Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

1. Introduction and Literature Review

verfasst von : Gaber Magdy, Gaber Shabib, Adel A. Elbaset, Yasunori Mitani

Erschienen in: Renewable Power Systems Dynamic Security

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, a comprehensive literature review on the issue of load frequency control (LFC) in the power system has been highlighted. The various power system model configurations and control techniques/strategies concerned with LFC problems have been discussed in both conventional and renewable power systems. In addition, the suggested LFC control strategies have been researched and classified into various control groups. Finally, the chapter highlights the study gaps and presents some new research directions in the field of LFC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Bevrani, M. Watanabe, Y. Mitani, Power system monitoring and control (John Wiley & Sons, Hoboken, NJ, 2014) H. Bevrani, M. Watanabe, Y. Mitani, Power system monitoring and control (John Wiley & Sons, Hoboken, NJ, 2014)
2.
Zurück zum Zitat E. Rakhshani, D. Remon, A.M. Cantarellas, P. Rodriguez, Analysis of derivative control based virtual inertia in multi-area high-voltage direct current interconnected power systems. IET Gener. Transm. Distrib. 10(6), 1458–1469 (2016) E. Rakhshani, D. Remon, A.M. Cantarellas, P. Rodriguez, Analysis of derivative control based virtual inertia in multi-area high-voltage direct current interconnected power systems. IET Gener. Transm. Distrib. 10(6), 1458–1469 (2016)
3.
Zurück zum Zitat S. Teimourzadeh, F. Aminifar, M. Davarpanah, Microgrid dynamic security: challenges, solutions and key considerations. Electr. J. 30(4), 43–51 (2017) S. Teimourzadeh, F. Aminifar, M. Davarpanah, Microgrid dynamic security: challenges, solutions and key considerations. Electr. J. 30(4), 43–51 (2017)
4.
Zurück zum Zitat N.E.Y. Kouba, M. Menaa, M. Hasni, M. Boudour, Load Frequency Control in multi-area power system based on Fuzzy Logic-PID Controller, in 2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 2015. N.E.Y. Kouba, M. Menaa, M. Hasni, M. Boudour, Load Frequency Control in multi-area power system based on Fuzzy Logic-PID Controller, in 2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 2015.
5.
Zurück zum Zitat J. Pahasa, I. Ngamroo, Simultaneous control of frequency fluctuation and battery SOC in a smart grid using LFC and EV controllers based on optimal MIMO-MPC. J. Electr. Eng. Technol. 12(2), 601–611 (2017) J. Pahasa, I. Ngamroo, Simultaneous control of frequency fluctuation and battery SOC in a smart grid using LFC and EV controllers based on optimal MIMO-MPC. J. Electr. Eng. Technol. 12(2), 601–611 (2017)
6.
Zurück zum Zitat H. Gozde, M.C. Taplamacioglu, Automatic generation control application with craziness based particle swarm optimization in a thermal power system. Int. J. Elec. Power. 33(1), 8–16 (2011) H. Gozde, M.C. Taplamacioglu, Automatic generation control application with craziness based particle swarm optimization in a thermal power system. Int. J. Elec. Power. 33(1), 8–16 (2011)
7.
Zurück zum Zitat N. Ramesh Babu, A. Pachiyappan, Wind energy conversion systems-a technical review. J. Eng. Sci. Technol. 8(4), 493–507 (2013) N. Ramesh Babu, A. Pachiyappan, Wind energy conversion systems-a technical review. J. Eng. Sci. Technol. 8(4), 493–507 (2013)
8.
Zurück zum Zitat H. Bevrani, Robust power system frequency control (Springer, New York, 2014)MATH H. Bevrani, Robust power system frequency control (Springer, New York, 2014)MATH
10.
Zurück zum Zitat E. Rakhshani, K. Rouzbehi, S. Sadeh, A new combined model for simulation of mutual effects between LFC and AVR loops, in 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China (2009). E. Rakhshani, K. Rouzbehi, S. Sadeh, A new combined model for simulation of mutual effects between LFC and AVR loops, in 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China (2009).
