Skip to main content

2007 | OriginalPaper | Buchkapitel

3. Introduction to Carbon Nanotubes

verfasst von : Marc Monthioux, Prof., Philippe Serp, Dr., Emmanuel Flahaut, Dr., Manitra Razafinimanana, Prof., Christophe Laurent, Dr., Alain Peigney, Dr., Wolfgang Bacsa, Prof., Jean-Marc Broto, Prof.

Erschienen in: Springer Handbook of Nanotechnology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon nanotubes are remarkable objects that look set to revolutionize the technological landscape in the near future. Tomorrow's society will be shaped by nanotube applications, just as silicon-based technologies dominate society today. Space elevators tethered by the strongest of cables; hydrogen-powered vehicles; artificial muscles: these are just a few of the technological marvels that may be made possible by the emerging science of carbon nanotubes.
Of course, this prediction is still some way from becoming reality; we are still at the stage of evaluating possibilities and potential. Consider the recent example of fullerenes – molecules closely related to nanotubes. The anticipation surrounding these molecules, first reported in 1985, resulted in the bestowment of a Nobel Prize for their discovery in 1996. However, a decade later, few applications of fullerenes have reached the market, suggesting that similarly enthusiastic predictions about nanotubes should be approached with caution.
There is no denying, however, that the expectations surrounding carbon nanotubes are very high. One of the main reasons for this is the anticipated application of nanotubes to electronics. Many believe that current techniques for miniaturizing microchips are about to reach their lowest limits, and that nanotube-based technologies are the best hope for further miniaturization. Carbon nanotubes may therefore provide the building blocks for further technological progress, enhancing our standards of living.
In this chapter, we first describe the structures, syntheses, growth mechanisms and properties of carbon nanotubes. Then we discuss nanotube-related nano-objects, including those formed by reactions and associations of all-carbon nanotubes with foreign atoms, molecules and compounds, which may provide the path to hybrid materials with even better properties than “pristine” nanotubes. Finally, we will describe the most important current and potential applications of carbon nanotubes, which suggest that the future for the carbon nanotube industry looks very promising indeed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.1.
Zurück zum Zitat L. V. Radushkevich, V. M. Lukyanovich: O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, Zurn. Fisic. Chim. 26, 88–95 (1952) L. V. Radushkevich, V. M. Lukyanovich: O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, Zurn. Fisic. Chim. 26, 88–95 (1952)
3.2.
Zurück zum Zitat T. V. Hughes, C. R. Chambers: US Patent 405, 480 (1889) T. V. Hughes, C. R. Chambers: US Patent 405, 480 (1889)
3.3.
Zurück zum Zitat P. Schützenberger, L. Schützenberger: Sur quelques faits relatifs à l'histoire du carbone, C. R. Acad. Sci. Paris 111, 774–778 (1890) P. Schützenberger, L. Schützenberger: Sur quelques faits relatifs à l'histoire du carbone, C. R. Acad. Sci. Paris 111, 774–778 (1890)
3.4.
Zurück zum Zitat C. Pélabon, H. Pélabon: Sur une variété de carbone filamenteux, C. R. Acad. Sci. (Paris) 137, 706–708 (1903) C. Pélabon, H. Pélabon: Sur une variété de carbone filamenteux, C. R. Acad. Sci. (Paris) 137, 706–708 (1903)
3.5.
Zurück zum Zitat R. T. K. Baker, P. S. Harris: The formation of filamentous carbon. In: Chemistry and Physics of Carbon, Vol. 14, ed. by P. L. Walker Jr., P. A. Thrower (Dekker, New York 1978) pp. 83–165 R. T. K. Baker, P. S. Harris: The formation of filamentous carbon. In: Chemistry and Physics of Carbon, Vol. 14, ed. by P. L. Walker Jr., P. A. Thrower (Dekker, New York 1978) pp. 83–165
3.6.
Zurück zum Zitat S. Iijima: Helical microtubules of graphite carbon, Nature 354, 56–58 (1991) S. Iijima: Helical microtubules of graphite carbon, Nature 354, 56–58 (1991)
3.7.
Zurück zum Zitat S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter, Nature 363, 603–605 (1993) S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter, Nature 363, 603–605 (1993)
3.8.
Zurück zum Zitat D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Bayers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605–607 (1993) D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Bayers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605–607 (1993)
3.9.
Zurück zum Zitat J. Tersoff, R. S. Ruoff: Structural properties of a carbon-nanotube crystal, Phys. Rev. Lett. 73, 676–679 (1994) J. Tersoff, R. S. Ruoff: Structural properties of a carbon-nanotube crystal, Phys. Rev. Lett. 73, 676–679 (1994)
3.10.
Zurück zum Zitat N. Wang, Z. K. Tang, G. D. Li, J. S. Chen: Single-walled 4 Å carbon nanotube arrays, Nature 408, 50–51 (2000) N. Wang, Z. K. Tang, G. D. Li, J. S. Chen: Single-walled 4 Å carbon nanotube arrays, Nature 408, 50–51 (2000)
3.11.
Zurück zum Zitat N. Hamada, S. I. Sawada, A. Oshiyama: New one-dimensional conductors, graphite microtubules, Phys. Rev. Lett. 68, 1579–1581 (1992) N. Hamada, S. I. Sawada, A. Oshiyama: New one-dimensional conductors, graphite microtubules, Phys. Rev. Lett. 68, 1579–1581 (1992)
3.12.
Zurück zum Zitat M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic, San Diego 1995) M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic, San Diego 1995)
3.13.
Zurück zum Zitat R. C. Haddon: Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules, Science 261, 1545–1550 (1993) R. C. Haddon: Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules, Science 261, 1545–1550 (1993)
3.14.
Zurück zum Zitat M. Monthioux, B. W. Smith, B. Burteaux, A. Claye, J. Fisher, D. E. Luzzi: Sensitivity of single-wall nanotubes to chemical processing: An electron microscopy investigation, Carbon 39, 1261–1272 (2001) M. Monthioux, B. W. Smith, B. Burteaux, A. Claye, J. Fisher, D. E. Luzzi: Sensitivity of single-wall nanotubes to chemical processing: An electron microscopy investigation, Carbon 39, 1261–1272 (2001)
3.15.
Zurück zum Zitat H. Allouche, M. Monthioux: Chemical vapor deposition of pyrolytic carbon onto carbon nanotubes. Part II – Structure and texture, Carbon 43, 1265–1278 (2005) H. Allouche, M. Monthioux: Chemical vapor deposition of pyrolytic carbon onto carbon nanotubes. Part II – Structure and texture, Carbon 43, 1265–1278 (2005)
3.16.
Zurück zum Zitat N. M. Rodriguez, A. Chambers, R. T. Baker: Catalytic engineering of carbon nanostructures, Langmuir 11, 3862–3866 (1995) N. M. Rodriguez, A. Chambers, R. T. Baker: Catalytic engineering of carbon nanostructures, Langmuir 11, 3862–3866 (1995)
3.17.
Zurück zum Zitat M. Audier, A. Oberlin, M. Oberlin, M. Coulon, L. Bonnetain: Morphology and crystalline order in catalytic carbons, Carbon 19, 217–224 (1981) M. Audier, A. Oberlin, M. Oberlin, M. Coulon, L. Bonnetain: Morphology and crystalline order in catalytic carbons, Carbon 19, 217–224 (1981)
3.18.
Zurück zum Zitat Y. Saito: Nanoparticles and filled nanocapsules, Carbon 33, 979–988 (1995) Y. Saito: Nanoparticles and filled nanocapsules, Carbon 33, 979–988 (1995)
3.19.
Zurück zum Zitat P. J. F. Harris: Carbon Nanotubes and Related Structures (Cambridge Univ. Press, Cambridge 1999) P. J. F. Harris: Carbon Nanotubes and Related Structures (Cambridge Univ. Press, Cambridge 1999)
3.20.
Zurück zum Zitat H. W. Kroto, J. R. Heath, S.C. O'Brien, R. F. Curl, R. E. Smalley: C60 Buckminsterfullerene, Nature 318, 162–163 (1985) H. W. Kroto, J. R. Heath, S.C. O'Brien, R. F. Curl, R. E. Smalley: C60 Buckminsterfullerene, Nature 318, 162–163 (1985)
3.21.
Zurück zum Zitat W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman: Solid C60 : A new form of carbon, Nature 347, 354–358 (1990) W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman: Solid C60 : A new form of carbon, Nature 347, 354–358 (1990)
3.22.
Zurück zum Zitat L. Fulchieri, Y. Schwob, F. Fabry, G. Flamant, L. F. P. Chibante, D. Laplaze: Fullerene production in a 3-phase AC plasma process, Carbon 38, 797–803 (2000) L. Fulchieri, Y. Schwob, F. Fabry, G. Flamant, L. F. P. Chibante, D. Laplaze: Fullerene production in a 3-phase AC plasma process, Carbon 38, 797–803 (2000)
3.23.
Zurück zum Zitat K. Saidane, M. Razafinimanana, H. Lange, A. Huczko, M. Baltas, A. Gleizes, J. L. Meunier: Fullerene synthesis in the graphite electrode arc process: local plasma characteristics and correlation with yield, J Phys. D: Appl. Phys. 37, 232–239 (2004) K. Saidane, M. Razafinimanana, H. Lange, A. Huczko, M. Baltas, A. Gleizes, J. L. Meunier: Fullerene synthesis in the graphite electrode arc process: local plasma characteristics and correlation with yield, J Phys. D: Appl. Phys. 37, 232–239 (2004)
3.24.
Zurück zum Zitat T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E. Smalley: Self-assembly of tubular fullerenes, J. Phys. Chem. 99, 10694–10697 (1995) T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E. Smalley: Self-assembly of tubular fullerenes, J. Phys. Chem. 99, 10694–10697 (1995)
3.25.
Zurück zum Zitat T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley: Catalytic growth of single-walled nanotubes by laser vaporisation, Chem. Phys. Lett. 243, 49–54 (1995) T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley: Catalytic growth of single-walled nanotubes by laser vaporisation, Chem. Phys. Lett. 243, 49–54 (1995)
3.26.
