Skip to main content
Erschienen in: Wireless Networks 3/2020

29.10.2018

Intertwined localization and error-resilient geographic routing for mobile wireless sensor networks

verfasst von: Imane Benkhelifa, Samira Moussaoui, Ilker Demirkol

Erschienen in: Wireless Networks | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Geographic routing in wireless sensor networks brings numerous inherent advantages, albeit its performance relying heavily on accurate node locations. In mobile networks, localization of the continuously moving nodes is a challenging task and location errors are inevitable and affect considerably routing decisions. Our proposal is in response to the unrealistic assumption widely made by previous geographic routing protocols that the accurate location of mobile nodes can be obtained at any time. Such idealized assumption results in under-performing or infeasible routing protocols for the real world applications. In this paper, we propose INTEGER, a localization method intertwined with a new location-error-resilient geographic routing specifically designed for mobile sensor networks even when these networks are intermittently connected. By combining the localization phase with the geographic routing process, INTEGER can select a relay node based on nodes’ mobility predictions from the localization phase. Results show that INTEGER improves the efficiency of the routing by increasing the packet delivery ratio and by reducing the energy consumption while minimizing the number of relay nodes compared to six prevalent protocols from the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dyo, V., Ellwood, S. A., Macdonald, D. W., Markham, A., Trigoni, N., Wohlers, R., et al. (2012). WILDSENSING: design and deployment of a sustainable sensor network for wildlife monitoring. ACM Transactions on Sensor Networks (TOSN),8(4), 29.CrossRef Dyo, V., Ellwood, S. A., Macdonald, D. W., Markham, A., Trigoni, N., Wohlers, R., et al. (2012). WILDSENSING: design and deployment of a sustainable sensor network for wildlife monitoring. ACM Transactions on Sensor Networks (TOSN),8(4), 29.CrossRef
2.
Zurück zum Zitat Othman, M. F., & Shazali, K. (2012). Wireless sensor network applications: A study in environment monitoring system. Procedia Engineering,41, 1204–1210.CrossRef Othman, M. F., & Shazali, K. (2012). Wireless sensor network applications: A study in environment monitoring system. Procedia Engineering,41, 1204–1210.CrossRef
3.
Zurück zum Zitat Tunca, C., Isik, S., Donmez, M. Y., & Ersoy, C. (2014). Distributed mobile sink routing for wireless sensor networks: a survey. IEEE Communications Surveys & Tutorials,16(2), 877–897.CrossRef Tunca, C., Isik, S., Donmez, M. Y., & Ersoy, C. (2014). Distributed mobile sink routing for wireless sensor networks: a survey. IEEE Communications Surveys & Tutorials,16(2), 877–897.CrossRef
4.
Zurück zum Zitat Gu, Y., Ren, F., Ji, Y., & Li, J. (2015). The evolution of sink mobility management in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials,18(1), 507–524.CrossRef Gu, Y., Ren, F., Ji, Y., & Li, J. (2015). The evolution of sink mobility management in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials,18(1), 507–524.CrossRef
5.
Zurück zum Zitat Sara, G. S., & Sridharan, D. (2014). Routing in mobile wireless sensor network: A survey. Telecommunication Systems,57(1), 51–79.CrossRef Sara, G. S., & Sridharan, D. (2014). Routing in mobile wireless sensor network: A survey. Telecommunication Systems,57(1), 51–79.CrossRef
6.
Zurück zum Zitat Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems,29(7), 1645–1660.CrossRef Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems,29(7), 1645–1660.CrossRef
7.
Zurück zum Zitat Torrieri, D., Talarico, S., & Valenti, M. C. (2015). Performance comparisons of geographic routing protocols in mobile ad hoc networks. IEEE Transactions on Communications,63(11), 4276–4286.CrossRef Torrieri, D., Talarico, S., & Valenti, M. C. (2015). Performance comparisons of geographic routing protocols in mobile ad hoc networks. IEEE Transactions on Communications,63(11), 4276–4286.CrossRef
8.
