Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Introduction, Recent Results, and Challenges in Wireless Information and Power Transfer

verfasst von : Dushantha Nalin K. Jayakody, Shree K. Sharma, Symeon Chatzinotas

Erschienen in: Wireless Information and Power Transfer: A New Paradigm for Green Communications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The first effort to transmit energy wirelessly with the purpose of doing so is attributed to N. Tesla at his laboratory in Long Island, New York, USA. Then, about 30 years after J. Maxwell had demonstrated the potentials in 1873 the conveyance of energy trough vacuum via electromagnetic waves, corroborated in principle 15 years later by H. Hertz. The current expansion of the WPT via radio frequency beam owes to William Brown in 1960s using microwave technology developed during the World War II. Wireless Power Transfer (WPT) is gaining traction in many application domains because it offers the possibility of batteryless operation and wireless charging. Although wireless charging frequently gets the attention of the media, batteryless operation can bring major benefits for the environment and the massive deployment of wireless sensors in the Internet of Things (IoT). The salient feature of harvesting energy from electromagnetic radiation allows to gather energy even from ambient sources. Interference exploitation can also form a useful recourse at the expense of quality of experience. This chapter provides an overview of simultaneous wireless information and power transfer (SWIPT) systems with a particular focus on emerging techniques associated with SWIPT. We explore various key design issues in the development of SWIPT assisted emerging wireless communications technologies including the ones related to 5G communications. Chapter also provides interesting future research ideas and directions for interesting researchers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat A. Fehske, G. Fettweis, J. Malmodin, G. Biczók, The global footprint of mobile communications: The ecological and economic perspective. IEEE Commun. Mag. 49(8), 55–62 (2011)CrossRef A. Fehske, G. Fettweis, J. Malmodin, G. Biczók, The global footprint of mobile communications: The ecological and economic perspective. IEEE Commun. Mag. 49(8), 55–62 (2011)CrossRef
3.
Zurück zum Zitat N. Shinohara, Power without wires. IEEE Microw. Mag. 12(7), S64–S73 (2011)CrossRef N. Shinohara, Power without wires. IEEE Microw. Mag. 12(7), S64–S73 (2011)CrossRef
4.
Zurück zum Zitat X. Zhou, R. Zhang, C.K. Ho, Wireless information and power transfer: Architecture design and rate-energy tradeoff, in IEEE Global Communications Conference, 2012, pp. 3982–3987 X. Zhou, R. Zhang, C.K. Ho, Wireless information and power transfer: Architecture design and rate-energy tradeoff, in IEEE Global Communications Conference, 2012, pp. 3982–3987
5.
Zurück zum Zitat J.R. Smith, Wirelessly Powered Sensor Networks and Computational RFID (Springer, New York, 2013)CrossRef J.R. Smith, Wirelessly Powered Sensor Networks and Computational RFID (Springer, New York, 2013)CrossRef
6.
Zurück zum Zitat K. Huang, V. Lau, Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Trans. Wirel. Commun. 13(2), 902–912 (2014)CrossRef K. Huang, V. Lau, Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Trans. Wirel. Commun. 13(2), 902–912 (2014)CrossRef
7.
Zurück zum Zitat P. Nintanavongsa, M. Naderi, K. Chowdhury, Medium access control protocol design for sensors powered by wireless energy transfer, in Proceedings IEEE INFOCOM, 2013 P. Nintanavongsa, M. Naderi, K. Chowdhury, Medium access control protocol design for sensors powered by wireless energy transfer, in Proceedings IEEE INFOCOM, 2013
8.
Zurück zum Zitat D.W.K. Ng, E.S. Lo, R. Schober, Wireless information and power transfer: Energy efficiency optimization in OFDMA systems. IEEE Trans. Wirel. Commun. 12(12), 6352–6370 (2013)CrossRef D.W.K. Ng, E.S. Lo, R. Schober, Wireless information and power transfer: Energy efficiency optimization in OFDMA systems. IEEE Trans. Wirel. Commun. 12(12), 6352–6370 (2013)CrossRef
9.
Zurück zum Zitat Z. Ding, S.M. Perlaza, I. Esnaola, H.V. Poor, Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans. Wirel. Commun. 13(2), 846–860 (2014)CrossRef Z. Ding, S.M. Perlaza, I. Esnaola, H.V. Poor, Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans. Wirel. Commun. 13(2), 846–860 (2014)CrossRef
10.
Zurück zum Zitat I. Krikidis, Simultaneous information and energy transfer in large-scale networks with/without relaying. IEEE Trans. Commun. 62(3), 900–912 (2014)CrossRef I. Krikidis, Simultaneous information and energy transfer in large-scale networks with/without relaying. IEEE Trans. Commun. 62(3), 900–912 (2014)CrossRef
11.