Zurück zum Zitat A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, R. E. Smalley: Large scale purification of single wall carbon nanotubes: Process, product and characterization, Appl. Phys. A 67, 29–37 (1998) A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, R. E. Smalley: Large scale purification of single wall carbon nanotubes: Process, product and characterization, Appl. Phys. A 67, 29–37 (1998)
3.27.
Zurück zum Zitat A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, D. T. Colbert, G. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley: Crystalline ropes of metallic carbon nanotubes, Science 273, 487–493 (1996) A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, D. T. Colbert, G. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley: Crystalline ropes of metallic carbon nanotubes, Science 273, 487–493 (1996)
3.28.
Zurück zum Zitat L. M. Chapelle, J. Gavillet, J. L. Cochon, M. Ory, S. Lefrant, A. Loiseau, D. Pigache: A continuous wave CO2 laser reactor for nanotube synthesis, Proc. Electronic Properties of Novel Materials-XVI Int. Winterschool – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 1999) 237–240 L. M. Chapelle, J. Gavillet, J. L. Cochon, M. Ory, S. Lefrant, A. Loiseau, D. Pigache: A continuous wave CO2 laser reactor for nanotube synthesis, Proc. Electronic Properties of Novel Materials-XVI Int. Winterschool – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 1999) 237–240
3.29.
Zurück zum Zitat M. Yudasaka, T. Komatsu, T. Ichihashi, S. Iijima: Single wall carbon nanotube formation by laser ablation using double targets of carbon and metal, Chem. Phys. Lett. 278, 102–106 (1997) M. Yudasaka, T. Komatsu, T. Ichihashi, S. Iijima: Single wall carbon nanotube formation by laser ablation using double targets of carbon and metal, Chem. Phys. Lett. 278, 102–106 (1997)
3.30.
Zurück zum Zitat M. Castignolles, A. Foutel-Richard, A. Mavel, J. L. Cochon, D. Pigache, A. Loiseau, P. Bernier: Combined experimental and numerical study of the parameters controlling the C-SWNT synthesis via laser vaporization, Proc. Electronic Properties of Novel Materials-XVI Int. Winterschool – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2002) 385–389 M. Castignolles, A. Foutel-Richard, A. Mavel, J. L. Cochon, D. Pigache, A. Loiseau, P. Bernier: Combined experimental and numerical study of the parameters controlling the C-SWNT synthesis via laser vaporization, Proc. Electronic Properties of Novel Materials-XVI Int. Winterschool – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2002) 385–389
3.31.
Zurück zum Zitat T. W. Ebbesen, P. M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358, 220–221 (1992) T. W. Ebbesen, P. M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358, 220–221 (1992)
3.32.
Zurück zum Zitat D. Ugarte: Morphology and structure of graphitic soot particles generated in arc-discharge C60 production, Chem. Phys. Lett. 198, 596–602 (1992) D. Ugarte: Morphology and structure of graphitic soot particles generated in arc-discharge C60 production, Chem. Phys. Lett. 198, 596–602 (1992)
3.33.
Zurück zum Zitat T. W. Ebbesen: Carbon nanotubes, Ann. Rev. Mater. Sci. 24, 235–264 (1994) T. W. Ebbesen: Carbon nanotubes, Ann. Rev. Mater. Sci. 24, 235–264 (1994)
3.34.
Zurück zum Zitat T. Beltz, J. Find, D. Herein, N. Pfänder, T. Rühle, H. Werner, M. Wohlers, R. Schlögl: On the production of different carbon forms by electric arc graphite evaporation, Ber. Bunsen. Phys. Chem. 101, 712–725 (1997) T. Beltz, J. Find, D. Herein, N. Pfänder, T. Rühle, H. Werner, M. Wohlers, R. Schlögl: On the production of different carbon forms by electric arc graphite evaporation, Ber. Bunsen. Phys. Chem. 101, 712–725 (1997)
3.35.
Zurück zum Zitat C. Journet, W. K. Maser, P. Bernier, A. Loiseau, L. M. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer: Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388, 756–758 (1997) C. Journet, W. K. Maser, P. Bernier, A. Loiseau, L. M. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer: Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388, 756–758 (1997)
3.36.
Zurück zum Zitat K. Saïdane, M. Razafinimanana, H. Lange, M. Baltas, A. Gleizes, J. J. Gonzalez: Influence of the carbon arc current intensity on fullerene synthesis, Proc. 24th Int. Conf. on Phenomena in Ionized Gases, ed. by P. Pisarczyk, T. Pisarczyk, J. Wotowski, (Institute of Plasma Physics and Laser Microfusion, Warsaw 1999) 203–204 K. Saïdane, M. Razafinimanana, H. Lange, M. Baltas, A. Gleizes, J. J. Gonzalez: Influence of the carbon arc current intensity on fullerene synthesis, Proc. 24th Int. Conf. on Phenomena in Ionized Gases, ed. by P. Pisarczyk, T. Pisarczyk, J. Wotowski, (Institute of Plasma Physics and Laser Microfusion, Warsaw 1999) 203–204
3.37.
Zurück zum Zitat H. Allouche, M. Monthioux, M. Pacheco, M. Razafinimanana, H. Lange, A. Huczko, T. P. Teulet, A. Gleizes, T. Sogabe: Physical characteristics of the graphite-electrode electric-arc as parameters for the formation of single-wall carbon nanotubes, Proc. Eurocarbon (Deutsche Keram. Ges.) 2, 1053–1054 (2000) H. Allouche, M. Monthioux, M. Pacheco, M. Razafinimanana, H. Lange, A. Huczko, T. P. Teulet, A. Gleizes, T. Sogabe: Physical characteristics of the graphite-electrode electric-arc as parameters for the formation of single-wall carbon nanotubes, Proc. Eurocarbon (Deutsche Keram. Ges.) 2, 1053–1054 (2000)
3.38.
Zurück zum Zitat M. Razafinimanana, M. Pacheco, M. Monthioux, H. Allouche, H. Lange, A. Huczko, A. Gleizes: Spectroscopic study of an electric arc with Gd and Fe doped anodes for the carbon nanotube formation, Proc. 25th Int. Conf. on Phenomena in Ionized Gases, ed. by E. Goto (Nagoya Univ., Nagoya 2001) 297–298 M. Razafinimanana, M. Pacheco, M. Monthioux, H. Allouche, H. Lange, A. Huczko, A. Gleizes: Spectroscopic study of an electric arc with Gd and Fe doped anodes for the carbon nanotube formation, Proc. 25th Int. Conf. on Phenomena in Ionized Gases, ed. by E. Goto (Nagoya Univ., Nagoya 2001) 297–298
3.39.
Zurück zum Zitat M. Razafinimanana, M. Pacheco, M. Monthioux, H. Allouche, H. Lange, A. Huczko, P. Teulet, A. Gleizes, C. Goze, P. Bernier, T. Sogabe: Influence of doped graphite electrode in electric arc for the formation of single wall carbon nanotubes, Proc. 6th Eur. Conf. on Thermal Plasma Processes – Progress in Plasma Processing of Materials, New York 2000, ed. by P. Fauchais (Begell House, New York 2001) 649–654 M. Razafinimanana, M. Pacheco, M. Monthioux, H. Allouche, H. Lange, A. Huczko, P. Teulet, A. Gleizes, C. Goze, P. Bernier, T. Sogabe: Influence of doped graphite electrode in electric arc for the formation of single wall carbon nanotubes, Proc. 6th Eur. Conf. on Thermal Plasma Processes – Progress in Plasma Processing of Materials, New York 2000, ed. by P. Fauchais (Begell House, New York 2001) 649–654
3.40.
Zurück zum Zitat M. Pacheco, H. Allouche, M. Monthioux, A. Razafinimanana, A. Gleizes: Correlation between the plasma characteristics and the morphology and structure of the carbon phases synthesised by electric arc discharge, Proc. 25th Biennial Conf. on Carbon, Lexington (Kentucky) 2001, ed. by F. Derbyshire (American Carbon Society 2001) Extend. Abstr.(CD-Rom), Novel/14.1 M. Pacheco, H. Allouche, M. Monthioux, A. Razafinimanana, A. Gleizes: Correlation between the plasma characteristics and the morphology and structure of the carbon phases synthesised by electric arc discharge, Proc. 25th Biennial Conf. on Carbon, Lexington (Kentucky) 2001, ed. by F. Derbyshire (American Carbon Society 2001) Extend. Abstr.(CD-Rom), Novel/14.1
3.41.
Zurück zum Zitat M. Pacheco, M. Monthioux, M. Razafinimanana, L. Donadieu, H. Allouche, N. Caprais, A. Gleizes: New factors controlling the formation of single-wall carbon nanotubes by arc plasma, Proc. Carbon 2002 Int. Conf., Beijing 2002, ed. by H.-M. Cheng (Shanxi Chunqiu Audio-Visual Press, Beijing 2002) (CD-Rom/Oral/I014) M. Pacheco, M. Monthioux, M. Razafinimanana, L. Donadieu, H. Allouche, N. Caprais, A. Gleizes: New factors controlling the formation of single-wall carbon nanotubes by arc plasma, Proc. Carbon 2002 Int. Conf., Beijing 2002, ed. by H.-M. Cheng (Shanxi Chunqiu Audio-Visual Press, Beijing 2002) (CD-Rom/Oral/I014)
3.42.
Zurück zum Zitat M. Monthioux, M. Pacheco, H. Allouche, M. Razafinimanana, N. Caprais, L. Donnadieu, A. Gleizes: New data about the formation of SWNTs by the electric arc method, Electronic Properties of Molecular Nanostructures, AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2002) 182–185 M. Monthioux, M. Pacheco, H. Allouche, M. Razafinimanana, N. Caprais, L. Donnadieu, A. Gleizes: New data about the formation of SWNTs by the electric arc method, Electronic Properties of Molecular Nanostructures, AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2002) 182–185
3.43.
Zurück zum Zitat H. Lange, A. Huczko, M. Sioda, M. Pacheco, M. Razafinimanana, A. Gleizes: Influence of gadolinium on carbon arc plasma and formation of fullerenes and nanotubes, Plasma Chem. Plasma Process 22, 523–536 (2002) H. Lange, A. Huczko, M. Sioda, M. Pacheco, M. Razafinimanana, A. Gleizes: Influence of gadolinium on carbon arc plasma and formation of fullerenes and nanotubes, Plasma Chem. Plasma Process 22, 523–536 (2002)
3.44.
