Skip to main content
Erschienen in:
Buchtitelbild

2023 | OriginalPaper | Buchkapitel

1. Introduction and State of the Art

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Autonomous Underwater Vehicles (AUVs) are increasing in popularity because they can explore the ocean’s depths and perform operations without risking human life, and their applications range from search and rescue to scientific research and military operations. However, despite recent progress, AUVs still have worse swimming capabilities than fishes. The locomotion strategies of fishes have achieved outstanding swimming performances because they have evolved through natural selection for millions of years, so investigating how fishes propel themselves is of great interest to exploit the same mechanism for AUV propulsion. An effective bioinspired design cannot be carried out by blindly copying all the characteristics of fish locomotion, but it should be based on a deep understanding of the underlying physical principles that make fish swim so efficiently. Fish swimming is a complex phenomenon involving the unsteady fluid dynamics of a deformable moving body immersed in water, and advanced numerical tools are needed to figure out the mechanism of fish propulsion. In this chapter, the most popular numerical methods used to analyze fish swimming are described, and the main novel aspects of the proposed technique based on an overset grid are introduced.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bogue R (2015) Underwater robots: a review of technologies and applications. Ind Robot: An Int J 42(3):186–191CrossRef Bogue R (2015) Underwater robots: a review of technologies and applications. Ind Robot: An Int J 42(3):186–191CrossRef
2.
Zurück zum Zitat Sahoo A, Dwivedy SK, Robi PS (2019) Advancements in the field of autonomous underwater vehicle. Ocean Eng 181:145–160CrossRef Sahoo A, Dwivedy SK, Robi PS (2019) Advancements in the field of autonomous underwater vehicle. Ocean Eng 181:145–160CrossRef
3.
Zurück zum Zitat Fish FE (2020) Advantages of aquatic animals as models for bio-inspired drones over present AUV technology. Bioinspiration & Biom 15:025001CrossRef Fish FE (2020) Advantages of aquatic animals as models for bio-inspired drones over present AUV technology. Bioinspiration & Biom 15:025001CrossRef
4.
Zurück zum Zitat Gordon MS, Blickhan R, Dabiri JO, Videler JJ (2017) Animal locomotion: physical principles and adaptations. CRC Press—Taylor & Francis Group Gordon MS, Blickhan R, Dabiri JO, Videler JJ (2017) Animal locomotion: physical principles and adaptations. CRC Press—Taylor & Francis Group
5.
Zurück zum Zitat Newman JN, Wu TY (1974) Swimming and flying in nature—volume 2. In: Wu TY, Brokaw CJ, Brennen C (eds), Proceedings of the second half of the symposium on swimming and flying in nature, vol 2 Newman JN, Wu TY (1974) Swimming and flying in nature—volume 2. In: Wu TY, Brokaw CJ, Brennen C (eds), Proceedings of the second half of the symposium on swimming and flying in nature, vol 2
6.
Zurück zum Zitat Sfakiotakis M, Lane DM, Davies J (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24(2):237–252CrossRef Sfakiotakis M, Lane DM, Davies J (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24(2):237–252CrossRef
7.
Zurück zum Zitat Salazar R, Fuentes V, Abdelkefi A (2018) Classification of biological and bioinspired aquatic systems: a review. Ocean Eng 148:75–114CrossRef Salazar R, Fuentes V, Abdelkefi A (2018) Classification of biological and bioinspired aquatic systems: a review. Ocean Eng 148:75–114CrossRef
8.
Zurück zum Zitat Buren T, Floryan D, Smits A (2020) Bioinspired underwater propulsors. Cambridge University Press, CambridgeCrossRef Buren T, Floryan D, Smits A (2020) Bioinspired underwater propulsors. Cambridge University Press, CambridgeCrossRef
9.
Zurück zum Zitat Videler JJ, Wardle CS (1991) Fish swimming stride by stride: speed limits and endurance. Rev Fish Biol Fish 1:23–40CrossRef Videler JJ, Wardle CS (1991) Fish swimming stride by stride: speed limits and endurance. Rev Fish Biol Fish 1:23–40CrossRef
10.
Zurück zum Zitat Lighthill MJ (1969) Hydromechanics of aquatic animal propulsion. Ann Rev Fluid Mech 1:413–446CrossRef Lighthill MJ (1969) Hydromechanics of aquatic animal propulsion. Ann Rev Fluid Mech 1:413–446CrossRef
12.