Zurück zum Zitat H. Nishimoto, Y. Kawahara, T. Asami, Prototype implementation of ambient RF energy harvesting wireless sensor networks, in 2010 IEEE Sensors, Kona, HI, 2010, pp. 1282–1287 H. Nishimoto, Y. Kawahara, T. Asami, Prototype implementation of ambient RF energy harvesting wireless sensor networks, in 2010 IEEE Sensors, Kona, HI, 2010, pp. 1282–1287
12.
Zurück zum Zitat X. Zhang, H. Jiang, L. Zhang, C. Zhang, Z. Wang, X. Chen, An energy-efficient ASIC for wireless body sensor networks in medical applications. IEEE Trans. Biomed. Circ. Syst 4(1), 11–18 (2010)CrossRef X. Zhang, H. Jiang, L. Zhang, C. Zhang, Z. Wang, X. Chen, An energy-efficient ASIC for wireless body sensor networks in medical applications. IEEE Trans. Biomed. Circ. Syst 4(1), 11–18 (2010)CrossRef
13.
Zurück zum Zitat R.C. Johnson, H.A. Ecker, J.S. Hollis, Determination of far-field antenna patterns from near-field measurements. Proc. IEEE 61(12), 1668–1694 (1973)CrossRef R.C. Johnson, H.A. Ecker, J.S. Hollis, Determination of far-field antenna patterns from near-field measurements. Proc. IEEE 61(12), 1668–1694 (1973)CrossRef
14.
Zurück zum Zitat R. Zhang, C.K. Ho, MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun. 12(5), 1989–2001 (2013)CrossRef R. Zhang, C.K. Ho, MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun. 12(5), 1989–2001 (2013)CrossRef
15.
Zurück zum Zitat D. Ng, E. Lo, R. Schober, Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Trans. Wirel. Commun. 13(8), 4599–4615 (2014)CrossRef D. Ng, E. Lo, R. Schober, Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Trans. Wirel. Commun. 13(8), 4599–4615 (2014)CrossRef
16.
Zurück zum Zitat N.M.B. Medepally, Voluntary energy harvesting relays and selection in cooperative wireless networks. IEEE Trans. Wirel. Commun. 9, 3543–3553 (2010)CrossRef N.M.B. Medepally, Voluntary energy harvesting relays and selection in cooperative wireless networks. IEEE Trans. Wirel. Commun. 9, 3543–3553 (2010)CrossRef
17.
Zurück zum Zitat X. Lu, P. Wang, D. Niyato, D.I. Kim, Z. Han, Wireless networks with RF energy harvesting: A contemporary survey. IEEE Commun. Surv. Tutor. 17(2), 757–789 (2015)CrossRef X. Lu, P. Wang, D. Niyato, D.I. Kim, Z. Han, Wireless networks with RF energy harvesting: A contemporary survey. IEEE Commun. Surv. Tutor. 17(2), 757–789 (2015)CrossRef
18.
Zurück zum Zitat X. Zhou, R. Zhang, C.K. Ho, Wireless information and power transfer: Architecture design and rate-energy tradeoff, in IEEE Transaction on Communications, 2008, pp. 4754–4767 X. Zhou, R. Zhang, C.K. Ho, Wireless information and power transfer: Architecture design and rate-energy tradeoff, in IEEE Transaction on Communications, 2008, pp. 4754–4767
19.
Zurück zum Zitat A.A. Nasir, X. Zhou, S. Durrani, R.A. Kennedy, Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 12(7), 3622–3636 (2013)CrossRef A.A. Nasir, X. Zhou, S. Durrani, R.A. Kennedy, Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 12(7), 3622–3636 (2013)CrossRef
20.
Zurück zum Zitat H. Chen, Y. Li, J.L. Rebelatto, B.F. Uchoa-Filho, B. Vucetic, Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Trans. Signal Process. 63(7), 1700–1711 (2015)MathSciNetCrossRef H. Chen, Y. Li, J.L. Rebelatto, B.F. Uchoa-Filho, B. Vucetic, Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Trans. Signal Process. 63(7), 1700–1711 (2015)MathSciNetCrossRef
21.
Zurück zum Zitat Y. Liu, Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Commun. Lett. 20, 784–787 (2016)CrossRef Y. Liu, Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Commun. Lett. 20, 784–787 (2016)CrossRef
22.
Zurück zum Zitat M. Zhang, Y. Liu, R. Zhang, Artificial noise aided secrecy information and power transfer in OFDMA systems. IEEE Trans. Wirel. Commun. 15, 3085–3096 (2016)CrossRef M. Zhang, Y. Liu, R. Zhang, Artificial noise aided secrecy information and power transfer in OFDMA systems. IEEE Trans. Wirel. Commun. 15, 3085–3096 (2016)CrossRef
23.