Zurück zum Zitat Huang, H., Yin, H., Luo, Y., Zhang, X., Min, G., & Fan, Q. (2016). Three-dimensional geographic routing in wireless mobile ad hoc and sensor networks. IEEE Network,30(2), 82–90.CrossRef Huang, H., Yin, H., Luo, Y., Zhang, X., Min, G., & Fan, Q. (2016). Three-dimensional geographic routing in wireless mobile ad hoc and sensor networks. IEEE Network,30(2), 82–90.CrossRef
9.
Zurück zum Zitat Cadger, F., Curran, K., Santos, J., & Moffett, S. (2013). A survey of geographical routing in wireless ad-hoc networks. IEEE Communications Surveys & Tutorials,15(2), 621–653.CrossRef Cadger, F., Curran, K., Santos, J., & Moffett, S. (2013). A survey of geographical routing in wireless ad-hoc networks. IEEE Communications Surveys & Tutorials,15(2), 621–653.CrossRef
10.
Zurück zum Zitat Oppermann, F. J., Boano, C. A., & Römer, K. (2014). A decade of wireless sensing applications: Survey and taxonomy. In H. M. Ammari (Ed.), The Art of Wireless Sensor Networks (pp. 11–50). Berlin: Springer.CrossRef Oppermann, F. J., Boano, C. A., & Römer, K. (2014). A decade of wireless sensing applications: Survey and taxonomy. In H. M. Ammari (Ed.), The Art of Wireless Sensor Networks (pp. 11–50). Berlin: Springer.CrossRef
11.
Zurück zum Zitat Popescu, A. M., Tudorache, I. G., Peng, B., & Kemp, A. H. (2012). Surveying position based routing protocols for wireless sensor and ad-hoc networks. International Journal of Communication Networks and Information Security,4(1), 41. Popescu, A. M., Tudorache, I. G., Peng, B., & Kemp, A. H. (2012). Surveying position based routing protocols for wireless sensor and ad-hoc networks. International Journal of Communication Networks and Information Security,4(1), 41.
12.
Zurück zum Zitat Zhu, C., Yang, L. T., Shu, L., Leung, V. C., Rodrigues, J. J., & Wang, L. (2014). Sleep scheduling for geographic routing in duty-cycled mobile sensor networks. IEEE Transactions on Industrial Electronics,61(11), 6346–6355.CrossRef Zhu, C., Yang, L. T., Shu, L., Leung, V. C., Rodrigues, J. J., & Wang, L. (2014). Sleep scheduling for geographic routing in duty-cycled mobile sensor networks. IEEE Transactions on Industrial Electronics,61(11), 6346–6355.CrossRef
13.
Zurück zum Zitat Han, G., Xu, H., Duong, T. Q., Jiang, J., & Hara, T. (2013). Localization algorithms of wireless sensor networks: a survey. Telecommunication Systems,52(4), 2419–2436.CrossRef Han, G., Xu, H., Duong, T. Q., Jiang, J., & Hara, T. (2013). Localization algorithms of wireless sensor networks: a survey. Telecommunication Systems,52(4), 2419–2436.CrossRef
14.
Zurück zum Zitat Zhu, H., Zhong, X., Yu, Q., & Wan, Y. (2013). A localization algorithm for mobile wireless sensor networks. In IEEE third international conference on intelligent system design and engineering applications (ISDEA) (pp. 81–85). Zhu, H., Zhong, X., Yu, Q., & Wan, Y. (2013). A localization algorithm for mobile wireless sensor networks. In IEEE third international conference on intelligent system design and engineering applications (ISDEA) (pp. 81–85).
15.