11.
Zurück zum Zitat C.-T. Pan, C.-M. Liaw, An adaptive controller for power system load-frequency control. IEEE Trans. Power Syst. 4(1), 122–128 (1989) C.-T. Pan, C.-M. Liaw, An adaptive controller for power system load-frequency control. IEEE Trans. Power Syst. 4(1), 122–128 (1989)
12.
Zurück zum Zitat L. Jiang, W. Yao, Q.H. Wu, J.Y. Wen, S.J. Cheng, Delay-dependent stability for load frequency control with constant and time-varying delays. IEEE Trans. Power Syst. 27(2), 932–941 (2012) L. Jiang, W. Yao, Q.H. Wu, J.Y. Wen, S.J. Cheng, Delay-dependent stability for load frequency control with constant and time-varying delays. IEEE Trans. Power Syst. 27(2), 932–941 (2012)
13.
Zurück zum Zitat S. Doolla, T. Bhatti, Load frequency control of an isolated small-hydro power plant with reduced dump load. IEEE Trans. Power Syst. 21(4), 1912–1919 (2006) S. Doolla, T. Bhatti, Load frequency control of an isolated small-hydro power plant with reduced dump load. IEEE Trans. Power Syst. 21(4), 1912–1919 (2006)
14.
Zurück zum Zitat J.I. Pérez-Díaz, J.I. Sarasúa, Failures during load-frequency control maneuvers in an upgraded hydropower plant: causes, identification of causes and solution proposals. Energies 8(10), 10584–10604 (2015) J.I. Pérez-Díaz, J.I. Sarasúa, Failures during load-frequency control maneuvers in an upgraded hydropower plant: causes, identification of causes and solution proposals. Energies 8(10), 10584–10604 (2015)
15.
Zurück zum Zitat K.S. Parmara, S. Majhi, D.P. Kothari, Load frequency control of a realistic power system with multi-source power generation. Int. J. Elec. Power. 42(1), 426–433 (2012) K.S. Parmara, S. Majhi, D.P. Kothari, Load frequency control of a realistic power system with multi-source power generation. Int. J. Elec. Power. 42(1), 426–433 (2012)
16.
Zurück zum Zitat B. Singh, G.K. Kasal, Voltage and frequency controller for a three-phase four-wire autonomous wind energy conversion system. IEEE Trans. Energy Convers. 23(2), 509–518 (2008) B. Singh, G.K. Kasal, Voltage and frequency controller for a three-phase four-wire autonomous wind energy conversion system. IEEE Trans. Energy Convers. 23(2), 509–518 (2008)
17.
Zurück zum Zitat D. Chen, S. Kumar, M. York, L. Wang, Smart automatic generation control, in Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA (2012). D. Chen, S. Kumar, M. York, L. Wang, Smart automatic generation control, in Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA (2012).
18.
Zurück zum Zitat A. Bose, I. Atiyyah, Regulation error in load frequency control. IEEE Trans. Power App. Syst. PAS-99(2), 650–657 (1980) A. Bose, I. Atiyyah, Regulation error in load frequency control. IEEE Trans. Power App. Syst. PAS-99(2), 650–657 (1980)
19.
Zurück zum Zitat İ. Kocaarslan, E. Çam, Fuzzy logic controller in interconnected electrical power systems for load-frequency control. Int. J. Elec. Power. 27(8), 542–549 (2005) İ. Kocaarslan, E. Çam, Fuzzy logic controller in interconnected electrical power systems for load-frequency control. Int. J. Elec. Power. 27(8), 542–549 (2005)
20.