Zurück zum Zitat G. Yang, C.K. Ho, R. Zhang, Y.L. Guan, Throughput optimization for massive mimo systems powered by wireless energy transfer. arXiv 1403, 3991 (2014) G. Yang, C.K. Ho, R. Zhang, Y.L. Guan, Throughput optimization for massive mimo systems powered by wireless energy transfer. arXiv 1403, 3991 (2014)
24.
Zurück zum Zitat I. Krikidis, G. Zhang, B. Ottersten, Harvest-use cooperative networks with half/full-duplex relaying, in Proceedings of IEEE Wireless Communications and Networking Conference, 2013, pp. 4256–4260 I. Krikidis, G. Zhang, B. Ottersten, Harvest-use cooperative networks with half/full-duplex relaying, in Proceedings of IEEE Wireless Communications and Networking Conference, 2013, pp. 4256–4260
25.
Zurück zum Zitat A.A. Nasir, X. Zhou, S. Durrani, R.A. Kennedy, Relaying protocols for wireless energy harvesting and information processing, in IEEE Transaction on Wireless Communication, 2013, pp. 3622—3636 A.A. Nasir, X. Zhou, S. Durrani, R.A. Kennedy, Relaying protocols for wireless energy harvesting and information processing, in IEEE Transaction on Wireless Communication, 2013, pp. 3622—3636
26.
Zurück zum Zitat H. Stockman, Communication by means of reflected power. Proc. IRE 36(10), 1196–1204 (1948)CrossRef H. Stockman, Communication by means of reflected power. Proc. IRE 36(10), 1196–1204 (1948)CrossRef
27.
Zurück zum Zitat N. Fasarakis-Hilliard, P.N. Alevizos, A. Bletsas, “Coherent detection and channel coding for bistatic scatter radio sensor networking, in 2015 IEEE International Conference on Communications (ICC), London, 2015, pp. 4895–4900 N. Fasarakis-Hilliard, P.N. Alevizos, A. Bletsas, “Coherent detection and channel coding for bistatic scatter radio sensor networking, in 2015 IEEE International Conference on Communications (ICC), London, 2015, pp. 4895–4900
28.
Zurück zum Zitat V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, J.R. Smith, Ambient backscatter: Wireless communication out of thin air, in Proceedings ACM SIGCOMM, 2013 V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, J.R. Smith, Ambient backscatter: Wireless communication out of thin air, in Proceedings ACM SIGCOMM, 2013
29.
Zurück zum Zitat G. Vannucci, A. Bletsas, D. Leigh, A software-defined radio system for backscatter sensor networks. IEEE Trans. Wirel. Commun. 7(6), 2170–2179 (2008)CrossRef G. Vannucci, A. Bletsas, D. Leigh, A software-defined radio system for backscatter sensor networks. IEEE Trans. Wirel. Commun. 7(6), 2170–2179 (2008)CrossRef
30.
Zurück zum Zitat C. Konstantopoulos, E. Koutroulis, N. Mitianoudis, A. Bletsas, Converting a plant to a battery and wireless sensor with scatter radio and ultra-low cost. IEEE Trans. Instrum. Meas. 65(2), 388–398 (Feb. 2016)CrossRef C. Konstantopoulos, E. Koutroulis, N. Mitianoudis, A. Bletsas, Converting a plant to a battery and wireless sensor with scatter radio and ultra-low cost. IEEE Trans. Instrum. Meas. 65(2), 388–398 (Feb. 2016)CrossRef
31.
Zurück zum Zitat M. Alodeh, S. Chatzinotas, B. Ottersten, in 2015 IEEE Global Communications Conference (GLOBEM), Constructive Interference through Symbol Level Precoding for Multi-Level Modulation, 2016, pp. 1–6 M. Alodeh, S. Chatzinotas, B. Ottersten, in 2015 IEEE Global Communications Conference (GLOBEM), Constructive Interference through Symbol Level Precoding for Multi-Level Modulation, 2016, pp. 1–6
32.
Zurück zum Zitat M. Alodeh, S. Chatzinotas, B. Ottersten, Constructive multiuser interference in symbol level precoding for the MISO downlink channel. IEEE Trans. Signal Process. 63(9), 2239–2252 (2015)MathSciNetCrossRef M. Alodeh, S. Chatzinotas, B. Ottersten, Constructive multiuser interference in symbol level precoding for the MISO downlink channel. IEEE Trans. Signal Process. 63(9), 2239–2252 (2015)MathSciNetCrossRef
33.