Zurück zum Zitat C. Journet: La production de nanotubes de carbone. Ph.D. Thesis (University of Montpellier II, Montpellier 1998) C. Journet: La production de nanotubes de carbone. Ph.D. Thesis (University of Montpellier II, Montpellier 1998)
3.45.
Zurück zum Zitat T. Sogabe, T. Masuda, K. Kuroda, Y. Hirohaya, T. Hino, T. Ymashina: Preparation of B4C -mixed graphite by pressureless sintering and its air oxidation behavior, Carbon 33, 1783–1788 (1995) T. Sogabe, T. Masuda, K. Kuroda, Y. Hirohaya, T. Hino, T. Ymashina: Preparation of B4C -mixed graphite by pressureless sintering and its air oxidation behavior, Carbon 33, 1783–1788 (1995)
3.46.
Zurück zum Zitat M. Ishigami, J. Cumings, A. Zettl, S. Chen: A simple method for the continuous production of carbon nanotubes, Chem. Phys. Lett. 319, 457–459 (2000) M. Ishigami, J. Cumings, A. Zettl, S. Chen: A simple method for the continuous production of carbon nanotubes, Chem. Phys. Lett. 319, 457–459 (2000)
3.47.
Zurück zum Zitat Y. L. Hsin, K. C. Hwang, F. R. Chen, J. J. Kai: Production and in-situ metal filling of carbon nanotube in water, Adv. Mater. 13, 830–833 (2001) Y. L. Hsin, K. C. Hwang, F. R. Chen, J. J. Kai: Production and in-situ metal filling of carbon nanotube in water, Adv. Mater. 13, 830–833 (2001)
3.48.
Zurück zum Zitat H. W. Zhu, X. S. Li, B. Jiang, C. L. Xu, C. L. Zhu, Y. F. Zhu, D. H. Wu, X. H. Chen: Formation of carbon nanotubes in water by the electric arc technique, Chem. Phys. Lett. 366, 664–669 (2002) H. W. Zhu, X. S. Li, B. Jiang, C. L. Xu, C. L. Zhu, Y. F. Zhu, D. H. Wu, X. H. Chen: Formation of carbon nanotubes in water by the electric arc technique, Chem. Phys. Lett. 366, 664–669 (2002)
3.49.
Zurück zum Zitat W. K. Maser, P. Bernier, J. M. Lambert, O. Stephan, P. M. Ajayan, C. Colliex, V. Brotons, J. M. Planeix, B. Coq, P. Molinie, S. Lefrant: Elaboration and characterization of various carbon nanostructures, Synth. Met. 81, 243–250 (1996) W. K. Maser, P. Bernier, J. M. Lambert, O. Stephan, P. M. Ajayan, C. Colliex, V. Brotons, J. M. Planeix, B. Coq, P. Molinie, S. Lefrant: Elaboration and characterization of various carbon nanostructures, Synth. Met. 81, 243–250 (1996)
3.50.
Zurück zum Zitat J. Gavillet, A. Loiseau, J. Thibault, A. Maigné, O. Stéphan, P. Bernier: TEM study of the influence of the catalyst composition on the formation and growth of SWNT, Proc. Electronic Properties Novel Materials-XVI Int. Winterschool – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2002) 202–206 J. Gavillet, A. Loiseau, J. Thibault, A. Maigné, O. Stéphan, P. Bernier: TEM study of the influence of the catalyst composition on the formation and growth of SWNT, Proc. Electronic Properties Novel Materials-XVI Int. Winterschool – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2002) 202–206
3.51.
Zurück zum Zitat G. Flamant, J. F. Robert, S. Marty, J. M. Gineste, J. Giral, B. Rivoire, D. Laplaze: Solar reactor scaling up. The fullerene synthesis case study, Energy 29, 801–809 (2004) G. Flamant, J. F. Robert, S. Marty, J. M. Gineste, J. Giral, B. Rivoire, D. Laplaze: Solar reactor scaling up. The fullerene synthesis case study, Energy 29, 801–809 (2004)
3.52.
Zurück zum Zitat T. M. Gruenberger, J. Gonzalez-Aguilar, F. Fabry, L. Fulchieri, E. Grivei, N. Probst, G. Flamant, H. Okuno, J. C. Charlier: Production of carbon nanotubes and other nanostructures via continuous 3-phase AC plasma processing, Fuller. Nanotub. Car. N. 12, 571–581 (2004) T. M. Gruenberger, J. Gonzalez-Aguilar, F. Fabry, L. Fulchieri, E. Grivei, N. Probst, G. Flamant, H. Okuno, J. C. Charlier: Production of carbon nanotubes and other nanostructures via continuous 3-phase AC plasma processing, Fuller. Nanotub. Car. N. 12, 571–581 (2004)
3.53.
Zurück zum Zitat H. Okuno, E. Grivel, F. Fabry, T. M. Gruenberger, J. J. Gonzalez-Aguilar, A. Palnichenko, L. Fulchieri, N. Probst, J. C. Chalier: Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process, Carbon 42, 2543–2549 (2004) H. Okuno, E. Grivel, F. Fabry, T. M. Gruenberger, J. J. Gonzalez-Aguilar, A. Palnichenko, L. Fulchieri, N. Probst, J. C. Chalier: Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process, Carbon 42, 2543–2549 (2004)
3.54.
Zurück zum Zitat L. P. F. Chibante, A. Thess, J. M. Alford, M. D. Diener, R. E. Smalley: Solar generation of the fullerenes, J. Phys. Chem. 97, 8696–8700 (1993) L. P. F. Chibante, A. Thess, J. M. Alford, M. D. Diener, R. E. Smalley: Solar generation of the fullerenes, J. Phys. Chem. 97, 8696–8700 (1993)
3.55.
Zurück zum Zitat C. L. Fields, J. R. Pitts, M. J. Hale, C. Bingham, A. Lewandowski, D. E. King: Formation of fullerenes in highly concentrated solar flux, J. Phys. Chem. 97, 8701–8702 (1993) C. L. Fields, J. R. Pitts, M. J. Hale, C. Bingham, A. Lewandowski, D. E. King: Formation of fullerenes in highly concentrated solar flux, J. Phys. Chem. 97, 8701–8702 (1993)
3.56.
Zurück zum Zitat P. Bernier, D. Laplaze, J. Auriol, L. Barbedette, G. Flamant, M. Lebrun, A. Brunelle, S. Della-Negra: Production of fullerenes from solar energy, Synth. Met. 70, 1455–1456 (1995) P. Bernier, D. Laplaze, J. Auriol, L. Barbedette, G. Flamant, M. Lebrun, A. Brunelle, S. Della-Negra: Production of fullerenes from solar energy, Synth. Met. 70, 1455–1456 (1995)
3.57.
Zurück zum Zitat M. J. Heben, T. A. Bekkedhal, D. L. Schultz, K. M. Jones, A. C. Dillon, C. J. Curtis, C. Bingham, J. R. Pitts, A. Lewandowski, C. L. Fields: Production of single wall carbon nanotubes using concentrated sunlight, Proc. Symp. Recent Adv. Chem. Phys. Fullerenes Rel. Mater., Pennington 1996, ed. by K. M. Kadish, R. S. Ruoff (Electrochemical Society, Pennington 1996) 803–811 M. J. Heben, T. A. Bekkedhal, D. L. Schultz, K. M. Jones, A. C. Dillon, C. J. Curtis, C. Bingham, J. R. Pitts, A. Lewandowski, C. L. Fields: Production of single wall carbon nanotubes using concentrated sunlight, Proc. Symp. Recent Adv. Chem. Phys. Fullerenes Rel. Mater., Pennington 1996, ed. by K. M. Kadish, R. S. Ruoff (Electrochemical Society, Pennington 1996) 803–811
3.58.
Zurück zum Zitat D. Laplaze, P. Bernier, C. Journet, G. Vié, G. Flamant, E. Philippot, M. Lebrun: Evaporation of graphite using a solar furnace, Proc. 8th Int. Symp. Solar Concentrating Technol., Köln 1996, ed. by M. Becker, M. Balmer (C. F. Müller Verlag, Heidelberg 1997) 1653–1656 D. Laplaze, P. Bernier, C. Journet, G. Vié, G. Flamant, E. Philippot, M. Lebrun: Evaporation of graphite using a solar furnace, Proc. 8th Int. Symp. Solar Concentrating Technol., Köln 1996, ed. by M. Becker, M. Balmer (C. F. Müller Verlag, Heidelberg 1997) 1653–1656
3.59.
Zurück zum Zitat D. Laplaze, P. Bernier, W. K. Maser, G. Flamant, T. Guillard, A. Loiseau: Carbon nanotubes: The solar approach, Carbon 36, 685–688 (1998) D. Laplaze, P. Bernier, W. K. Maser, G. Flamant, T. Guillard, A. Loiseau: Carbon nanotubes: The solar approach, Carbon 36, 685–688 (1998)
3.60.
Zurück zum Zitat T. Guillard, S. Cetout, L. Alvarez, J. L. Sauvajol, E. Anglaret, P. Bernier, G. Flamant, D. Laplaze: Production of carbon nanotubes by the solar route, Eur. Phys. J. 5, 251–256 (1999) T. Guillard, S. Cetout, L. Alvarez, J. L. Sauvajol, E. Anglaret, P. Bernier, G. Flamant, D. Laplaze: Production of carbon nanotubes by the solar route, Eur. Phys. J. 5, 251–256 (1999)
3.61.
Zurück zum Zitat D. Luxembourg, G. Flamant, A. Guillot, D. Laplaze: Hydrogen storage in solar produced single-walled carbon nanotubes, Mater. Sci. Eng. B 108, 114–119 (2004) D. Luxembourg, G. Flamant, A. Guillot, D. Laplaze: Hydrogen storage in solar produced single-walled carbon nanotubes, Mater. Sci. Eng. B 108, 114–119 (2004)
3.62.
Zurück zum Zitat G. Flamant, M. Bijeire, D. Luxembourg: Modelling of a solar reactor for single wall nanotubes synthesis, ASME J. Solar Energy Eng. 128, 1–124 (2006) G. Flamant, M. Bijeire, D. Luxembourg: Modelling of a solar reactor for single wall nanotubes synthesis, ASME J. Solar Energy Eng. 128, 1–124 (2006)
3.63.