Zurück zum Zitat R. Verma, S. Pal, Sathans S, Intelligent automatic generation control of two-area hydrothermal power system using ANN and Fuzzy logic, in 2013 International Conference on Communication Systems and Network Technologies, Gwalior, India (2013). R. Verma, S. Pal, Sathans S, Intelligent automatic generation control of two-area hydrothermal power system using ANN and Fuzzy logic, in 2013 International Conference on Communication Systems and Network Technologies, Gwalior, India (2013).
21.
Zurück zum Zitat N. Ibraheem, H. Nizamuddin, T.S. Bhattib, AGC of two area power system interconnected by AC/DC links with diverse sources in each area. Int. J. Elec. Power. 55, 297–304 (2014) N. Ibraheem, H. Nizamuddin, T.S. Bhattib, AGC of two area power system interconnected by AC/DC links with diverse sources in each area. Int. J. Elec. Power. 55, 297–304 (2014)
22.
Zurück zum Zitat V.K. Kamboj, K. Arora, P. Khurana, Automatic generation control for interconnected hydro-thermal system with the help of conventional controllers. Int. J. Electr. Comput. Eng. 2(4), 547–552 (2012) V.K. Kamboj, K. Arora, P. Khurana, Automatic generation control for interconnected hydro-thermal system with the help of conventional controllers. Int. J. Electr. Comput. Eng. 2(4), 547–552 (2012)
23.
Zurück zum Zitat C.-F. Lu, C.-C. Liu, C.-J. Wu, Effect of battery energy storage system on load frequency control considering governor deadband and generation rate constraint. IEEE Trans. Energy Convers. 10(3), 555–561 (1995) C.-F. Lu, C.-C. Liu, C.-J. Wu, Effect of battery energy storage system on load frequency control considering governor deadband and generation rate constraint. IEEE Trans. Energy Convers. 10(3), 555–561 (1995)
24.
Zurück zum Zitat I. Ngamroo, Y. Mitani, K. Tsuji, Application of SMES coordinated with solid-state phase shifter to load frequency control. IEEE Trans. Appl. Superconduct. 9(2), 322–325 (1999) I. Ngamroo, Y. Mitani, K. Tsuji, Application of SMES coordinated with solid-state phase shifter to load frequency control. IEEE Trans. Appl. Superconduct. 9(2), 322–325 (1999)
25.
Zurück zum Zitat K.R. Sudha, R. Santhi, Load frequency control of an interconnected reheat thermal system using type-2 fuzzy system including SMES units. Int. J. Elec. Power. 43(1), 1383–1392 (2012) K.R. Sudha, R. Santhi, Load frequency control of an interconnected reheat thermal system using type-2 fuzzy system including SMES units. Int. J. Elec. Power. 43(1), 1383–1392 (2012)
26.
Zurück zum Zitat H. Alhelou, M. Golshan, J. Askari-Marnani, Robust sensor fault detection and isolation scheme for interconnected smart power systems in presence of RER and EVs using unknown input observer. Int. J. Elec. Power. 99, 682–694 (2018) H. Alhelou, M. Golshan, J. Askari-Marnani, Robust sensor fault detection and isolation scheme for interconnected smart power systems in presence of RER and EVs using unknown input observer. Int. J. Elec. Power. 99, 682–694 (2018)
27.
Zurück zum Zitat E. Cam, G. Gorel, H. Mamur, Use of the genetic algorithm-based fuzzy logic controller for load-frequency control in a two area interconnected power system. Appl. Sci. 7(3), 1–22 (2017) E. Cam, G. Gorel, H. Mamur, Use of the genetic algorithm-based fuzzy logic controller for load-frequency control in a two area interconnected power system. Appl. Sci. 7(3), 1–22 (2017)
28.
Zurück zum Zitat E. Davison, N. Tripathi, The optimal decentralized control of a large power system: load and frequency control. IEEE Trans. Automat. Contr. 23(2), 312–325 (1978)MathSciNetMATH E. Davison, N. Tripathi, The optimal decentralized control of a large power system: load and frequency control. IEEE Trans. Automat. Contr. 23(2), 312–325 (1978)MathSciNetMATH
29.