Zurück zum Zitat Webb PW (1975) Hydrodynamics and energetics of fish propulsion. Department of the Environment Fisheries and Marine Services of Canada Webb PW (1975) Hydrodynamics and energetics of fish propulsion. Department of the Environment Fisheries and Marine Services of Canada
13.
Zurück zum Zitat Videler JJ (1995) Body surface adaptations to boundary-layer dynamics. Symposia Soc Exp Biol 49:1–20 Videler JJ (1995) Body surface adaptations to boundary-layer dynamics. Symposia Soc Exp Biol 49:1–20
14.
Zurück zum Zitat Miklosovic D, Murray M, Howle L, Fish F (2004) Leading-edge tubercles delay stall on humpback whale (megaptera novaeangliae) flippers. Phys Fluids 16(39) Miklosovic D, Murray M, Howle L, Fish F (2004) Leading-edge tubercles delay stall on humpback whale (megaptera novaeangliae) flippers. Phys Fluids 16(39)
15.
Zurück zum Zitat Daniel TL (1981) Fish mucus: in situ measurements of polymer drag reduction. Biol Bull 160(3) Daniel TL (1981) Fish mucus: in situ measurements of polymer drag reduction. Biol Bull 160(3)
16.
Zurück zum Zitat Fish FE, Schreiber CM, Moored KW, Liu G, Dong H, Bart-Smith H (2016) Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace 3(20):3030020 Fish FE, Schreiber CM, Moored KW, Liu G, Dong H, Bart-Smith H (2016) Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace 3(20):3030020
17.
Zurück zum Zitat Su Z, Yu J, Tan M, Zhang J (2014) Implementing flexible and fast turning maneuvers of a multijoint robotic fish. IEEE/ASME Trans Mechatron 19(1) Su Z, Yu J, Tan M, Zhang J (2014) Implementing flexible and fast turning maneuvers of a multijoint robotic fish. IEEE/ASME Trans Mechatron 19(1)
18.
Zurück zum Zitat Weihs D (1973) The mechanism of rapid starting of slender fish. Biorheology 10:343–350CrossRef Weihs D (1973) The mechanism of rapid starting of slender fish. Biorheology 10:343–350CrossRef
19.
Zurück zum Zitat Parson JM, Fish FE, Nicastro AJ (2011) Turning performance of batoids: limitations of a rigid body. J Exp Marine Biol Ecol 402:12–18CrossRef Parson JM, Fish FE, Nicastro AJ (2011) Turning performance of batoids: limitations of a rigid body. J Exp Marine Biol Ecol 402:12–18CrossRef
20.
Zurück zum Zitat Jastrebsky RA, Bartol IK, Krueger PS (2016) Turning performance in squid and cuttlefish: unique dual-mode, muscular hydrostatic systems. J Exp Biol 219:1317–1326 Jastrebsky RA, Bartol IK, Krueger PS (2016) Turning performance in squid and cuttlefish: unique dual-mode, muscular hydrostatic systems. J Exp Biol 219:1317–1326
21.
Zurück zum Zitat Walker JA (2000) Does a rigid body limit maneuverability? J Exp Biol 203:3391–3396CrossRef Walker JA (2000) Does a rigid body limit maneuverability? J Exp Biol 203:3391–3396CrossRef
22.
Zurück zum Zitat Wang X, Liang S (2019) Maneuverability analysis of a novel portable modular AUV. Math Probl Eng Wang X, Liang S (2019) Maneuverability analysis of a novel portable modular AUV. Math Probl Eng
23.
Zurück zum Zitat Carlton J (2012) Marine propellers and propulsion. Butterworth-Heinemann Carlton J (2012) Marine propellers and propulsion. Butterworth-Heinemann
24.
Zurück zum Zitat Bar-Cohen Y (2011) Biomimetics: nature based innovation. Taylor & Francis Bar-Cohen Y (2011) Biomimetics: nature based innovation. Taylor & Francis
25.
Zurück zum Zitat Hale ME, Galdston S, Arnold BW, Song C (2022) The water to land transition submerged: multifunctional design of pectoral fins for use in swimming and in association with underwater substrate. Integr Comp Biol 62(4):908–921CrossRef Hale ME, Galdston S, Arnold BW, Song C (2022) The water to land transition submerged: multifunctional design of pectoral fins for use in swimming and in association with underwater substrate. Integr Comp Biol 62(4):908–921CrossRef
26.