Zurück zum Zitat G. G. Tibbetts, M. Endo, C. P. Beetz: Carbon fibers grown from the vapor phase: A novel material, SAMPE J. 22, 30 (1989) G. G. Tibbetts, M. Endo, C. P. Beetz: Carbon fibers grown from the vapor phase: A novel material, SAMPE J. 22, 30 (1989)
3.64.
Zurück zum Zitat R. T. K. Baker: Catalytic growth of carbon filaments, Carbon 27, 315–323 (1989) R. T. K. Baker: Catalytic growth of carbon filaments, Carbon 27, 315–323 (1989)
3.65.
Zurück zum Zitat E. Flahaut: Synthèse par voir catalytique et caractérisation de composites nanotubes de carbone-metal-oxyde Poudres et matériaux denses. Ph.D. Thesis (Univers. Paul Sabatier, Toulouse 1999) E. Flahaut: Synthèse par voir catalytique et caractérisation de composites nanotubes de carbone-metal-oxyde Poudres et matériaux denses. Ph.D. Thesis (Univers. Paul Sabatier, Toulouse 1999)
3.66.
Zurück zum Zitat E. Flahaut, R. Bacsa, A. Peigney, Ch. Laurent: Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Commun., 1442–1443 (2003) E. Flahaut, R. Bacsa, A. Peigney, Ch. Laurent: Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Commun., 1442–1443 (2003)
3.67.
Zurück zum Zitat R. T. K. Baker, P. S. Harris, R. B. Thomas, R. J. Waite: Formation of filamentous carbon from iron, cobalt, and chromium catalyzed decomposition of acetylene, J. Catal. 30, 86–95 (1973) R. T. K. Baker, P. S. Harris, R. B. Thomas, R. J. Waite: Formation of filamentous carbon from iron, cobalt, and chromium catalyzed decomposition of acetylene, J. Catal. 30, 86–95 (1973)
3.68.
Zurück zum Zitat T. Koyama, M. Endo, Y. Oyuma: Carbon fibers obtained by thermal decomposition of vaporized hydrocarbon, Jap. J. Appl. Phys. 11, 445–449 (1972) T. Koyama, M. Endo, Y. Oyuma: Carbon fibers obtained by thermal decomposition of vaporized hydrocarbon, Jap. J. Appl. Phys. 11, 445–449 (1972)
3.69.
Zurück zum Zitat M. Endo, A. Oberlin, T. Koyama: High resolution electron microscopy of graphitizable carbon fiber prepared by benzene decomposition, Jap. J. Appl. Phys. 16, 1519–1523 (1977) M. Endo, A. Oberlin, T. Koyama: High resolution electron microscopy of graphitizable carbon fiber prepared by benzene decomposition, Jap. J. Appl. Phys. 16, 1519–1523 (1977)
3.70.
Zurück zum Zitat N. M. Rodriguez: A review of catalytically grown carbon nanofibers, J. Mater. Res. 8, 3233–3250 (1993) N. M. Rodriguez: A review of catalytically grown carbon nanofibers, J. Mater. Res. 8, 3233–3250 (1993)
3.71.
Zurück zum Zitat W. R. Davis, R. J. Slawson, G. R. Rigby: An unusual form of carbon, Nature 171, 756 (1953) W. R. Davis, R. J. Slawson, G. R. Rigby: An unusual form of carbon, Nature 171, 756 (1953)
3.72.
Zurück zum Zitat H. P. Boehm: Carbon from carbon monoxide disproportionation on nickel and iron catalysts; morphological studies and possible growth mechanisms, Carbon 11, 583–590 (1973) H. P. Boehm: Carbon from carbon monoxide disproportionation on nickel and iron catalysts; morphological studies and possible growth mechanisms, Carbon 11, 583–590 (1973)
3.73.
Zurück zum Zitat M. Audier, A. Oberlin, M. Coulon: Crystallographic orientations of catalytic particles in filamentous carbon; case of simple conical particles, J. Cryst. Growth 55, 546–549 (1981) M. Audier, A. Oberlin, M. Coulon: Crystallographic orientations of catalytic particles in filamentous carbon; case of simple conical particles, J. Cryst. Growth 55, 546–549 (1981)
3.74.
Zurück zum Zitat M. Audier, M. Coulon: Kinetic and microscopic aspects of catalytic carbon growth, Carbon 23, 317–323 (1985) M. Audier, M. Coulon: Kinetic and microscopic aspects of catalytic carbon growth, Carbon 23, 317–323 (1985)
3.75.
Zurück zum Zitat M. Audier, A. Oberlin, M. Coulon: Study of biconic microcrystals in the middle of carbon tubes obtained by catalytic disproportionation of CO , J. Cryst. Growth 57, 524–534 (1981) M. Audier, A. Oberlin, M. Coulon: Study of biconic microcrystals in the middle of carbon tubes obtained by catalytic disproportionation of CO , J. Cryst. Growth 57, 524–534 (1981)
3.76.
Zurück zum Zitat A. Thaib, G. A. Martin, P. Pinheiro, M. C. Schouler, P. Gadelle: Formation of carbon nanotubes from the carbon monoxide disproportionation reaction over CO /Al2O′ and Co /SiO′ catalysts, Catal. Lett. 63, 135–141 (1999) A. Thaib, G. A. Martin, P. Pinheiro, M. C. Schouler, P. Gadelle: Formation of carbon nanotubes from the carbon monoxide disproportionation reaction over CO /Al2O and Co /SiO catalysts, Catal. Lett. 63, 135–141 (1999)
3.77.
Zurück zum Zitat P. Pinheiro, M. C. Schouler, P. Gadelle, M. Mermoux, E. Dooryhée: Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co /Al2O3 catalysts, Carbon 38, 1469–1479 (2000) P. Pinheiro, M. C. Schouler, P. Gadelle, M. Mermoux, E. Dooryhée: Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co /Al2O3 catalysts, Carbon 38, 1469–1479 (2000)
3.78.
Zurück zum Zitat P. Pinheiro, P. Gadelle: Chemical state of a supported iron-cobalt catalyst during CO disproportionation. I. Thermodynamic study, J. Phys. Chem. Solids 62, 1015–1021 (2001) P. Pinheiro, P. Gadelle: Chemical state of a supported iron-cobalt catalyst during CO disproportionation. I. Thermodynamic study, J. Phys. Chem. Solids 62, 1015–1021 (2001)
3.79.
Zurück zum Zitat P. Pinheiro, P. Gadelle, C. Jeandey, J. L. Oddou: Chemical state of a supported iron-cobalt catalyst during CO disproportionation. II. Experimental study, J. Phys. Chem. Solids 62, 1023–1037 (2001) P. Pinheiro, P. Gadelle, C. Jeandey, J. L. Oddou: Chemical state of a supported iron-cobalt catalyst during CO disproportionation. II. Experimental study, J. Phys. Chem. Solids 62, 1023–1037 (2001)
3.80.
Zurück zum Zitat C. Laurent, E. Flahaut, A. Peigney, A. Rousset: Metal nanoparticles for the catalytic synthesis of carbon nanotubes, New J. Chem. 22, 1229–1237 (1998) C. Laurent, E. Flahaut, A. Peigney, A. Rousset: Metal nanoparticles for the catalytic synthesis of carbon nanotubes, New J. Chem. 22, 1229–1237 (1998)
3.81.
Zurück zum Zitat A. Peigney, C. Laurent, F. Dobigeon, A. Rousset: Carbon nanotubes grown in situ by a novel catalytic method, J. Mater. Res. 12, 613–615 (1997) A. Peigney, C. Laurent, F. Dobigeon, A. Rousset: Carbon nanotubes grown in situ by a novel catalytic method, J. Mater. Res. 12, 613–615 (1997)
3.82.
Zurück zum Zitat V. Ivanov, J. B. Nagy, P. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt: The study of nanotubules produced by catalytic method, Chem. Phys. Lett. 223, 329–335 (1994) V. Ivanov, J. B. Nagy, P. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt: The study of nanotubules produced by catalytic method, Chem. Phys. Lett. 223, 329–335 (1994)
3.83.
Zurück zum Zitat V. Ivanov, A. Fonseca, J. B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, X. B. Zhang: Catalytic production and purification of nanotubules having fullerene-scale diameters, Carbon 33, 1727–1738 (1995) V. Ivanov, A. Fonseca, J. B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, X. B. Zhang: Catalytic production and purification of nanotubules having fullerene-scale diameters, Carbon 33, 1727–1738 (1995)
3.84.
Zurück zum Zitat K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, A. Fudala, A. Lucas: Catalytic synthesis of carbon nanotubes using zeolite support, Zeolites 17, 416–423 (1996) K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, A. Fudala, A. Lucas: Catalytic synthesis of carbon nanotubes using zeolite support, Zeolites 17, 416–423 (1996)
3.85.
Zurück zum Zitat H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley: Single-wall nanotubes produced by metal-catalysed disproportionation of carbon monoxide, Chem. Phys. Lett. 260, 471–475 (1996) H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley: Single-wall nanotubes produced by metal-catalysed disproportionation of carbon monoxide, Chem. Phys. Lett. 260, 471–475 (1996)
3.86.
Zurück zum Zitat A. M. Cassel, J. A. Raymakers, J. Kong, H. Dai: Large scale CVD synthesis of single-walled carbon nanotubes, J. Phys. Chem. B 109, 6484–6492 (1999) A. M. Cassel, J. A. Raymakers, J. Kong, H. Dai: Large scale CVD synthesis of single-walled carbon nanotubes, J. Phys. Chem. B 109, 6484–6492 (1999)
3.87.
Zurück zum Zitat B. Kitiyanan, W. E. Alvarez, J. H. Harwell, D. E. Resasco: Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co -Mo catalysts, Chem. Phys. Lett. 317, 497–503 (2000) B. Kitiyanan, W. E. Alvarez, J. H. Harwell, D. E. Resasco: Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co -Mo catalysts, Chem. Phys. Lett. 317, 497–503 (2000)
3.88.