Zurück zum Zitat M. Rahmani, N. Sadati, Hierarchical optimal robust load-frequency control for power systems. IET Gener. Transm. Distrib. 6(4), 303–312 (2012) M. Rahmani, N. Sadati, Hierarchical optimal robust load-frequency control for power systems. IET Gener. Transm. Distrib. 6(4), 303–312 (2012)
30.
Zurück zum Zitat M. Shiroei, M.R. Toulabi, A.M. Ranjbar, Robust multivariable predictive based load frequency control considering generation rate constraint. Int. J. Elec. Power. 46, 405–413 (2016) M. Shiroei, M.R. Toulabi, A.M. Ranjbar, Robust multivariable predictive based load frequency control considering generation rate constraint. Int. J. Elec. Power. 46, 405–413 (2016)
31.
Zurück zum Zitat H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, Y. Mitani, Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach. IEEE Trans. Smart. Grid. 3(4), 1935–1944 (2012) H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, Y. Mitani, Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach. IEEE Trans. Smart. Grid. 3(4), 1935–1944 (2012)
32.
Zurück zum Zitat H. Bevrani, Y. Mitani, K. Tsuji, Robust decentralised load-frequency control using an iterative linear matrix inequalities algorithm. IET Proc. Generat. Transm. Distrib. 151(3), 347–354 (2004) H. Bevrani, Y. Mitani, K. Tsuji, Robust decentralised load-frequency control using an iterative linear matrix inequalities algorithm. IET Proc. Generat. Transm. Distrib. 151(3), 347–354 (2004)
33.
Zurück zum Zitat L. Dong, Y. Zhang, Z. Gao, A robust decentralized load frequency controller for interconnected power systems. ISA Trans. 51(3), 410–419 (2012) L. Dong, Y. Zhang, Z. Gao, A robust decentralized load frequency controller for interconnected power systems. ISA Trans. 51(3), 410–419 (2012)
34.
Zurück zum Zitat T.H. Mohamed, J. Morel, H. Bevrani, T. Hiyamac, Model predictive based load frequency control_design concerning wind turbines. Int. J. Elec. Power. 43(1), 859–867 (2012) T.H. Mohamed, J. Morel, H. Bevrani, T. Hiyamac, Model predictive based load frequency control_design concerning wind turbines. Int. J. Elec. Power. 43(1), 859–867 (2012)
35.
Zurück zum Zitat W. Tan, H. Zhou, Robust analysis of decentralized load frequency control for multi-area power systems. Int. J. Elec. Power. 43(1), 996–1005 (2012) W. Tan, H. Zhou, Robust analysis of decentralized load frequency control for multi-area power systems. Int. J. Elec. Power. 43(1), 996–1005 (2012)
36.
Zurück zum Zitat O. Malik, A. Kumar, G. Hope, A load frequency control algorithm based on a generalized approach. IEEE Trans. Power Syst. 3(2), 375–382 (1988) O. Malik, A. Kumar, G. Hope, A load frequency control algorithm based on a generalized approach. IEEE Trans. Power Syst. 3(2), 375–382 (1988)
37.
Zurück zum Zitat S. Prakash, A.K. Bhardwaj, S.K. Sinha, Neuro fuzzy hybrid intelligent approach for four -area load frequency control of interconnected power system, in 2012 2nd International Conference on Power, Control and Embedded Systems, Allahabad, India (2012). S. Prakash, A.K. Bhardwaj, S.K. Sinha, Neuro fuzzy hybrid intelligent approach for four -area load frequency control of interconnected power system, in 2012 2nd International Conference on Power, Control and Embedded Systems, Allahabad, India (2012).
38.
Zurück zum Zitat K. Vrdoljak, N. Perić, I. Petrović, Sliding mode based load-frequency control in power systems. Electr. Pow. Syst. Res. 80(5), 514–527 (2010) K. Vrdoljak, N. Perić, I. Petrović, Sliding mode based load-frequency control in power systems. Electr. Pow. Syst. Res. 80(5), 514–527 (2010)
39.