Zurück zum Zitat Sheu, J. P., Hu, W. K., & Lin, J. C. (2010). Distributed localization scheme for mobile sensor networks. IEEE Transactions on Mobile Computing,9(4), 516–526.CrossRef Sheu, J. P., Hu, W. K., & Lin, J. C. (2010). Distributed localization scheme for mobile sensor networks. IEEE Transactions on Mobile Computing,9(4), 516–526.CrossRef
16.
Zurück zum Zitat Zhang, S., Cao, J., Li-Jun, C., & Chen, D. (2010). Accurate and energy-efficient range-free localization for mobile sensor networks. IEEE Transactions on Mobile Computing,9(6), 897–910.CrossRef Zhang, S., Cao, J., Li-Jun, C., & Chen, D. (2010). Accurate and energy-efficient range-free localization for mobile sensor networks. IEEE Transactions on Mobile Computing,9(6), 897–910.CrossRef
17.
Zurück zum Zitat Zhou, Z., Peng, Z., Cui, J. H., Shi, Z., & Bagtzoglou, A. (2011). Scalable localization with mobility prediction for underwater sensor networks. IEEE Transactions on Mobile Computing,10(3), 335–348.CrossRef Zhou, Z., Peng, Z., Cui, J. H., Shi, Z., & Bagtzoglou, A. (2011). Scalable localization with mobility prediction for underwater sensor networks. IEEE Transactions on Mobile Computing,10(3), 335–348.CrossRef
18.
Zurück zum Zitat Chenji, H., & Stoleru, R. (2013). Toward accurate mobile sensor network localization in noisy environments. IEEE Transactions on Mobile Computing,12(6), 1094–1106.CrossRef Chenji, H., & Stoleru, R. (2013). Toward accurate mobile sensor network localization in noisy environments. IEEE Transactions on Mobile Computing,12(6), 1094–1106.CrossRef
19.
Zurück zum Zitat Peng, B., & Kemp, A. H. (2010). Impact of location errors on geographic routing in realistic WSNs. In Proceedings of the international conference on indoor positioning and indoor navigation (IPIN) (pp. 1–7), IEEE. Peng, B., & Kemp, A. H. (2010). Impact of location errors on geographic routing in realistic WSNs. In Proceedings of the international conference on indoor positioning and indoor navigation (IPIN) (pp. 1–7), IEEE.
20.
Zurück zum Zitat Cha, S., Talipov, E., & Cha, H. (2013). Data delivery scheme for intermittently connected mobile sensor networks. Computer Communications,36(5), 504–519.CrossRef Cha, S., Talipov, E., & Cha, H. (2013). Data delivery scheme for intermittently connected mobile sensor networks. Computer Communications,36(5), 504–519.CrossRef
21.
Zurück zum Zitat Benkhelifa, I., & Moussaoui, S. (2012). Speed and direction Prediction-based Localization for mobile wireless sensor networks. In The 5th international conference on communications, computers and applications (MIC-CCA), (pp. 1–6), IEEE. Benkhelifa, I., & Moussaoui, S. (2012). Speed and direction Prediction-based Localization for mobile wireless sensor networks. In The 5th international conference on communications, computers and applications (MIC-CCA), (pp. 1–6), IEEE.
22.
Zurück zum Zitat Benkhelifa, I., Lamini, C., Azouz, H., Moussaoui, S., & Khokhar, A. (2014). Prediction-based localization for mobile wireless sensor networks. In 17th international conference on network-based information systems (pp. 257–262), IEEE. Benkhelifa, I., Lamini, C., Azouz, H., Moussaoui, S., & Khokhar, A. (2014). Prediction-based localization for mobile wireless sensor networks. In 17th international conference on network-based information systems (pp. 257–262), IEEE.
23.
Zurück zum Zitat Seada, K., Helmy, A., & Govindan, R. (2004). On the effect of localization errors on geographic face routing in sensor networks. In Proceedings of the 3rd international symposium on Information processing in sensor networks (pp. 71–80), ACM. Seada, K., Helmy, A., & Govindan, R. (2004). On the effect of localization errors on geographic face routing in sensor networks. In Proceedings of the 3rd international symposium on Information processing in sensor networks (pp. 71–80), ACM.