Zurück zum Zitat D. Kwon, H.S. Kang, D.K. Kim, Robust interference exploitation-based precoding scheme with quantized CSIT. IEEE Commun. Lett. 20(4), 780–783 (2016)CrossRef D. Kwon, H.S. Kang, D.K. Kim, Robust interference exploitation-based precoding scheme with quantized CSIT. IEEE Commun. Lett. 20(4), 780–783 (2016)CrossRef
34.
Zurück zum Zitat G. Pan, C. Tang, T. Li, Y. Chen, Secrecy performance analysis for SIMO simultaneous wireless information and power transfer systems. IEEE Trans. Commun. 63(9), 3423–3433 (2015)CrossRef G. Pan, C. Tang, T. Li, Y. Chen, Secrecy performance analysis for SIMO simultaneous wireless information and power transfer systems. IEEE Trans. Commun. 63(9), 3423–3433 (2015)CrossRef
35.
Zurück zum Zitat G. Pan, H. Lei, Y. Deng, L. Fan, J. Yang, Y. Chen, Z. Ding, On secrecy performance of MISO SWIPT systems with TAS and imperfect CSI. IEEE Trans. Commun. 64, 3831–3843 (2016)CrossRef G. Pan, H. Lei, Y. Deng, L. Fan, J. Yang, Y. Chen, Z. Ding, On secrecy performance of MISO SWIPT systems with TAS and imperfect CSI. IEEE Trans. Commun. 64, 3831–3843 (2016)CrossRef
36.
Zurück zum Zitat L. Wang, M. Elkashlan, R.W. Heath, M. Di Renzo, K.K. Wong, Millimeter wave power transfer and information transmission, in 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, 2015 L. Wang, M. Elkashlan, R.W. Heath, M. Di Renzo, K.K. Wong, Millimeter wave power transfer and information transmission, in 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, 2015
37.
Zurück zum Zitat H. Xing, K. Wong, A. Nallanathan, R. Zhang, Wireless powered cooperative jamming for secrecy multi-AF relaying networks. IEEE Trans on Wireless Commun 1(4), 372–375 (2012)CrossRef H. Xing, K. Wong, A. Nallanathan, R. Zhang, Wireless powered cooperative jamming for secrecy multi-AF relaying networks. IEEE Trans on Wireless Commun 1(4), 372–375 (2012)CrossRef
38.
Zurück zum Zitat L. Dong, Z. Han, A. Petropulu, H. Poor, Improving wireless physical layer security via cooperating relays. IEEE Trans. Signal Process. 58(3), 1875–1888 (2010)MathSciNetCrossRef L. Dong, Z. Han, A. Petropulu, H. Poor, Improving wireless physical layer security via cooperating relays. IEEE Trans. Signal Process. 58(3), 1875–1888 (2010)MathSciNetCrossRef
39.
Zurück zum Zitat Y. Yang, Q. Li, W.-K. Ma, J. Ge, P.C. Ching, Cooperative secure beamforming for AF relay networks with multiple eavesdroppers. IEEE Signal. Process. Lett. 20(1), 35–38 (2013)CrossRef Y. Yang, Q. Li, W.-K. Ma, J. Ge, P.C. Ching, Cooperative secure beamforming for AF relay networks with multiple eavesdroppers. IEEE Signal. Process. Lett. 20(1), 35–38 (2013)CrossRef
40.
Zurück zum Zitat J. Li, A.P. Petropulu, S. Weber, On cooperative relaying schemes for wireless physical layer security. IEEE Trans. Signal Process. 59(10), 4985–4997 (2011)MathSciNetCrossRef J. Li, A.P. Petropulu, S. Weber, On cooperative relaying schemes for wireless physical layer security. IEEE Trans. Signal Process. 59(10), 4985–4997 (2011)MathSciNetCrossRef
41.
Zurück zum Zitat L. Liu, R. Zhang, K.C. Chua, Secrecy wireless information and power transfer with MISO beamforming. IEEE Trans. Signal. Proc. 62(7), 1850–1863 (2014)MathSciNetCrossRef L. Liu, R. Zhang, K.C. Chua, Secrecy wireless information and power transfer with MISO beamforming. IEEE Trans. Signal. Proc. 62(7), 1850–1863 (2014)MathSciNetCrossRef
42.
Zurück zum Zitat H. Xing, L. Liu, R. Zhang, Secrecy wireless information and power transfer in fading wiretap channel, in Proceedings in IEEE International Conference on Communication (ICC), June 2014, pp. 5402–5407 H. Xing, L. Liu, R. Zhang, Secrecy wireless information and power transfer in fading wiretap channel, in Proceedings in IEEE International Conference on Communication (ICC), June 2014, pp. 5402–5407
43.