Zurück zum Zitat O. Anaya-Lara, F. Hughes, N. Jenkins, G. Strbac, Contribution of DFIG-based wind farms to power system short-term frequency regulation. IET Proc. Generat. Transm. Distrib. 153(2), 164–170 (2006) O. Anaya-Lara, F. Hughes, N. Jenkins, G. Strbac, Contribution of DFIG-based wind farms to power system short-term frequency regulation. IET Proc. Generat. Transm. Distrib. 153(2), 164–170 (2006)
40.
Zurück zum Zitat G. Ramtharan, J. Ekanayake, N. Jenkins, Frequency support from doubly fed induction generator wind turbines. IET Renew. Power Gener. 1(1), 3–9 (2007) G. Ramtharan, J. Ekanayake, N. Jenkins, Frequency support from doubly fed induction generator wind turbines. IET Renew. Power Gener. 1(1), 3–9 (2007)
41.
Zurück zum Zitat R. Doherty, A. Mullane, G. Nolan, D.J. Burke, A. Bryson, M. O’Malley, An assessment of the impact of wind generation on system frequency control. IEEE Trans. Power Syst. 25(1), 452–460 (2010) R. Doherty, A. Mullane, G. Nolan, D.J. Burke, A. Bryson, M. O’Malley, An assessment of the impact of wind generation on system frequency control. IEEE Trans. Power Syst. 25(1), 452–460 (2010)
42.
Zurück zum Zitat P.K. Ray, S.R. Mohanty, N. Kishor, A. Mohanty, Small-signal analysis of hybrid distributed generation system with HVDC-link and energy storage elements, in 2009 Second International Conference on Emerging Trends in Engineering & Technology, Nagpur, India (2009). P.K. Ray, S.R. Mohanty, N. Kishor, A. Mohanty, Small-signal analysis of hybrid distributed generation system with HVDC-link and energy storage elements, in 2009 Second International Conference on Emerging Trends in Engineering & Technology, Nagpur, India (2009).
43.
Zurück zum Zitat H. Bevrani, B. Francois, T. Ise, Microgrid dynamics and control (John Wiley& Sons, Hoboken, NJ, 2017) H. Bevrani, B. Francois, T. Ise, Microgrid dynamics and control (John Wiley& Sons, Hoboken, NJ, 2017)
44.
Zurück zum Zitat T. Kerdphol, F.S. Rahman, Y. Mitani, M. Watanabe, S. Küfeoǧlu, Robust virtual inertia control of an islanded microgrid considering high penetration of renewable energy. IEEE Access 6, 625–636 (2017) T. Kerdphol, F.S. Rahman, Y. Mitani, M. Watanabe, S. Küfeoǧlu, Robust virtual inertia control of an islanded microgrid considering high penetration of renewable energy. IEEE Access 6, 625–636 (2017)
45.
Zurück zum Zitat T. Kerdphol, F.S. Rahman, Y. Mitani, K. Hongesombut, S. Küfeoğlu, Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy. Sustainability 9(5), 1–21 (2017) T. Kerdphol, F.S. Rahman, Y. Mitani, K. Hongesombut, S. Küfeoğlu, Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy. Sustainability 9(5), 1–21 (2017)
46.
Zurück zum Zitat R. Yan, T.K. Saha, Frequency response estimation method for high wind penetration considering wind turbine frequency support functions’. IET Renew. Power Gener. 9(7), 775–782 (2015) R. Yan, T.K. Saha, Frequency response estimation method for high wind penetration considering wind turbine frequency support functions’. IET Renew. Power Gener. 9(7), 775–782 (2015)
47.