Zurück zum Zitat A. Govindaraj, E. Flahaut, C. Laurent, A. Peigney, A. Rousset, C. N. R. Rao: An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg 1-x M x Al2O4 spinel catalysts, J. Mater. Res. 14, 2567–2576 (1999) A. Govindaraj, E. Flahaut, C. Laurent, A. Peigney, A. Rousset, C. N. R. Rao: An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg 1-x M x Al2O4 spinel catalysts, J. Mater. Res. 14, 2567–2576 (1999)
3.89.
Zurück zum Zitat E. Flahaut, A. Peigney, C. Laurent, A. Rousset: Synthesis of single-walled carbon nanotube-Co -MgO composite powders and extraction of the nanotubes, J. Mater. Chem. 10, 249–252 (2000) E. Flahaut, A. Peigney, C. Laurent, A. Rousset: Synthesis of single-walled carbon nanotube-Co -MgO composite powders and extraction of the nanotubes, J. Mater. Chem. 10, 249–252 (2000)
3.90.
Zurück zum Zitat J. Kong, A. M. Cassel, H. Dai: Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett. 292, 567–574 (1998) J. Kong, A. M. Cassel, H. Dai: Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett. 292, 567–574 (1998)
3.91.
Zurück zum Zitat E. Flahaut, A. Peigney, W. S. Bacsa, R. R. Bacsa, Ch. Laurent: CCVD synthesis of carbon nanotubes from (Mg, Co, Mo)O catalysts: Influence of the proportions of cobalt and molybdenum, J. Mater. Chem. 14, 646–653 (2004) E. Flahaut, A. Peigney, W. S. Bacsa, R. R. Bacsa, Ch. Laurent: CCVD synthesis of carbon nanotubes from (Mg, Co, Mo)O catalysts: Influence of the proportions of cobalt and molybdenum, J. Mater. Chem. 14, 646–653 (2004)
3.92.
Zurück zum Zitat E. Flahaut, Ch. Laurent, A. Peigney: Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation, Carbon 43, 375–383 (2005) E. Flahaut, Ch. Laurent, A. Peigney: Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation, Carbon 43, 375–383 (2005)
3.93.
Zurück zum Zitat R. Marangoni, P. Serp, R. Feurrer, Y. Kihn, P. Kalck, C. Vahlas: Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalyst and ethylene, Carbon 39, 443–449 (2001) R. Marangoni, P. Serp, R. Feurrer, Y. Kihn, P. Kalck, C. Vahlas: Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalyst and ethylene, Carbon 39, 443–449 (2001)
3.94.
Zurück zum Zitat R. Sen, A. Govindaraj, C. N. R. Rao: Carbon nanotubes by the metallocene route, Chem. Phys. Lett. 267, 276–280 (1997) R. Sen, A. Govindaraj, C. N. R. Rao: Carbon nanotubes by the metallocene route, Chem. Phys. Lett. 267, 276–280 (1997)
3.95.
Zurück zum Zitat Y. Y. Fan, H. M. Cheng, Y. L. Wei, G. Su, S. H. Shen: The influence of preparation parameters on the mass production of vapor grown carbon nanofibers, Carbon 38, 789–795 (2000) Y. Y. Fan, H. M. Cheng, Y. L. Wei, G. Su, S. H. Shen: The influence of preparation parameters on the mass production of vapor grown carbon nanofibers, Carbon 38, 789–795 (2000)
3.96.
Zurück zum Zitat L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, D. Wu: Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon 39, 329–335 (2001) L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, D. Wu: Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon 39, 329–335 (2001)
3.97.
Zurück zum Zitat M. Glerup, H. Kanzow, R. Almairac, M. Castignolles, P. Bernier: Synthesis of multi-walled carbon nanotubes and nano-fibres using aerosol method with metal-ions as the catalyst precursors, Chem. Phys. Lett. 377, 293–298 (2003) M. Glerup, H. Kanzow, R. Almairac, M. Castignolles, P. Bernier: Synthesis of multi-walled carbon nanotubes and nano-fibres using aerosol method with metal-ions as the catalyst precursors, Chem. Phys. Lett. 377, 293–298 (2003)
3.98.
Zurück zum Zitat O. A. Nerushev, M. Sveningsson, L. K. L. Falk, F. Rohmund: Carbon nanotube films obtained by thermal vapour deposition, J. Mater. Chem. 11, 1122–1132 (2001) O. A. Nerushev, M. Sveningsson, L. K. L. Falk, F. Rohmund: Carbon nanotube films obtained by thermal vapour deposition, J. Mater. Chem. 11, 1122–1132 (2001)
3.99.
Zurück zum Zitat Z. Zhou, L. Ci, L. Song, X. Yan, D. Liu, H. Yuan, Y.Gao, J. Wang, L. Liu, W. Zhou, G. Wang, Si Xie: Producing cleaner double-walled carbon nanotubes in a floating catalyst system, Carbon 41, 2607–2611 (2003) Z. Zhou, L. Ci, L. Song, X. Yan, D. Liu, H. Yuan, Y.Gao, J. Wang, L. Liu, W. Zhou, G. Wang, Si Xie: Producing cleaner double-walled carbon nanotubes in a floating catalyst system, Carbon 41, 2607–2611 (2003)
3.100.
Zurück zum Zitat F. Rohmund, L. K. L. Falk, F. E. B. Campbell: A simple method for the production of large arrays of aligned carbon nanotubes, Chem. Phys. Lett. 328, 369–373 (2000) F. Rohmund, L. K. L. Falk, F. E. B. Campbell: A simple method for the production of large arrays of aligned carbon nanotubes, Chem. Phys. Lett. 328, 369–373 (2000)
3.101.
Zurück zum Zitat G. G. Tibbetts, C. A. Bernardo, D. W. Gorkiewicz, R. L. Alig: Role of sulfur in the production of carbon fibers in the vapor phase, Carbon 32, 569–576 (1994) G. G. Tibbetts, C. A. Bernardo, D. W. Gorkiewicz, R. L. Alig: Role of sulfur in the production of carbon fibers in the vapor phase, Carbon 32, 569–576 (1994)
3.102.
Zurück zum Zitat S. Bai, F. Li, Q. H. Yang, H.-M. Cheng, J. B. Bai: Influence of ferrocene/benzene mole ratio in the synthesis of carbon nanostructures, Chem. Phys. Lett. 376, 83–89 (2003) S. Bai, F. Li, Q. H. Yang, H.-M. Cheng, J. B. Bai: Influence of ferrocene/benzene mole ratio in the synthesis of carbon nanostructures, Chem. Phys. Lett. 376, 83–89 (2003)
3.103.
Zurück zum Zitat W. Q. Han, P. Kholer-Riedlich, T. Seeger, F. Ernst, M. Ruhle, N. Grobert, W. K. Hsu, B. H. Chang, Y. Q. Zhu, H. W. Kroto, M. Terrones, H. Terrones: Aligned CN x nanotubes by pyrolysis of ferrocene under NH3 atmosphere, Appl. Phys. Lett. 77, 1807–1809 (2000) W. Q. Han, P. Kholer-Riedlich, T. Seeger, F. Ernst, M. Ruhle, N. Grobert, W. K. Hsu, B. H. Chang, Y. Q. Zhu, H. W. Kroto, M. Terrones, H. Terrones: Aligned CN x nanotubes by pyrolysis of ferrocene under NH3 atmosphere, Appl. Phys. Lett. 77, 1807–1809 (2000)
3.104.
Zurück zum Zitat L. Ci, Z. Rao, Z. Zhou, D. Tang, X. Yan, Y. Liang, D. Liu, H. Yuan, W. Zhou, G. Wang, W. Liu, S. Xie: Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system, Chem. Phys. Lett. 359, 63–67 (2002) L. Ci, Z. Rao, Z. Zhou, D. Tang, X. Yan, Y. Liang, D. Liu, H. Yuan, W. Zhou, G. Wang, W. Liu, S. Xie: Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system, Chem. Phys. Lett. 359, 63–67 (2002)
3.105.
Zurück zum Zitat S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360, 229–234 (2002) S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360, 229–234 (2002)
3.106.
Zurück zum Zitat T. Kyotani, L. F. Tsai, A. Tomita: Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chem. Mater. 8, 2109–2113 (1996) T. Kyotani, L. F. Tsai, A. Tomita: Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chem. Mater. 8, 2109–2113 (1996)
3.107.
Zurück zum Zitat R. E. Smalley, J. H. Hafner, D. T. Colbert, K. Smith: (1998) Catalytic growth of single-wall carbon nanotubes from metal particles, US patent US19980601010903 R. E. Smalley, J. H. Hafner, D. T. Colbert, K. Smith: (1998) Catalytic growth of single-wall carbon nanotubes from metal particles, US patent US19980601010903
3.108.
Zurück zum Zitat P. Nikolaev: Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the HiPco process, J. Nanosci. Nanotech. 4, 307–316 (2004) P. Nikolaev: Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the HiPco process, J. Nanosci. Nanotech. 4, 307–316 (2004)
3.109.
Zurück zum Zitat W. K. Hsu, J. P. Hare, M. Terrones, H. W. Kroto, D. R. M. Walton, P. J. F. Harris: Condensed-phase nanotubes, Nature 377, 687 (1995) W. K. Hsu, J. P. Hare, M. Terrones, H. W. Kroto, D. R. M. Walton, P. J. F. Harris: Condensed-phase nanotubes, Nature 377, 687 (1995)
3.110.
Zurück zum Zitat W. S. Cho, E. Hamada, Y. Kondo, K. Takayanagi: Synthesis of carbon nanotubes from bulk polymer, Appl. Phys. Lett. 69, 278–279 (1996) W. S. Cho, E. Hamada, Y. Kondo, K. Takayanagi: Synthesis of carbon nanotubes from bulk polymer, Appl. Phys. Lett. 69, 278–279 (1996)
3.111.
Zurück zum Zitat Y. L. Li, Y. D. Yu, Y. Liang: A novel method for synthesis of carbon nanotubes: Low temperature solid pyrolysis, J. Mater. Res. 12, 1678–1680 (1997) Y. L. Li, Y. D. Yu, Y. Liang: A novel method for synthesis of carbon nanotubes: Low temperature solid pyrolysis, J. Mater. Res. 12, 1678–1680 (1997)
3.112.