Zurück zum Zitat M. Zhang, Y. Liu, Energy harvesting for physical-layer security in OFDMA networks. IEEE Trans Info Forensics Sec 11(1), 154–162 (2015)CrossRef M. Zhang, Y. Liu, Energy harvesting for physical-layer security in OFDMA networks. IEEE Trans Info Forensics Sec 11(1), 154–162 (2015)CrossRef
44.
Zurück zum Zitat T.A. Khan, A. Alkhateeb, R.W. Heath, Millimeter wave energy harvesting. IEEE Trans. Wirel. Commun. 15(9), 6048–6062 (2016)CrossRef T.A. Khan, A. Alkhateeb, R.W. Heath, Millimeter wave energy harvesting. IEEE Trans. Wirel. Commun. 15(9), 6048–6062 (2016)CrossRef
45.
Zurück zum Zitat S. Ladan, A.B. Guntupalli, K. Wu, A high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmission. IEEE Trans. Circuits. Syst. Regular Papers 61(12), 3358–3366 (2014)CrossRef S. Ladan, A.B. Guntupalli, K. Wu, A high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmission. IEEE Trans. Circuits. Syst. Regular Papers 61(12), 3358–3366 (2014)CrossRef
46.
Zurück zum Zitat M. Peer, N. Jain, V.A. Bohara, A hybrid spectrum sharing protocol for energy harvesting wireless sensor nodes, in IEEE 17th international workshop on signal processing advances in wireless communications (SPAWC), 2016, pp. 1–6 M. Peer, N. Jain, V.A. Bohara, A hybrid spectrum sharing protocol for energy harvesting wireless sensor nodes, in IEEE 17th international workshop on signal processing advances in wireless communications (SPAWC), 2016, pp. 1–6
47.
Zurück zum Zitat V. Gungor, G. Hancke, Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Trans. Ind. Electron. 56(10), 4258–4265 (2009)CrossRef V. Gungor, G. Hancke, Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Trans. Ind. Electron. 56(10), 4258–4265 (2009)CrossRef
48.
Zurück zum Zitat I.F. Akyildiz, T. Melodia, K. Chowdhury, A survey on wireless multimedia sensor networks. Comput. Netw. 51(4), 921–960 (2007)CrossRef I.F. Akyildiz, T. Melodia, K. Chowdhury, A survey on wireless multimedia sensor networks. Comput. Netw. 51(4), 921–960 (2007)CrossRef
49.
Zurück zum Zitat B. Tong, Z. Li, G. Wang, W. Zhang, How wireless power charging technology affects sensor network deployment and routing, in Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS), Genoa, Italy, 2010, pp. 438–447 B. Tong, Z. Li, G. Wang, W. Zhang, How wireless power charging technology affects sensor network deployment and routing, in Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS), Genoa, Italy, 2010, pp. 438–447
50.
Zurück zum Zitat H. Nishimoto, Y. Kawahara, T. Asami, Prototype implementation of ambient RF energy harvesting wireless sensor networks, in Proceedings of IEEE Sensors, Kona, HI, 2010 H. Nishimoto, Y. Kawahara, T. Asami, Prototype implementation of ambient RF energy harvesting wireless sensor networks, in Proceedings of IEEE Sensors, Kona, HI, 2010
51.
Zurück zum Zitat Z. Popovic, E.A. Falkenstein, D. Costinett, R. Zane, Low power far-field wireless powering for wireless sensors. Proc. IEEE 101(6), 1397–1409 (2013)CrossRef Z. Popovic, E.A. Falkenstein, D. Costinett, R. Zane, Low power far-field wireless powering for wireless sensors. Proc. IEEE 101(6), 1397–1409 (2013)CrossRef
52.
Zurück zum Zitat S. Gua, C. Wang, Y. Yang, Mobile data gathering with wireless energy replenishment in rechargeable sensor networks, in International Conference on Computer Communications, 2013, pp. 1932–1940 S. Gua, C. Wang, Y. Yang, Mobile data gathering with wireless energy replenishment in rechargeable sensor networks, in International Conference on Computer Communications, 2013, pp. 1932–1940
53.
Zurück zum Zitat S. Gua, C. Wang, Y. Yang, Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks. IEEE Trans. Mob. Comput. 13(12), 2836–2852 (2014)CrossRef S. Gua, C. Wang, Y. Yang, Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks. IEEE Trans. Mob. Comput. 13(12), 2836–2852 (2014)CrossRef
54.
Zurück zum Zitat C. Wang, J. Li, F. Ye, Y. Yang, Netwrap: An ndn based real-time wireless recharging framework for wireless sensor networks. IEEE Trans. Mob. Comput. 13(6), 1283–1297 (2014)CrossRef C. Wang, J. Li, F. Ye, Y. Yang, Netwrap: An ndn based real-time wireless recharging framework for wireless sensor networks. IEEE Trans. Mob. Comput. 13(6), 1283–1297 (2014)CrossRef
55.