Zurück zum Zitat A. Keyhani, A. Chatterjee, Automatic generation control structure for smart power grids. IEEE Trans. Smart. Grid. 3(3), 1310–1316 (2012) A. Keyhani, A. Chatterjee, Automatic generation control structure for smart power grids. IEEE Trans. Smart. Grid. 3(3), 1310–1316 (2012)
48.
Zurück zum Zitat S. Vachirasricirikul, I. Ngamroo, Robust LFC in a smart grid with wind power penetration by coordinated V2G control and frequency controller. IEEE Trans. Smart. Grid. 5(1), 371–380 (2014) S. Vachirasricirikul, I. Ngamroo, Robust LFC in a smart grid with wind power penetration by coordinated V2G control and frequency controller. IEEE Trans. Smart. Grid. 5(1), 371–380 (2014)
49.
Zurück zum Zitat J.M. Guerrero, J.C. Vasquez, J. Matas, L.G. de Vicuna, M. Castilla, Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011) J.M. Guerrero, J.C. Vasquez, J. Matas, L.G. de Vicuna, M. Castilla, Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)
52.
Zurück zum Zitat R. Karasu, I.A. Chidambaram, PI2 controller based coordinated control with redox flow battery and unified power flow controller for improved restoration indices in a deregulated power system. Ain Shams Eng. J. 7(4), 1011–1027 (2016) R. Karasu, I.A. Chidambaram, PI2 controller based coordinated control with redox flow battery and unified power flow controller for improved restoration indices in a deregulated power system. Ain Shams Eng. J. 7(4), 1011–1027 (2016)
53.
Zurück zum Zitat L.C. Saikia, A. Bharali, O. Dixit, T. Malakar, B. Sharma, S. Kouli, Automatic generation control of multi-area hydro system using classical controllers, in 2012 1st International Conference on Power and Energy in NERIST (ICPEN), Nirjuli, India (2012). L.C. Saikia, A. Bharali, O. Dixit, T. Malakar, B. Sharma, S. Kouli, Automatic generation control of multi-area hydro system using classical controllers, in 2012 1st International Conference on Power and Energy in NERIST (ICPEN), Nirjuli, India (2012).
54.
Zurück zum Zitat P. Topno, S. Chanana, Load frequency control of a two-area multi-source power system using a tilt integral derivative controller. J. Vib. Control. 24(1), 110–125 (2016)MathSciNetMATH P. Topno, S. Chanana, Load frequency control of a two-area multi-source power system using a tilt integral derivative controller. J. Vib. Control. 24(1), 110–125 (2016)MathSciNetMATH
55.
Zurück zum Zitat M. Aoki, Control of large-scale dynamic systems by aggregation. IEEE Trans. Automat. Contr. 13(3), 246–253 (1968) M. Aoki, Control of large-scale dynamic systems by aggregation. IEEE Trans. Automat. Contr. 13(3), 246–253 (1968)
56.
Zurück zum Zitat Y.-H. Moon, H.-S. Ryu, B. Kim, K.-B. Song, Optimal tracking approach to load frequency control in power systems, in 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077), Singapore, Singapore (2000). Y.-H. Moon, H.-S. Ryu, B. Kim, K.-B. Song, Optimal tracking approach to load frequency control in power systems, in 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077), Singapore, Singapore (2000).
57.
Zurück zum Zitat M. Farahani, S. Ganjefar, M. Alizadeh, PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control. IET Control Theory Appl. 6(12), 1984–1992 (2012)MathSciNet M. Farahani, S. Ganjefar, M. Alizadeh, PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control. IET Control Theory Appl. 6(12), 1984–1992 (2012)MathSciNet
58.
Zurück zum Zitat M.A. Tammam, M.A.S. Aboelela, M.A. Moustafa, A.E.A. Seif, Fuzzy like PID controller tuning by multi-objective genetic algorithm for load frequency control in nonlinear electric power systems. Int. J. Adv. Eng. Technol. 5(1), 572–583 (2012) M.A. Tammam, M.A.S. Aboelela, M.A. Moustafa, A.E.A. Seif, Fuzzy like PID controller tuning by multi-objective genetic algorithm for load frequency control in nonlinear electric power systems. Int. J. Adv. Eng. Technol. 5(1), 572–583 (2012)
59.