Zurück zum Zitat M. L. Terranova, S. Piccirillo, V. Sessa, P. Sbornicchia, M. Rossi, S. Botti, D. Manno: Growth of single-walled carbon nanotubes by a novel technique using nanosized graphite as carbon source, Chem. Phys. Lett. 327, 284–290 (2000) M. L. Terranova, S. Piccirillo, V. Sessa, P. Sbornicchia, M. Rossi, S. Botti, D. Manno: Growth of single-walled carbon nanotubes by a novel technique using nanosized graphite as carbon source, Chem. Phys. Lett. 327, 284–290 (2000)
3.113.
Zurück zum Zitat R. L. Vander Wal, T. Ticich, V. E. Curtis: Diffusion flame synthesis of single-walled carbon nanotubes, Chem. Phys. Lett. 323, 217–223 (2000) R. L. Vander Wal, T. Ticich, V. E. Curtis: Diffusion flame synthesis of single-walled carbon nanotubes, Chem. Phys. Lett. 323, 217–223 (2000)
3.114.
Zurück zum Zitat H. Cui, G. Eres, J. Y. Howe, A. Puretzki, M. Varela, D. B. Geohegan, D. H. Lowndes: Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition, Chem. Phys. Lett. 374, 222–228 (2003) H. Cui, G. Eres, J. Y. Howe, A. Puretzki, M. Varela, D. B. Geohegan, D. H. Lowndes: Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition, Chem. Phys. Lett. 374, 222–228 (2003)
3.115.
Zurück zum Zitat Y. Y. Wei, G. Eres, V. I. Merkulov, D. H. Lowdens: Effect of film thickness on carbon nanotube growth by selective area chemical vapor deposition, Appl. Phys. Lett. 78, 1394–1396 (2001) Y. Y. Wei, G. Eres, V. I. Merkulov, D. H. Lowdens: Effect of film thickness on carbon nanotube growth by selective area chemical vapor deposition, Appl. Phys. Lett. 78, 1394–1396 (2001)
3.116.
Zurück zum Zitat I. T. Han, B. K. Kim, H. J. Kim, M. Yang, Y. W. Jin, S. Jung, N. Lee, S. K. Kim, J. M. Kim: Effect of Al and catalyst thickness on the growth of carbon nanotubes and application to gated field emitter arrays, Chem. Phys. Lett. 400, 139–144 (2004) I. T. Han, B. K. Kim, H. J. Kim, M. Yang, Y. W. Jin, S. Jung, N. Lee, S. K. Kim, J. M. Kim: Effect of Al and catalyst thickness on the growth of carbon nanotubes and application to gated field emitter arrays, Chem. Phys. Lett. 400, 139–144 (2004)
3.117.
Zurück zum Zitat W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zha, G. Wang: Large scale synthesis of aligned carbon nanotubes, Science 274, 1701–1703 (1996) W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zha, G. Wang: Large scale synthesis of aligned carbon nanotubes, Science 274, 1701–1703 (1996)
3.118.
Zurück zum Zitat F. Zheng, L. Liang, Y. Gao, J. H. Sukamto, L. Aardahl: Carbon nanotubes synthesis using mesoporous silica templates, Nanolett. 2, 729–732 (2002) F. Zheng, L. Liang, Y. Gao, J. H. Sukamto, L. Aardahl: Carbon nanotubes synthesis using mesoporous silica templates, Nanolett. 2, 729–732 (2002)
3.119.
Zurück zum Zitat S. H. Jeong, O.-K. Lee, K. H. Lee, S. H. Oh, C. G. Park: Preparation of aligned carbon nanotubes with prescribed dimension: Template synthesis and sonication cutting approach, Chem. Mater. 14, 1859–1862 (2002) S. H. Jeong, O.-K. Lee, K. H. Lee, S. H. Oh, C. G. Park: Preparation of aligned carbon nanotubes with prescribed dimension: Template synthesis and sonication cutting approach, Chem. Mater. 14, 1859–1862 (2002)
3.120.
Zurück zum Zitat A. M. Cassel, N. R. Franklin, T. W. Tombler, E. M. Chan, J. Han, H. Dai: Directed growth of free-standing single-walled carbon nanotubes, J. Am. Chem. Soc. 121, 7975–7976 (1999) A. M. Cassel, N. R. Franklin, T. W. Tombler, E. M. Chan, J. Han, H. Dai: Directed growth of free-standing single-walled carbon nanotubes, J. Am. Chem. Soc. 121, 7975–7976 (1999)
3.121.
Zurück zum Zitat S. Fan, M. Chapline, N. Franklin, T. Tombler, A. M. Cassel, H. Dai: Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 512–514 (1999) S. Fan, M. Chapline, N. Franklin, T. Tombler, A. M. Cassel, H. Dai: Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 512–514 (1999)
3.122.
Zurück zum Zitat N. S. Kim, Y. T. Lee, J. Park, H. Ryu, H. J. Lee, S. Y. Choi, J. Choo: Dependence of vertically aligned growth of carbon nanotubes on catalyst, J. Phys. Chem. B 106, 9286–9290 (2002) N. S. Kim, Y. T. Lee, J. Park, H. Ryu, H. J. Lee, S. Y. Choi, J. Choo: Dependence of vertically aligned growth of carbon nanotubes on catalyst, J. Phys. Chem. B 106, 9286–9290 (2002)
3.123.
Zurück zum Zitat C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, Y. H. Lee, W. B. Choi, N. S. Lee, G.-S. Park, J. M. Kim: Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett. 312, 461–468 (1999) C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, Y. H. Lee, W. B. Choi, N. S. Lee, G.-S. Park, J. M. Kim: Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett. 312, 461–468 (1999)
3.124.
Zurück zum Zitat W. D. Zhang, Y. Wen, S. M. Liu, W. C. Tjiu, G. Q. Xu, L. M. Gan: Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates, Carbon 40, 1981–1989 (2002) W. D. Zhang, Y. Wen, S. M. Liu, W. C. Tjiu, G. Q. Xu, L. M. Gan: Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates, Carbon 40, 1981–1989 (2002)
3.125.
Zurück zum Zitat S. Huang, L. Dai, A. W. H. Mau: Controlled fabrication of large scale aligned carbon nanofiber/nanotube patterns by photolithography, Adv. Mater. 14, 1140–1143 (2002) S. Huang, L. Dai, A. W. H. Mau: Controlled fabrication of large scale aligned carbon nanofiber/nanotube patterns by photolithography, Adv. Mater. 14, 1140–1143 (2002)
3.126.
Zurück zum Zitat T. Sun, G. Wang, H. Liu, L. Feng, D. Zhu: Control over the wettability of an aligned carbon nanotube film, J. Am. Chem. Soc. 125, 14996–14997 (2003) T. Sun, G. Wang, H. Liu, L. Feng, D. Zhu: Control over the wettability of an aligned carbon nanotube film, J. Am. Chem. Soc. 125, 14996–14997 (2003)
3.127.
Zurück zum Zitat Y. Huh, J. Y. Lee, J. Cheon, Y. K. Hong, J. Y. Koo, T. J. Lee, C. J. Lee: Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition, J. Mater. Chem. 13, 2297–2300 (2003) Y. Huh, J. Y. Lee, J. Cheon, Y. K. Hong, J. Y. Koo, T. J. Lee, C. J. Lee: Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition, J. Mater. Chem. 13, 2297–2300 (2003)
3.128.
Zurück zum Zitat Y. Kobayashi, H. Nakashima, D. Takagi, Y. Homma: CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst, Thin Solid Films 464-465, 286–289 (2004) Y. Kobayashi, H. Nakashima, D. Takagi, Y. Homma: CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst, Thin Solid Films 464-465, 286–289 (2004)
3.129.
Zurück zum Zitat C. L. Cheung, A. Kurtz, H. Park, C. M. Lieber: Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem B 106, 2429–2433 (2002) C. L. Cheung, A. Kurtz, H. Park, C. M. Lieber: Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem B 106, 2429–2433 (2002)
3.130.
Zurück zum Zitat Y. Huh, J. Y. Lee, J. Cheon, Y. K. Hong, J. Y. Koo, T. J. Lee, C. J. Lee: Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition, J. Mater. Chem. 13, 2297–2300 (2003) Y. Huh, J. Y. Lee, J. Cheon, Y. K. Hong, J. Y. Koo, T. J. Lee, C. J. Lee: Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition, J. Mater. Chem. 13, 2297–2300 (2003)
3.131.
Zurück zum Zitat M. Paillet, V. Jourdain, P. Poncharal, J.-L. Sauvajol, A. Zahab, J. C. Meyer, S. Roth, N. Cordente, C. Amiens, B. Chaudret: Versatile synthesis of individual single-walled carbon nanotubes from nickel nanoparticles for the study of their physical properties, J. Phys. Chem. B 108, 17112–17118 (2004) M. Paillet, V. Jourdain, P. Poncharal, J.-L. Sauvajol, A. Zahab, J. C. Meyer, S. Roth, N. Cordente, C. Amiens, B. Chaudret: Versatile synthesis of individual single-walled carbon nanotubes from nickel nanoparticles for the study of their physical properties, J. Phys. Chem. B 108, 17112–17118 (2004)
3.132.
Zurück zum Zitat S. Casimirius, E. Flahaut, C. Laurent, C. Vieu, F. Carcenac, C. Laberty-Robert: Optimized microcontact printing process for the patterned growth of individual SWNTs, Microelectr. Eng. 73-74, 564–569 (2004) S. Casimirius, E. Flahaut, C. Laurent, C. Vieu, F. Carcenac, C. Laberty-Robert: Optimized microcontact printing process for the patterned growth of individual SWNTs, Microelectr. Eng. 73-74, 564–569 (2004)
3.133.
Zurück zum Zitat Y. Lei, K. S. Yeong, J. T. L. Thong, W. K. Chim: Large-scale ordered carbon nanotubes arrays initiated from highly ordered catalyst arrays on silicon substrates, Chem. Mater. 16, 2757–2761 (2004) Y. Lei, K. S. Yeong, J. T. L. Thong, W. K. Chim: Large-scale ordered carbon nanotubes arrays initiated from highly ordered catalyst arrays on silicon substrates, Chem. Mater. 16, 2757–2761 (2004)
3.134.