Zurück zum Zitat Fish FE, Beneseki JT (2013) Evolution and bio-inspired design: natural limitations. Springer Fish FE, Beneseki JT (2013) Evolution and bio-inspired design: natural limitations. Springer
27.
Zurück zum Zitat Liu Y, Jiang H (2022) Research development on fish swimming. Chinese J Mech Eng 35(114) Liu Y, Jiang H (2022) Research development on fish swimming. Chinese J Mech Eng 35(114)
28.
Zurück zum Zitat Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) Fish exploiting vortices decrease muscle activity. Science 302:1566–1568CrossRef Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) Fish exploiting vortices decrease muscle activity. Science 302:1566–1568CrossRef
29.
Zurück zum Zitat Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Phylosophical Trans R Soc B 362:1973–1993CrossRef Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Phylosophical Trans R Soc B 362:1973–1993CrossRef
30.
Zurück zum Zitat Lauder GV (2000) Function of the caudal fin during locomotion in fishes; kinematics, flow visualization, and evolutionary patterns. Am Zoolog 40:101–122 Lauder GV (2000) Function of the caudal fin during locomotion in fishes; kinematics, flow visualization, and evolutionary patterns. Am Zoolog 40:101–122
31.
Zurück zum Zitat Tytell ED, Lauder GV (2004) The hydrodynamics of eel swimming: I. Wake structure. J Exp Biol 207(11):1825–1841 Tytell ED, Lauder GV (2004) The hydrodynamics of eel swimming: I. Wake structure. J Exp Biol 207(11):1825–1841
32.
Zurück zum Zitat Clark RP, Smits AJ (2006) Thrust production and wake structure of a batoid-inspired oscillating fin. J Fluid Mech 562:415–429MATHCrossRef Clark RP, Smits AJ (2006) Thrust production and wake structure of a batoid-inspired oscillating fin. J Fluid Mech 562:415–429MATHCrossRef
33.
Zurück zum Zitat Thandiackal R, Lauder GV (2020) How zebrafish turn: analysis of pressure force dynamics and mechiancal work. J Exp Biol 223 Thandiackal R, Lauder GV (2020) How zebrafish turn: analysis of pressure force dynamics and mechiancal work. J Exp Biol 223
34.
Zurück zum Zitat Flammang BE, Porter ME (2011) Bioinspiration: applying mechanical design to experimental biology. Integr Comp Biol 51(1):128–132CrossRef Flammang BE, Porter ME (2011) Bioinspiration: applying mechanical design to experimental biology. Integr Comp Biol 51(1):128–132CrossRef
35.
Zurück zum Zitat Ramamurti R, Lohner R, Sandberg WC (1999) Computation of the 3-d unsteady flow past deforming geometries. Int J Comput Fluid Dyn 13:83–99MATHCrossRef Ramamurti R, Lohner R, Sandberg WC (1999) Computation of the 3-d unsteady flow past deforming geometries. Int J Comput Fluid Dyn 13:83–99MATHCrossRef
36.
Zurück zum Zitat Ebrahimi M, Abbaspour M (2015) Numerical investigation of the forward and backward travelling waves through an undulating propulsor: performance and wake pattern. Ships Offshore Struct Ebrahimi M, Abbaspour M (2015) Numerical investigation of the forward and backward travelling waves through an undulating propulsor: performance and wake pattern. Ships Offshore Struct
37.
Zurück zum Zitat Liu H, Wasserug R, Kawachi K (1997) The three-dimensional hydrodynamics of tadpole locomotion. J Exp Biol 200:2807–2819CrossRef Liu H, Wasserug R, Kawachi K (1997) The three-dimensional hydrodynamics of tadpole locomotion. J Exp Biol 200:2807–2819CrossRef
38.
Zurück zum Zitat Chen W, Wu Z, Liu J, Shi S, Zhou Y (2011) Numerical simulation of batoid locomotion. J Hydrodyn 23(5):594–600CrossRef Chen W, Wu Z, Liu J, Shi S, Zhou Y (2011) Numerical simulation of batoid locomotion. J Hydrodyn 23(5):594–600CrossRef
39.
Zurück zum Zitat Safari H, Abbaspour M, Darbandi M (2021) Numerical study to evaluate the important parameters affecting the hydrodynamic performance of manta ray’s in flapping motion. Appl Ocean Res 109:102559CrossRef Safari H, Abbaspour M, Darbandi M (2021) Numerical study to evaluate the important parameters affecting the hydrodynamic performance of manta ray’s in flapping motion. Appl Ocean Res 109:102559CrossRef
40.