Zurück zum Zitat C.E. Fosha, O.I. Elgerd, The megawatt-frequency control problem: a new approach via optimal control theory. IEEE Trans. Power App. Syst. PAS-89(4), 563–577 (1970) C.E. Fosha, O.I. Elgerd, The megawatt-frequency control problem: a new approach via optimal control theory. IEEE Trans. Power App. Syst. PAS-89(4), 563–577 (1970)
60.
Zurück zum Zitat M. Calovic, Linear regulator design for a load and frequency control. IEEE Trans. Power App. Syst. PAS-91(6), 2271–2285 (1972) M. Calovic, Linear regulator design for a load and frequency control. IEEE Trans. Power App. Syst. PAS-91(6), 2271–2285 (1972)
61.
Zurück zum Zitat V. Moorthi, Damping effects of excitation control in load-frequency control system. Proc. Instit. Electr. Eng. 21(11), 1409–1416 (1974) V. Moorthi, Damping effects of excitation control in load-frequency control system. Proc. Instit. Electr. Eng. 21(11), 1409–1416 (1974)
62.
Zurück zum Zitat R. Shoults, Multi-area adaptive LFC developed for a comprehensive AGC simulator. IEEE Trans. Power Syst. 8(2), 541–547 (1993) R. Shoults, Multi-area adaptive LFC developed for a comprehensive AGC simulator. IEEE Trans. Power Syst. 8(2), 541–547 (1993)
63.
Zurück zum Zitat K.A. Lee, H. Yee, C.Y. Teo, Self-tuning algorithm for automatic generation control in an interconnected power system. Electr. Power Syst. Res. 20(3), 157–165 (1991) K.A. Lee, H. Yee, C.Y. Teo, Self-tuning algorithm for automatic generation control in an interconnected power system. Electr. Power Syst. Res. 20(3), 157–165 (1991)
64.
Zurück zum Zitat S. Jovanovic, Self-tuning steam turbine controller in a multi-machine power system. IEEE Trans. Energy Convers. 14(4), 1578–1581 (1999) S. Jovanovic, Self-tuning steam turbine controller in a multi-machine power system. IEEE Trans. Energy Convers. 14(4), 1578–1581 (1999)
65.
Zurück zum Zitat Y. Wang, R. Zhou, C. Wen, Robust load-frequency controller design for power systems. IET Proc. Generat. Transm. Distrib. 140(1), 11–16 (1993) Y. Wang, R. Zhou, C. Wen, Robust load-frequency controller design for power systems. IET Proc. Generat. Transm. Distrib. 140(1), 11–16 (1993)
66.
Zurück zum Zitat V.P. Singhb, S.R. Mohanty, N. Kishor, P.K. Rayc, Robust H-infinity load frequency control in hybrid distributed generation system. Int. J. Elec. Power. 46, 294–305 (2013) V.P. Singhb, S.R. Mohanty, N. Kishor, P.K. Rayc, Robust H-infinity load frequency control in hybrid distributed generation system. Int. J. Elec. Power. 46, 294–305 (2013)
67.
Zurück zum Zitat H. Bevrani, M.R. Feizi, S. Ataee, Robust frequency control in an Islanded Microgrid:H∞ and μ-synthesis approaches. IEEE Trans. Smart. Grid. 7(2), 706–717 (2016) H. Bevrani, M.R. Feizi, S. Ataee, Robust frequency control in an Islanded Microgrid:H∞ and μ-synthesis approaches. IEEE Trans. Smart. Grid. 7(2), 706–717 (2016)
Metadaten
Titel
Introduction and Literature Review
verfasst von
Gaber Magdy
Gaber Shabib
Adel A. Elbaset
Yasunori Mitani
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-33455-0_1