Zurück zum Zitat Q. Ye, A. M. Cassel, H. Liu, K. J. Chao, J. Han, M. Meyyappan: Large-scale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension imaging applications, Nano Lett. 4, 1301–1308 (2004) Q. Ye, A. M. Cassel, H. Liu, K. J. Chao, J. Han, M. Meyyappan: Large-scale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension imaging applications, Nano Lett. 4, 1301–1308 (2004)
3.135.
Zurück zum Zitat K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumara, S. Iijima: Ware-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306, 1362–1364 (2004) K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumara, S. Iijima: Ware-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306, 1362–1364 (2004)
3.136.
Zurück zum Zitat C. N. R. Rao, R. Sen, B. C. Satishkumar, A. Govindaraj: Large aligned carbon nanotubes bundles from ferrocene pyrolysis, Chem. Commun., 1525–1526 (1998) C. N. R. Rao, R. Sen, B. C. Satishkumar, A. Govindaraj: Large aligned carbon nanotubes bundles from ferrocene pyrolysis, Chem. Commun., 1525–1526 (1998)
3.137.
Zurück zum Zitat R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen: Continous production of aligned carbon nanotubes: A step closer to commercial realization, Chem. Phys. Lett. 303, 467–474 (1999) R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen: Continous production of aligned carbon nanotubes: A step closer to commercial realization, Chem. Phys. Lett. 303, 467–474 (1999)
3.138.
Zurück zum Zitat X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu, D. Wu: Rapid growth of well-aligned carbon nanotube arrays, Chem. Phys. Lett. 362, 285–290 (2002) X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu, D. Wu: Rapid growth of well-aligned carbon nanotube arrays, Chem. Phys. Lett. 362, 285–290 (2002)
3.139.
Zurück zum Zitat X. Zhang, A. Cao, Y. Li, C. Xu, J. Liang, D. Wu, B. Wei: Self-organized arrays of carbon nanotube ropes, Chem. Phys. Lett. 351, 183–188 (2002) X. Zhang, A. Cao, Y. Li, C. Xu, J. Liang, D. Wu, B. Wei: Self-organized arrays of carbon nanotube ropes, Chem. Phys. Lett. 351, 183–188 (2002)
3.140.
Zurück zum Zitat K. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, D. J. Kim: Effects of ammonia on the alignment of carbon nanotubes in metal-assisted chemical vapor deposition, J. Eur. Ceram. Soc. 21, 2095–2098 (2001) K. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, D. J. Kim: Effects of ammonia on the alignment of carbon nanotubes in metal-assisted chemical vapor deposition, J. Eur. Ceram. Soc. 21, 2095–2098 (2001)
3.141.
Zurück zum Zitat N. S. Kim, Y. T. Lee, J. Park, J. B. Han, Y. S. Choi, S. Y. Choi, J. Choo, G. H. Lee: Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phtalocyanines, J. Phys. Chem. B 107, 9249–9255 (2003) N. S. Kim, Y. T. Lee, J. Park, J. B. Han, Y. S. Choi, S. Y. Choi, J. Choo, G. H. Lee: Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phtalocyanines, J. Phys. Chem. B 107, 9249–9255 (2003)
3.142.
Zurück zum Zitat C. Emmeger, J. M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Züttel, L. Schlapbach: Synthesis of carbon nanotubes over Fe catalyst on aluminum and suggested growth mechanism, Carbon 41, 539–547 (2003) C. Emmeger, J. M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Züttel, L. Schlapbach: Synthesis of carbon nanotubes over Fe catalyst on aluminum and suggested growth mechanism, Carbon 41, 539–547 (2003)
3.143.
Zurück zum Zitat M. Endo, H. W. Kroto: Formation of carbon nanofibers, J. Phys. Chem. 96, 6941–6944 (1992) M. Endo, H. W. Kroto: Formation of carbon nanofibers, J. Phys. Chem. 96, 6941–6944 (1992)
3.144.
Zurück zum Zitat R. S. Wagner: VLS mechanisms of crystal growth. In: Whisker Technology, ed. by P. Levit A. (Wiley, New York 1970) pp. 47–72 R. S. Wagner: VLS mechanisms of crystal growth. In: Whisker Technology, ed. by P. Levit A. (Wiley, New York 1970) pp. 47–72
3.145.
Zurück zum Zitat Y. H. Lee, S. G. Kim, D. Tomanek: Catalytic growth of single-wall carbon nanotubes: An ab initio study, Phys. Rev. Lett. 78, 2393–2396 (1997) Y. H. Lee, S. G. Kim, D. Tomanek: Catalytic growth of single-wall carbon nanotubes: An ab initio study, Phys. Rev. Lett. 78, 2393–2396 (1997)
3.146.
Zurück zum Zitat V. Jourdain, H. Kanzow, M. Castignolles, A. Loiseau, P. Bernier: Sequential catalytic growth of carbon nanotubes, Chem. Phys. Lett. 364, 27–33 (2002) V. Jourdain, H. Kanzow, M. Castignolles, A. Loiseau, P. Bernier: Sequential catalytic growth of carbon nanotubes, Chem. Phys. Lett. 364, 27–33 (2002)
3.147.
Zurück zum Zitat H. Dai: Carbon Nanotubes: Synthesis, integration, and properties, Acc. Chem. Res. 35, 1035–1044 (2002) H. Dai: Carbon Nanotubes: Synthesis, integration, and properties, Acc. Chem. Res. 35, 1035–1044 (2002)
3.148.
Zurück zum Zitat Y. Saito, M. Okuda, N. Fujimoto, T. Yoshikawa, M. Tomita, T. Hayashi: Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation, Jpn. J. Appl. Phys. 33, L526–L529 (1994) Y. Saito, M. Okuda, N. Fujimoto, T. Yoshikawa, M. Tomita, T. Hayashi: Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation, Jpn. J. Appl. Phys. 33, L526–L529 (1994)
3.149.
Zurück zum Zitat J. Bernholc, C. Brabec, M. Buongiorno Nardelli, A. Malti, C. Roland, B. J. Yakobson: Theory of growth and mechanical properties of nanotubes, Appl. Phys. A 67, 39–46 (1998) J. Bernholc, C. Brabec, M. Buongiorno Nardelli, A. Malti, C. Roland, B. J. Yakobson: Theory of growth and mechanical properties of nanotubes, Appl. Phys. A 67, 39–46 (1998)
3.150.
Zurück zum Zitat M. Pacheco: Synthèse des nanotubes de carbone par arc electrique. Ph.D. Thesis (Université Toulouse III, Toulouse 2003) M. Pacheco: Synthèse des nanotubes de carbone par arc electrique. Ph.D. Thesis (Université Toulouse III, Toulouse 2003)
3.151.
Zurück zum Zitat K. Méténier, S. Bonnamy, F. Béguin, C. Journet, P. Bernier, L. M. de la Chapelle, O. Chauvet, S. Lefrant: Coalescence of single walled nanotubes and formation of multi-walled carbon nanotubes under high temperature treatments, Carbon 40, 1765–1773 (2002) K. Méténier, S. Bonnamy, F. Béguin, C. Journet, P. Bernier, L. M. de la Chapelle, O. Chauvet, S. Lefrant: Coalescence of single walled nanotubes and formation of multi-walled carbon nanotubes under high temperature treatments, Carbon 40, 1765–1773 (2002)
3.152.
Zurück zum Zitat P. G. Collins, P. Avouris: Nanotubes for electronics, Sci. Am. 283, 38–45 (2000) P. G. Collins, P. Avouris: Nanotubes for electronics, Sci. Am. 283, 38–45 (2000)
3.153.
Zurück zum Zitat K. A. Williams, P. C. Eklund: Monte Carlo simulation of H2 physisorption in finite diameter carbon nanotube ropes, Chem. Phys. Lett. 320, 352–358 (2000) K. A. Williams, P. C. Eklund: Monte Carlo simulation of H2 physisorption in finite diameter carbon nanotube ropes, Chem. Phys. Lett. 320, 352–358 (2000)
3.154.
Zurück zum Zitat Q.-H. Yang, P. X. Hou, S. Bai, M. Z. Wang, H. M. Cheng: Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes, Chem. Phys. Lett. 345, 18–24 (2001) Q.-H. Yang, P. X. Hou, S. Bai, M. Z. Wang, H. M. Cheng: Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes, Chem. Phys. Lett. 345, 18–24 (2001)
3.155.
Zurück zum Zitat S. Inoue, N. Ichikuni, T. Suzuki, T. Uematsu, K. Kaneko: Capillary condensation of N2 on multiwall carbon nanotubes, J. Phys. Chem. 102, 4689–4692 (1998) S. Inoue, N. Ichikuni, T. Suzuki, T. Uematsu, K. Kaneko: Capillary condensation of N2 on multiwall carbon nanotubes, J. Phys. Chem. 102, 4689–4692 (1998)
3.156.
Zurück zum Zitat S. Agnihotri, J. P. Mota, M. Rostam-Abadi, M. J. Rood: Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation, Langmuir 21, 896–904 (2005) S. Agnihotri, J. P. Mota, M. Rostam-Abadi, M. J. Rood: Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation, Langmuir 21, 896–904 (2005)
3.157.
Zurück zum Zitat M. Eswaramoorthy, R. Sen, C. N. R. Rao: A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors, Chem. Phys. Lett. 304, 207–210 (1999) M. Eswaramoorthy, R. Sen, C. N. R. Rao: A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors, Chem. Phys. Lett. 304, 207–210 (1999)
3.158.
Zurück zum Zitat A. Peigney, Ch. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset: Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon 39, 507–514 (2001) A. Peigney, Ch. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset: Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon 39, 507–514 (2001)
3.159.
Zurück zum Zitat E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Béguin: Enhanced capacitance of carbon nanotubes through chemical activation, Chem. Phys. Lett. 336, 35–41 (2002) E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Béguin: Enhanced capacitance of carbon nanotubes through chemical activation, Chem. Phys. Lett. 336, 35–41 (2002)
3.160.
Zurück zum Zitat E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin: KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon 43, 786–795 (2005) E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin: KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon 43, 786–795 (2005)
3.161.
Zurück zum Zitat S. Delpeux, K. Szostak, E. Frackowiak, F. Béguin: An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity, Chem. Phys. Lett. 404, 374–378 (2005) S. Delpeux, K. Szostak, E. Frackowiak, F. Béguin: An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity, Chem. Phys. Lett. 404, 374–378 (2005)
3.162.