Zurück zum Zitat Fouladi K, Coughlin DJ (2021) CFD investigation of trout-like configuration holding station near an obstruction. Fluids 6(204) Fouladi K, Coughlin DJ (2021) CFD investigation of trout-like configuration holding station near an obstruction. Fluids 6(204)
41.
Zurück zum Zitat Doi K, Takagi T, Mitsunaga Y, Torisawa S (2020) Hydrodynamical effect of parallelly swimming fish using computational fluid dynamics method. PLoS One 16(5):e0250837CrossRef Doi K, Takagi T, Mitsunaga Y, Torisawa S (2020) Hydrodynamical effect of parallelly swimming fish using computational fluid dynamics method. PLoS One 16(5):e0250837CrossRef
42.
Zurück zum Zitat Li N, Liu H, Su Y (2017) Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion. PLoS One 12(3):e0174740MathSciNetCrossRef Li N, Liu H, Su Y (2017) Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion. PLoS One 12(3):e0174740MathSciNetCrossRef
43.
Zurück zum Zitat Li R, Xiao Q, Liu Y, Liu L, Liu H (2020) Computational investigation on a self-propelled pufferfish driven by multiple fins. Ocean Eng 197:106908CrossRef Li R, Xiao Q, Liu Y, Liu L, Liu H (2020) Computational investigation on a self-propelled pufferfish driven by multiple fins. Ocean Eng 197:106908CrossRef
44.
Zurück zum Zitat Gilmanov A, Sotiropoulos F (2005) A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies. J Comput Phys 207:457–492MATHCrossRef Gilmanov A, Sotiropoulos F (2005) A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies. J Comput Phys 207:457–492MATHCrossRef
45.
Zurück zum Zitat Borazjani I, Sotiropoulos F (2008) Numerical investigation of the hydrodynamics of carangiform swimming in the rtansitional and inertial flow regimes. J Exp Biol 211:1541–1558CrossRef Borazjani I, Sotiropoulos F (2008) Numerical investigation of the hydrodynamics of carangiform swimming in the rtansitional and inertial flow regimes. J Exp Biol 211:1541–1558CrossRef
46.
Zurück zum Zitat Borazjani I, Sotiropoulos F (2010) On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J Exp Biol 23(89–107) Borazjani I, Sotiropoulos F (2010) On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J Exp Biol 23(89–107)
47.
Zurück zum Zitat Borazjani I, Daghooghi M (2012) The fish tail motion forms an attached leading edge vortex. Proc R Soc B 280:20122071CrossRef Borazjani I, Daghooghi M (2012) The fish tail motion forms an attached leading edge vortex. Proc R Soc B 280:20122071CrossRef
48.
Zurück zum Zitat Dong H, Bozkurttas M, Mittal R, Madden P, Lauder GV (2010) Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J Fluid Mech 645:345–373MATHCrossRef Dong H, Bozkurttas M, Mittal R, Madden P, Lauder GV (2010) Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J Fluid Mech 645:345–373MATHCrossRef
49.
Zurück zum Zitat Maertens AP, Triantafyllou MS, Yue DKP (2015) Efficiency of fish propulsion. Bioinspiration & Biomim 10:046013CrossRef Maertens AP, Triantafyllou MS, Yue DKP (2015) Efficiency of fish propulsion. Bioinspiration & Biomim 10:046013CrossRef
50.
Zurück zum Zitat Bottom RG, Borazjani I, Blevins EL, Lauder GV (2016) Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex. J Fluid Mech 788:407–443MathSciNetMATHCrossRef Bottom RG, Borazjani I, Blevins EL, Lauder GV (2016) Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex. J Fluid Mech 788:407–443MathSciNetMATHCrossRef
51.
Zurück zum Zitat Cui Z, Yang Z, Jiang H (2020) Sharp interface immersed boundary method for simulating three-dimensional swimming fish. Eng Appl Comput Fluid Mech 14(1):534–544 Cui Z, Yang Z, Jiang H (2020) Sharp interface immersed boundary method for simulating three-dimensional swimming fish. Eng Appl Comput Fluid Mech 14(1):534–544
52.