24.
Zurück zum Zitat Son, D., Helmy, A., & Krishnamachari, B. (2004). The effect of mobility-induced location errors on geographic routing in mobile ad hoc sensor networks: analysis and improvement. IEEE Transactions on Mobile Computing,3(3), 233–245.CrossRef Son, D., Helmy, A., & Krishnamachari, B. (2004). The effect of mobility-induced location errors on geographic routing in mobile ad hoc sensor networks: analysis and improvement. IEEE Transactions on Mobile Computing,3(3), 233–245.CrossRef
25.
Zurück zum Zitat Kwon, S., & Shroff, N. B. (2006). Geographic routing in the presence of location errors. Computer Networks,50(15), 2902–2917.CrossRefMATH Kwon, S., & Shroff, N. B. (2006). Geographic routing in the presence of location errors. Computer Networks,50(15), 2902–2917.CrossRefMATH
26.
Zurück zum Zitat Milocco, R. H., Costantini, H., & Boumerdassi, S. (2014). Improved geographic routing in sensor networks subjected to localization errors. Ad Hoc Networks,13, 476–486.CrossRef Milocco, R. H., Costantini, H., & Boumerdassi, S. (2014). Improved geographic routing in sensor networks subjected to localization errors. Ad Hoc Networks,13, 476–486.CrossRef
27.
Zurück zum Zitat Saad, C., Benslimane, A., Champ, J., & Konig, J. C. (2008). Ellipse routing: A geographic routing protocol for mobile sensor networks with uncertain positions. In IEEE GLOBECOM 2008—2008 IEEE global telecommunications conference (pp. 1–5), IEEE. Saad, C., Benslimane, A., Champ, J., & Konig, J. C. (2008). Ellipse routing: A geographic routing protocol for mobile sensor networks with uncertain positions. In IEEE GLOBECOM 2008—2008 IEEE global telecommunications conference (pp. 1–5), IEEE.
28.
Zurück zum Zitat Basagni, S., Nati, M., & Petrioli, C. (2008). Localization error-resilient geographic routing for wireless sensor networks. In IEEE GLOBECOM 2008—2008 IEEE global telecommunications conference (pp. 1–6), IEEE. Basagni, S., Nati, M., & Petrioli, C. (2008). Localization error-resilient geographic routing for wireless sensor networks. In IEEE GLOBECOM 2008—2008 IEEE global telecommunications conference (pp. 1–6), IEEE.
29.
Zurück zum Zitat Petrioli, C., Nati, M., Casari, P., Zorzi, M., & Basagni, S. (2014). ALBA-R: Load-balancing geographic routing around connectivity holes in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems,25(3), 529–539.CrossRef Petrioli, C., Nati, M., Casari, P., Zorzi, M., & Basagni, S. (2014). ALBA-R: Load-balancing geographic routing around connectivity holes in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems,25(3), 529–539.CrossRef
30.
Zurück zum Zitat Li, J., & Shatz, S. M. (2008). Toward using node mobility to enhance Greedy-forwarding in geographic routing for mobile ad hoc networks. In Proc. of MODUS (pp. 1–8). Li, J., & Shatz, S. M. (2008). Toward using node mobility to enhance Greedy-forwarding in geographic routing for mobile ad hoc networks. In Proc. of MODUS (pp. 1–8).
31.
Zurück zum Zitat Kouah, R., Moussaoui, S., & Aissani, M. (2013). Mobility-based Greedy Forwarding Mechanism for Wireless Sensor Networks. In International conference on networking and services (pp. 140–145). Kouah, R., Moussaoui, S., & Aissani, M. (2013). Mobility-based Greedy Forwarding Mechanism for Wireless Sensor Networks. In International conference on networking and services (pp. 140–145).
