuroscience, 20, 6672.PubMed Ratnam, R., & Nelson, M.E. (2000). Nonrenewal statistics of electrosensory afferent spike trains: Implications for the detection of weak sensory signals. Journal of Neuroscience, 20, 6672.PubMed
Zurück zum Zitat Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1996). Spikes: Exploring the Neural Code. Cambridge, Massachusetts: MIT Press. Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1996). Spikes: Exploring the Neural Code. Cambridge, Massachusetts: MIT Press.
Zurück zum Zitat Schwalger, T., Fisch, K., Benda, J., & Lindner, B. (2010). How noisy adaptation of neurons shapes interspike interval histograms and correlations. PLoS Computational Biology, 6, e1001026. Schwalger, T., Fisch, K., Benda, J., & Lindner, B. (2010). How noisy adaptation of neurons shapes interspike interval histograms and correlations. PLoS Computational Biology, 6, e1001026.
Zurück zum Zitat Schwalger, T., & Lindner, B. (2013). Patterns of interval correlations in neural oscillators with adaptation. Frontiers Computational Neuroscience, 7, 164. Schwalger, T., & Lindner, B. (2013). Patterns of interval correlations in neural oscillators with adaptation. Frontiers Computational Neuroscience, 7, 164.
Zurück zum Zitat Touboul, J., & Brette, R. (2008). Dynamics and bifurcations of the adaptive exponential Integrate-and-Fire model. Biological Cybernetics, 99(4-5), 319.CrossRefPubMed Touboul, J., & Brette, R. (2008). Dynamics and bifurcations of the adaptive exponential Integrate-and-Fire model. Biological Cybernetics, 99(4-5), 319.CrossRefPubMed
Zurück zum Zitat Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network, 4(3), 259.CrossRef Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network, 4(3), 259.CrossRef
Zurück zum Zitat Vilela, R.D., & Lindner, B. (2009). A comparative study of three different integrate-and-fire neurons: spontaneous activity, dynamical response, and stimulus-induced correlation. Physical Review E, 031909, 80. Vilela, R.D., & Lindner, B. (2009). A comparative study of three different integrate-and-fire neurons: spontaneous activity, dynamical response, and stimulus-induced correlation. Physical Review E, 031909, 80.
Zurück zum Zitat White, J.A., Rubinstein, J.T., & Kay, A.R. (2000). Channel noise in neurons. Trends in Neurosciences, 23(3), 131.CrossRefPubMed White, J.A., Rubinstein, J.T., & Kay, A.R. (2000). Channel noise in neurons. Trends in Neurosciences, 23(3), 131.CrossRefPubMed
Metadaten
Titel
Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation
verfasst von
LieJune Shiau
Tilo Schwalger
Benjamin Lindner
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2015
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-015-0558-4

Weitere Artikel der Ausgabe 3/2015

Journal of Computational Neuroscience 3/2015 Zur Ausgabe