Zurück zum Zitat Thekkethil N, Sharma A, Agrawal A (2020) Three-dimensional biological hydrodynamics study on various types of batoid fishlike locomotion. Phys Rev Fluids 5:023101CrossRef Thekkethil N, Sharma A, Agrawal A (2020) Three-dimensional biological hydrodynamics study on various types of batoid fishlike locomotion. Phys Rev Fluids 5:023101CrossRef
53.
Zurück zum Zitat Gupta S, Agrawal A, Hourigan K, Thompson MC, Sharma A (2022) Anguilliform and carangiform fish-inspired hydrodynamic study for an undulating hydrofoil: effect of shape and adaptive kinematics. Phys Rev Fluids 7(9):094102CrossRef Gupta S, Agrawal A, Hourigan K, Thompson MC, Sharma A (2022) Anguilliform and carangiform fish-inspired hydrodynamic study for an undulating hydrofoil: effect of shape and adaptive kinematics. Phys Rev Fluids 7(9):094102CrossRef
54.
Zurück zum Zitat van Noordt W, Ganju S, Brehm C (2022) An immersed boundary method for wall-modeled large-eddy simulation of turbulent high-mach-number flows. J Comput Phys 111583 van Noordt W, Ganju S, Brehm C (2022) An immersed boundary method for wall-modeled large-eddy simulation of turbulent high-mach-number flows. J Comput Phys 111583
55.
Zurück zum Zitat Vreman AW (2020) Immersed boundary and overset grid methods assessed for stokes flow due to an oscillating sphere. J Comput Phys 423:109783MathSciNetMATHCrossRef Vreman AW (2020) Immersed boundary and overset grid methods assessed for stokes flow due to an oscillating sphere. J Comput Phys 423:109783MathSciNetMATHCrossRef
56.
Zurück zum Zitat Li G, Muller UK, van Leeuwen JL, Liu H (2012) Body dynamics and hydrodynamics of swiming fish larvae: a computational study. J Exp Biol 215:4015–4033CrossRef Li G, Muller UK, van Leeuwen JL, Liu H (2012) Body dynamics and hydrodynamics of swiming fish larvae: a computational study. J Exp Biol 215:4015–4033CrossRef
57.
Zurück zum Zitat Li G, Kolomenskiy D, Thiria B, Godoy-Diana R (2019) On the interference of vorticity and pressure fields of a minimal fish school. J Aero Aqua Bio-Mech 8(1):27–33CrossRef Li G, Kolomenskiy D, Thiria B, Godoy-Diana R (2019) On the interference of vorticity and pressure fields of a minimal fish school. J Aero Aqua Bio-Mech 8(1):27–33CrossRef
58.
Zurück zum Zitat Liu J, Yu F, He B, Yan T (2022) Hydrodynamic numerical simulation and prediction of bionic fish based computational fluid dynamics and multilayered perceptron. Eng Appl Comput Fluid Mech 16(1):858–878 Liu J, Yu F, He B, Yan T (2022) Hydrodynamic numerical simulation and prediction of bionic fish based computational fluid dynamics and multilayered perceptron. Eng Appl Comput Fluid Mech 16(1):858–878
59.
Zurück zum Zitat Xu Y, Wan D (2022) Numerical simulation of fish swimming with rigid pectoral fins. J Hydrodyn 24(2) Xu Y, Wan D (2022) Numerical simulation of fish swimming with rigid pectoral fins. J Hydrodyn 24(2)
60.
Zurück zum Zitat Yan L, Chang X, Tian R, Wang N, Zhang L, Liu W (2020) A numerical simulation method for bionic fish self-propelled swimming under control based on deep reinforcement learning. Fluid Mech 234(17):3397–3415 Yan L, Chang X, Tian R, Wang N, Zhang L, Liu W (2020) A numerical simulation method for bionic fish self-propelled swimming under control based on deep reinforcement learning. Fluid Mech 234(17):3397–3415
61.
Zurück zum Zitat Sumikawa H, Naraoka Y, Fukue T, Miyoshi T (2022) Changes in rays’ swimming stability due to the phase difference between left and right pectoral fin movements. Nat Sci Rep 12:2362 Sumikawa H, Naraoka Y, Fukue T, Miyoshi T (2022) Changes in rays’ swimming stability due to the phase difference between left and right pectoral fin movements. Nat Sci Rep 12:2362
Metadaten
Titel
Introduction and State of the Art
verfasst von
Giovanni Bianchi
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-30548-1_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.