32.
Zurück zum Zitat Cadger, F., Curran, K., Santos, J., & Moffet, S. (2016). Location and mobility-aware routing for improving multimedia streaming performance in MANETs. Wireless Personal Communications,86(3), 1653–1672.CrossRef Cadger, F., Curran, K., Santos, J., & Moffet, S. (2016). Location and mobility-aware routing for improving multimedia streaming performance in MANETs. Wireless Personal Communications,86(3), 1653–1672.CrossRef
33.
Zurück zum Zitat Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computing and networking (pp. 243–254), ACM. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computing and networking (pp. 243–254), ACM.
34.
Zurück zum Zitat Wang, T., Cao, Y., Zhou, Y., & Li, P. (2016). A survey on geographic routing protocols in delay/disruption tolerant networks. International Journal of Distributed Sensor Networks,2016, 8. Wang, T., Cao, Y., Zhou, Y., & Li, P. (2016). A survey on geographic routing protocols in delay/disruption tolerant networks. International Journal of Distributed Sensor Networks,2016, 8.
35.
Zurück zum Zitat Al-Shugran, M., Ghazali, O., Hassan, S., Nisar, K., & Arif, A. S. M. (2013). A qualitative comparison evaluation of the greedy forwarding strategies in mobile ad hoc network. Journal of Network and Computer Applications,36(2), 887–897.CrossRef Al-Shugran, M., Ghazali, O., Hassan, S., Nisar, K., & Arif, A. S. M. (2013). A qualitative comparison evaluation of the greedy forwarding strategies in mobile ad hoc network. Journal of Network and Computer Applications,36(2), 887–897.CrossRef
36.
Zurück zum Zitat Benkhelifa, I., Nouali-Taboudjemat, N., & Moussaoui, S. (2014). Disaster management projects using wireless sensor networks: An overview. In IEEE 28th international conference on advanced information networking and applications workshops (WAINA) (pp. 605–610). Benkhelifa, I., Nouali-Taboudjemat, N., & Moussaoui, S. (2014). Disaster management projects using wireless sensor networks: An overview. In IEEE 28th international conference on advanced information networking and applications workshops (WAINA) (pp. 605–610).
37.
Zurück zum Zitat Valade, A., Acco, P., Grabolosa, P., & Fourniols, J. Y. (2017). A study about Kalman filters applied to embedded sensors. Sensors,17(12), 2810.CrossRef Valade, A., Acco, P., Grabolosa, P., & Fourniols, J. Y. (2017). A study about Kalman filters applied to embedded sensors. Sensors,17(12), 2810.CrossRef
38.
Zurück zum Zitat Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Engineering,48, 500–506.CrossRef Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Engineering,48, 500–506.CrossRef
39.
Zurück zum Zitat Popescu, A. M., Salman, N., & Kemp, A. H. (2014). Energy efficient geographic routing robust against location errors. IEEE Sensors Journal,14(6), 1944–1951.CrossRef Popescu, A. M., Salman, N., & Kemp, A. H. (2014). Energy efficient geographic routing robust against location errors. IEEE Sensors Journal,14(6), 1944–1951.CrossRef
40.
Zurück zum Zitat Peng, B., & Kemp, A. H. (2011). Energy-efficient geographic routing in the presence of localization errors. Computer Networks,55(3), 856–872.CrossRefMATH Peng, B., & Kemp, A. H. (2011). Energy-efficient geographic routing in the presence of localization errors. Computer Networks,55(3), 856–872.CrossRefMATH
41.
Zurück zum Zitat Zhu, Y., Jiang, R., Yu, J., Li, Z., & Li, M. (2014). Geographic routing based on predictive locations in vehicular ad hoc networks. EURASIP Journal on Wireless Communications and Networking,2014(1), 137.CrossRef Zhu, Y., Jiang, R., Yu, J., Li, Z., & Li, M. (2014). Geographic routing based on predictive locations in vehicular ad hoc networks. EURASIP Journal on Wireless Communications and Networking,2014(1), 137.CrossRef
42.