Zurück zum Zitat L. Xie, Y. Shi, Y.T. Hou, H.D. Sherali, Making sensor networks immortal: An energy renewal approach with wireless power transfer. IEEE ACM Trans. Networking 20(6), 1748–1761 (2012)CrossRef L. Xie, Y. Shi, Y.T. Hou, H.D. Sherali, Making sensor networks immortal: An energy renewal approach with wireless power transfer. IEEE ACM Trans. Networking 20(6), 1748–1761 (2012)CrossRef
56.
57.
Zurück zum Zitat E.B. Johnson, C. Detweiler, Charge selection algorithms for maximizing sensor network life with UAV-based limited wireless recharging, in 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, VIC, 2013, pp. 159–164 E.B. Johnson, C. Detweiler, Charge selection algorithms for maximizing sensor network life with UAV-based limited wireless recharging, in 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, VIC, 2013, pp. 159–164
58.
Zurück zum Zitat M.Y. Naderi, K.R. Chowdhury, S. Basagni, W. Heinzelman, S. De, S. Jana, Experimental study of concurrent data and wireless energy transfer for sensor networks, in 2014 IEEE Global Communications Conference, Austin, TX, 2014, pp. 2543–2549 M.Y. Naderi, K.R. Chowdhury, S. Basagni, W. Heinzelman, S. De, S. Jana, Experimental study of concurrent data and wireless energy transfer for sensor networks, in 2014 IEEE Global Communications Conference, Austin, TX, 2014, pp. 2543–2549
59.
Zurück zum Zitat M.Y. Naderi, K.R. Chowdhury, S. Basagni, W. Heinzelman, S. De, S. Jana, Experimental study of concurrent data and wireless energy transfer for sensor networks, in 2014 IEEE Global Communications Conference, Austin, TX, 2014, pp. 2543–2549 M.Y. Naderi, K.R. Chowdhury, S. Basagni, W. Heinzelman, S. De, S. Jana, Experimental study of concurrent data and wireless energy transfer for sensor networks, in 2014 IEEE Global Communications Conference, Austin, TX, 2014, pp. 2543–2549
60.
Zurück zum Zitat D. Niyato, D.I. Kim, P. Wang, L. Song, A novel caching mechanism for Internet of Things (IoT) sensing service with energy harvesting, in 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, 2016, pp. 1–6 D. Niyato, D.I. Kim, P. Wang, L. Song, A novel caching mechanism for Internet of Things (IoT) sensing service with energy harvesting, in 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, 2016, pp. 1–6
61.
Zurück zum Zitat H. Kawabata, K. Ishibashi, S. Vuppala, G. Abreu, Robust relay selection for large-scale energy harvesting IoT networks. IEEE Int. Things J. (99), 1 H. Kawabata, K. Ishibashi, S. Vuppala, G. Abreu, Robust relay selection for large-scale energy harvesting IoT networks. IEEE Int. Things J. (99), 1
62.
Zurück zum Zitat J. Rinne, J. Keskinen, P.R. Berger, D. Lupo, M. Valkama, Feasibility and fundamental limits of energy-harvesting based M2M communications, in 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016, pp. 1–6 J. Rinne, J. Keskinen, P.R. Berger, D. Lupo, M. Valkama, Feasibility and fundamental limits of energy-harvesting based M2M communications, in 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016, pp. 1–6
63.
Zurück zum Zitat H.G. Lee, N. Chang, Powering the IoT: Storage-less and converter-less energy harvesting, in 20th Asia and South Pacific Design Automation Conference, Chiba, 2015, pp. 124–129 H.G. Lee, N. Chang, Powering the IoT: Storage-less and converter-less energy harvesting, in 20th Asia and South Pacific Design Automation Conference, Chiba, 2015, pp. 124–129
64.
Zurück zum Zitat P. Grover, A. Sahai, Shannon meets Tesla: Wireless information and power transfer, in 2010 IEEE International Symposium on Information Theory, 2010, pp. 2363–2367 P. Grover, A. Sahai, Shannon meets Tesla: Wireless information and power transfer, in 2010 IEEE International Symposium on Information Theory, 2010, pp. 2363–2367
65.
Zurück zum Zitat K. Huang, E. Larsson, Simultaneous information and power transfer for broadband wireless systems. IEEE Trans. Signal Process. 61(23), 5972–5986 (2013)MathSciNetCrossRef K. Huang, E. Larsson, Simultaneous information and power transfer for broadband wireless systems. IEEE Trans. Signal Process. 61(23), 5972–5986 (2013)MathSciNetCrossRef
66.