Zurück zum Zitat Cao, Y., Wei, K., Min, G., Weng, J., Yang, X., & Sun, Z. (2016). A geographic multi-copy routing scheme for DTNs with heterogeneous mobility. IEEE Systems Journal,12(1), 790–801.CrossRef Cao, Y., Wei, K., Min, G., Weng, J., Yang, X., & Sun, Z. (2016). A geographic multi-copy routing scheme for DTNs with heterogeneous mobility. IEEE Systems Journal,12(1), 790–801.CrossRef
43.
Zurück zum Zitat Lee, E., Park, S., Park, H., Lee, J., & Kim, S. H. (2009). Geographic routing based on on-demand neighbor position information in large-scale mobile sensor networks. In 2009 international symposium on autonomous decentralized systems (pp. 1–7), IEEE. Lee, E., Park, S., Park, H., Lee, J., & Kim, S. H. (2009). Geographic routing based on on-demand neighbor position information in large-scale mobile sensor networks. In 2009 international symposium on autonomous decentralized systems (pp. 1–7), IEEE.
45.
Zurück zum Zitat Akyildiz, I. F., & Vuran, M. C. (2010). Wireless sensor networks (Vol. 4). Hoboken: Wiley.CrossRefMATH Akyildiz, I. F., & Vuran, M. C. (2010). Wireless sensor networks (Vol. 4). Hoboken: Wiley.CrossRefMATH
46.
Zurück zum Zitat Benkhelifa, I., & Moussaoui, S. (2011). Appl: Anchor path planning based localization for wireless sensor networks. In The 4th international conference on communications, computers and applications (MIC-CCA 2011) (pp. 48–53). Benkhelifa, I., & Moussaoui, S. (2011). Appl: Anchor path planning based localization for wireless sensor networks. In The 4th international conference on communications, computers and applications (MIC-CCA 2011) (pp. 48–53).
47.
Zurück zum Zitat Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., & Rubenstein, D. (2002). Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet. In ACM Sigplan Notices (Vol. 37, No. 10, pp. 96–107), ACM. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., & Rubenstein, D. (2002). Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet. In ACM Sigplan Notices (Vol. 37, No. 10, pp. 96–107), ACM.
48.
Zurück zum Zitat Cao, Y., & Sun, Z. (2013). Routing in delay/disruption tolerant networks: A taxonomy, survey and challenges. IEEE Communications surveys & tutorials,15(2), 654–677.CrossRef Cao, Y., & Sun, Z. (2013). Routing in delay/disruption tolerant networks: A taxonomy, survey and challenges. IEEE Communications surveys & tutorials,15(2), 654–677.CrossRef
49.
Zurück zum Zitat Peters, K., Jabbar, A., Cetinkaya, E. K., & Sterbenz, J. P. (2011). A geographical routing protocol for highly-dynamic aeronautical networks. In Wireless communications and networking conference (WCNC) (pp. 492–497), IEEE. Peters, K., Jabbar, A., Cetinkaya, E. K., & Sterbenz, J. P. (2011). A geographical routing protocol for highly-dynamic aeronautical networks. In Wireless communications and networking conference (WCNC) (pp. 492–497), IEEE.
50.
Zurück zum Zitat Grossglauser, M., & David, N. C. (2002). Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking,10(4), 477.CrossRef Grossglauser, M., & David, N. C. (2002). Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking,10(4), 477.CrossRef
Metadaten
Titel
Intertwined localization and error-resilient geographic routing for mobile wireless sensor networks
verfasst von
Imane Benkhelifa
Samira Moussaoui
Ilker Demirkol
Publikationsdatum
29.10.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 3/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1836-7

Weitere Artikel der Ausgabe 3/2020

Wireless Networks 3/2020 Zur Ausgabe

Neuer Inhalt