Zurück zum Zitat D.W.K. Ng, E.S. Lo, R. Schober, Wireless information and power transfer: Energy efficiency optimization in OFDMA systems. IEEE Trans. Wirel. Commun. 12(12), 6352–6370 (December 2013)CrossRef D.W.K. Ng, E.S. Lo, R. Schober, Wireless information and power transfer: Energy efficiency optimization in OFDMA systems. IEEE Trans. Wirel. Commun. 12(12), 6352–6370 (December 2013)CrossRef
67.
Zurück zum Zitat X. Zhou, R. Zhang, C.K. Ho, Wireless information and power transfer in multiuser OFDM systems. IEEE Trans. Wirel. Commun. 13(4), 2282–2294 (2014)CrossRef X. Zhou, R. Zhang, C.K. Ho, Wireless information and power transfer in multiuser OFDM systems. IEEE Trans. Wirel. Commun. 13(4), 2282–2294 (2014)CrossRef
68.
Zurück zum Zitat P. Grover, A. Sahai, Shannon meets Tesla: wireless information and power transfer, in Proceedings IEEE International Symposium on Information Theory (ISIT), Austin, TX, 2010 P. Grover, A. Sahai, Shannon meets Tesla: wireless information and power transfer, in Proceedings IEEE International Symposium on Information Theory (ISIT), Austin, TX, 2010
69.
Zurück zum Zitat H. Wang, W. Wang, X. Chen, Z. Zhang, Wireless information and energy transfer in interference aware massive MIMO systems, in 2014 IEEE Global Communications Conference, Austin, TX, 2014, pp. 2556–2561 H. Wang, W. Wang, X. Chen, Z. Zhang, Wireless information and energy transfer in interference aware massive MIMO systems, in 2014 IEEE Global Communications Conference, Austin, TX, 2014, pp. 2556–2561
70.
Zurück zum Zitat G. Yang et al., Throughput optimization for massive mimo systems powered by wireless energy transfer. IEEE J. Select. Areas Commun. 33(8), 1640–1650 (2015) G. Yang et al., Throughput optimization for massive mimo systems powered by wireless energy transfer. IEEE J. Select. Areas Commun. 33(8), 1640–1650 (2015)
71.
Zurück zum Zitat J. Li, H. Zhang, D. Li, H. Chen, On the performance of wireless-energy-transfer-enabled massive mimo systems with superimposed pilot-aided channel estimation. IEEE Access 3, 2014–2027 (2015)CrossRef J. Li, H. Zhang, D. Li, H. Chen, On the performance of wireless-energy-transfer-enabled massive mimo systems with superimposed pilot-aided channel estimation. IEEE Access 3, 2014–2027 (2015)CrossRef
72.
Zurück zum Zitat X. Chen, X. Wang, X. Chen, Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming. IEEE Wireless Commun. Lett. 2(6), 667–670 (2013)CrossRef X. Chen, X. Wang, X. Chen, Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming. IEEE Wireless Commun. Lett. 2(6), 667–670 (2013)CrossRef
73.
Zurück zum Zitat G. Aruma Baduge, E. Larsson, V. Poor, Wireless information and power transfer in multi-way massive MIMO relay networks. IEEE Trans. Wirel. Commun. 99, 1 G. Aruma Baduge, E. Larsson, V. Poor, Wireless information and power transfer in multi-way massive MIMO relay networks. IEEE Trans. Wirel. Commun. 99, 1
74.
Zurück zum Zitat R. Blasco-Serrano, R. Thobaben, M. Andersson, V. Rathi, M. Skoglund, Polar codes for cooperative relaying. IEEE Trans. Commun. 60(11), 3263–3273 (2012)CrossRef R. Blasco-Serrano, R. Thobaben, M. Andersson, V. Rathi, M. Skoglund, Polar codes for cooperative relaying. IEEE Trans. Commun. 60(11), 3263–3273 (2012)CrossRef
76.
Zurück zum Zitat H. Kong, C. Xing, S. Zhao, P. Shi, Cooperative coding scheme using polar codes, in Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, Changchun, 2012, pp. 602–606 H. Kong, C. Xing, S. Zhao, P. Shi, Cooperative coding scheme using polar codes, in Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, Changchun, 2012, pp. 602–606
77.
Zurück zum Zitat B. Yuan, K.K. Parhi, Early stopping criteria for energy-efficient low-latency belief-propagation polar code decoders. IEEE Trans. Signal Process. 62(24), 6496–6506 (2014)MathSciNetCrossRef B. Yuan, K.K. Parhi, Early stopping criteria for energy-efficient low-latency belief-propagation polar code decoders. IEEE Trans. Signal Process. 62(24), 6496–6506 (2014)MathSciNetCrossRef
78.
Zurück zum Zitat K. He, J. Sha, L. Li, Z. Wang, Low power decoder design for QC-LDPC codes, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, 2010, pp. 3937–3940 K. He, J. Sha, L. Li, Z. Wang, Low power decoder design for QC-LDPC codes, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, 2010, pp. 3937–3940
79.
Zurück zum Zitat Y.S. Park, D. Blaauw, D. Sylvester, Z. Zhang, Low-power high-throughput LDPC decoder using non-refresh embedded DRAM. IEEE J. Solid State Circuits 49(3), 783–794 (2014)CrossRef Y.S. Park, D. Blaauw, D. Sylvester, Z. Zhang, Low-power high-throughput LDPC decoder using non-refresh embedded DRAM. IEEE J. Solid State Circuits 49(3), 783–794 (2014)CrossRef
80.
Zurück zum Zitat J. Kaza, C. Chakrabarti, Design and implementation of low-energy turbo decoders. IEEE Trans. Very Large Scale Integr. (VLSI) Sys. 12(9), 968–977 (2004)CrossRef J. Kaza, C. Chakrabarti, Design and implementation of low-energy turbo decoders. IEEE Trans. Very Large Scale Integr. (VLSI) Sys. 12(9), 968–977 (2004)CrossRef
81.
Zurück zum Zitat R.G. Maunder, The 5G channel code contenders, AccelerComm White Paper, Aug 2016, 1–13 R.G. Maunder, The 5G channel code contenders, AccelerComm White Paper, Aug 2016, 1–13
82.
Zurück zum Zitat D.K. Nguyen, D.N.K. Jayakody, S. Chatzinotas, J. Thompson, J. Li, Wireless energy harvesting assisted two-way cognitive realy networks: Protocol design and performance analysis, in IEEE Access, 2016 D.K. Nguyen, D.N.K. Jayakody, S. Chatzinotas, J. Thompson, J. Li, Wireless energy harvesting assisted two-way cognitive realy networks: Protocol design and performance analysis, in IEEE Access, 2016
83.
Zurück zum Zitat S. Lee, R. Zhang, K. Huang, Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Trans. Wirel. Commun. 12(9), 4788–4799 (2013)CrossRef S. Lee, R. Zhang, K. Huang, Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Trans. Wirel. Commun. 12(9), 4788–4799 (2013)CrossRef
84.
Zurück zum Zitat V.P. Tuan, S.Q. Nguyen, H.Y. Kong, Performance analysis of energy-harvesting relay selection systems with multiple antennas in presence of transmit hardware impairments, in International Conference SUBMITTED on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, 2016, pp. 126–130 V.P. Tuan, S.Q. Nguyen, H.Y. Kong, Performance analysis of energy-harvesting relay selection systems with multiple antennas in presence of transmit hardware impairments, in International Conference SUBMITTED on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, 2016, pp. 126–130
85.
Zurück zum Zitat S.K. Sharma, T.E. Bogale, S. Chatzinotas, X. Wang, L.B. Le, Physical layer aspects of wireless IoT, in International Symposium on Wireless Communication Systems (ISWCS), Poznan, pp. 304–308, 2016 S.K. Sharma, T.E. Bogale, S. Chatzinotas, X. Wang, L.B. Le, Physical layer aspects of wireless IoT, in International Symposium on Wireless Communication Systems (ISWCS), Poznan, pp. 304–308, 2016
86.
Zurück zum Zitat URSI, White paper on solar power satellite (SPS) systems and report of the ursi inter-commission working group on SPS, in URSI Inter-commission Working Group on SPS, 2007 URSI, White paper on solar power satellite (SPS) systems and report of the ursi inter-commission working group on SPS, in URSI Inter-commission Working Group on SPS, 2007
87.
Zurück zum Zitat K. Miyashiro, F. Inoue, K. Maki, K. Tanaka, S. Sasaki, K. Komurasaki, Sequentially rotated array antenna for wireless power transmission to an MAV (in Japanese), in IEICE Technical Report, WPT2012–30, 2012, pp. 59–61 K. Miyashiro, F. Inoue, K. Maki, K. Tanaka, S. Sasaki, K. Komurasaki, Sequentially rotated array antenna for wireless power transmission to an MAV (in Japanese), in IEICE Technical Report, WPT2012–30, 2012, pp. 59–61
Metadaten
Titel
Introduction, Recent Results, and Challenges in Wireless Information and Power Transfer
verfasst von
Dushantha Nalin K. Jayakody
Shree K. Sharma
Symeon Chatzinotas
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-56669-6_1

Neuer Inhalt