Zurück zum Zitat Z. Chen, W. Thiel, A. Hirsch: Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: dependence on the carbon-atom pyramidalization, Chem. Phys. Chem. 1, 93–97 (2003) Z. Chen, W. Thiel, A. Hirsch: Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: dependence on the carbon-atom pyramidalization, Chem. Phys. Chem. 1, 93–97 (2003)
3.163.
Zurück zum Zitat S. Park, D. Srivastava, K. Cho: Generalized reactivity of curved surfaces: carbon nanotubes, Nano Lett. 3, 1273–1277 (2003) S. Park, D. Srivastava, K. Cho: Generalized reactivity of curved surfaces: carbon nanotubes, Nano Lett. 3, 1273–1277 (2003)
3.164.
Zurück zum Zitat X. Lu, Z. Chen, P. Schleyer: Are Stone–Wales defect sites always more reactive than perfect sites in the sidewalls of single-wall carbon nanotubes?, J. Am. Chem. Soc. 127, 20–21 (2005) X. Lu, Z. Chen, P. Schleyer: Are Stone–Wales defect sites always more reactive than perfect sites in the sidewalls of single-wall carbon nanotubes?, J. Am. Chem. Soc. 127, 20–21 (2005)
3.165.
Zurück zum Zitat M. Muris, N. Dupont-Pavlosky, M. Bienfait, P. Zeppenfeld: Where are the molecules adsorbed on single-walled nanotubes?, Surf. Sci. 492, 67–74 (2001) M. Muris, N. Dupont-Pavlosky, M. Bienfait, P. Zeppenfeld: Where are the molecules adsorbed on single-walled nanotubes?, Surf. Sci. 492, 67–74 (2001)
3.166.
Zurück zum Zitat R. B. Hallock, Y. H. Yang: Adsorption of helium and other gases to carbon nanotubes and nanotubes bundles, J. Low Temp. Phys. 134, 21–30 (2004) R. B. Hallock, Y. H. Yang: Adsorption of helium and other gases to carbon nanotubes and nanotubes bundles, J. Low Temp. Phys. 134, 21–30 (2004)
3.167.
Zurück zum Zitat A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba: Gas adsorption in the inside and outside of single-walled carbon nanotubes, Chem. Phys. Lett. 336, 205–211 (2001) A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba: Gas adsorption in the inside and outside of single-walled carbon nanotubes, Chem. Phys. Lett. 336, 205–211 (2001)
3.168.
Zurück zum Zitat C. M. Yang, H. Kanoh, K. Kaneko, M. Yudasaka, S. Iijima: Adsorption behaviors of HiPco single-walled carbon nanotubes aggregates for alcohol vapors, J. Phys. Chem. 106, 8994–8999 (2002) C. M. Yang, H. Kanoh, K. Kaneko, M. Yudasaka, S. Iijima: Adsorption behaviors of HiPco single-walled carbon nanotubes aggregates for alcohol vapors, J. Phys. Chem. 106, 8994–8999 (2002)
3.169.
Zurück zum Zitat D. H. Yoo, G. H. Rue, M. H. W. Chan, Y. W. Hwang, H. K. Kim: Study of nitrogen adsorbed on open-ended nanotube bundles, J. Phys. Chem. B 107, 1540–1542 (2003) D. H. Yoo, G. H. Rue, M. H. W. Chan, Y. W. Hwang, H. K. Kim: Study of nitrogen adsorbed on open-ended nanotube bundles, J. Phys. Chem. B 107, 1540–1542 (2003)
3.170.
Zurück zum Zitat J. Jiang, S. I. Sandler: Nitrogen adsorption on carbon nanotubes bundles: role of the external surface, Phys. Rev. B 68, 245412–1–245412–9 (2003) J. Jiang, S. I. Sandler: Nitrogen adsorption on carbon nanotubes bundles: role of the external surface, Phys. Rev. B 68, 245412–1–245412–9 (2003)
3.171.
Zurück zum Zitat J. Zhao, A. Buldum, J. Han, J. P. Lu: Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology 13, 195–200 (2002) J. Zhao, A. Buldum, J. Han, J. P. Lu: Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology 13, 195–200 (2002)
3.172.
Zurück zum Zitat C. Matranga, B. Bockrath: Hydrogen-bonded and physisorbed CO in single-walled carbon nanotubes bundles, J. Phys. Chem. B 109, 4853–4864 (2005) C. Matranga, B. Bockrath: Hydrogen-bonded and physisorbed CO in single-walled carbon nanotubes bundles, J. Phys. Chem. B 109, 4853–4864 (2005)
3.173.
Zurück zum Zitat M. D. Ellison, M. J. Crotty, D. Koh, R. L. Spray, K. E. Tate: Adsorption of NH3 and NO2 on single-walled carbon nanotubes, J. Phys. Chem. B 108, 7938–7943 (2004) M. D. Ellison, M. J. Crotty, D. Koh, R. L. Spray, K. E. Tate: Adsorption of NH3 and NO2 on single-walled carbon nanotubes, J. Phys. Chem. B 108, 7938–7943 (2004)
3.174.
Zurück zum Zitat S. Picozzi, S. Santucci, L. Lozzi, L. Valentin, B. Delley: Ozone adsorption on carbon nanotubes: the role of Stone–Wales defects, J. Chem. Phys. 120, 7147–7152 (2004) S. Picozzi, S. Santucci, L. Lozzi, L. Valentin, B. Delley: Ozone adsorption on carbon nanotubes: the role of Stone–Wales defects, J. Chem. Phys. 120, 7147–7152 (2004)
3.175.
Zurück zum Zitat N. Chakrapani, Y. M. Zhang, S. K. Nayak, J. A. Moore, D. L. Carrol, Y. Y. Choi, P. M. Ajayan: Chemisorption of acetone on carbon nanotubes, J. Phys. Chem. B 107, 9308–9311 (2003) N. Chakrapani, Y. M. Zhang, S. K. Nayak, J. A. Moore, D. L. Carrol, Y. Y. Choi, P. M. Ajayan: Chemisorption of acetone on carbon nanotubes, J. Phys. Chem. B 107, 9308–9311 (2003)
3.176.
Zurück zum Zitat A. Chambers, C. Park, R. T. K. Baker, N. Rodriguez: Hydrogen storage in graphite nanofibers, J. Phys. Chem. B 102, 4253–4256 (1998) A. Chambers, C. Park, R. T. K. Baker, N. Rodriguez: Hydrogen storage in graphite nanofibers, J. Phys. Chem. B 102, 4253–4256 (1998)
3.177.
Zurück zum Zitat J. Giraudet, M. Dubois, D. Claves, J. P. Pinheiro, M. C. Schouler, P. Gadelle, A. Hamwi: Modifying the electronic properties of multi-wall carbon nanotubes via charge transfer, by chemical doping with some inorganic fluorides, Chem. Phys. Lett. 381, 306–314 (2003) J. Giraudet, M. Dubois, D. Claves, J. P. Pinheiro, M. C. Schouler, P. Gadelle, A. Hamwi: Modifying the electronic properties of multi-wall carbon nanotubes via charge transfer, by chemical doping with some inorganic fluorides, Chem. Phys. Lett. 381, 306–314 (2003)
3.178.
Zurück zum Zitat J. Hilding, E. A. Grulke, S. B. Sinnott, D. Qian, R. Andrews, M. Jagtoyen: Sorption of butane on carbon multiwall nanotubes at room temperature, Langmuir 17, 7540–7544 (2001) J. Hilding, E. A. Grulke, S. B. Sinnott, D. Qian, R. Andrews, M. Jagtoyen: Sorption of butane on carbon multiwall nanotubes at room temperature, Langmuir 17, 7540–7544 (2001)
3.179.
Zurück zum Zitat K. Masenelli-Varlot, E. McRae, N. Dupont-Pavlosky: Comparative adsorption of simple molecules on carbon nanotubes. Dependence of the adsorption properties on the nanotube morphology, Appl. Surf. Sci. 196, 209–215 (2002) K. Masenelli-Varlot, E. McRae, N. Dupont-Pavlosky: Comparative adsorption of simple molecules on carbon nanotubes. Dependence of the adsorption properties on the nanotube morphology, Appl. Surf. Sci. 196, 209–215 (2002)
3.180.
Zurück zum Zitat D. J. Browning, M. L. Gerrard, J. B. Lakeman, I. M. Mellor, R. J. Mortimer, M. C. Turpin: Studies into the storage of hydrogen in carbon nanofibers: Proposal of a possible mechanism, Nanolett. 2, 201–205 (2002) D. J. Browning, M. L. Gerrard, J. B. Lakeman, I. M. Mellor, R. J. Mortimer, M. C. Turpin: Studies into the storage of hydrogen in carbon nanofibers: Proposal of a possible mechanism, Nanolett. 2, 201–205 (2002)
3.181.
Zurück zum Zitat F. H. Yang, R. T. Yang: Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: insight into hydrogen storage in carbon nanotubes, Carbon 40, 437–444 (2002) F. H. Yang, R. T. Yang: Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: insight into hydrogen storage in carbon nanotubes, Carbon 40, 437–444 (2002)
3.182.
Zurück zum Zitat A. D. Lueking, R. T. Yang: Hydrogen spillover to enhance hydrogen storage - study of the effect of carbon physicochemical properties, Appl. Catal. A 265, 259–268 (2004) A. D. Lueking, R. T. Yang: Hydrogen spillover to enhance hydrogen storage - study of the effect of carbon physicochemical properties, Appl. Catal. A 265, 259–268 (2004)
3.183.
Zurück zum Zitat G. E. Froudakis: Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake, Nanolett. 1, 531–533 (2001) G. E. Froudakis: Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake, Nanolett. 1, 531–533 (2001)
3.184.
Zurück zum Zitat H. Ulbricht, G. Moos, T. Hertel: Physisorption of molecular oxygen on single-wall carbon nanotube bundles and graphite, Phys. Rev. B 66, 075404–1–075404–7 (2002) H. Ulbricht, G. Moos, T. Hertel: Physisorption of molecular oxygen on single-wall carbon nanotube bundles and graphite, Phys. Rev. B 66, 075404–1–075404–7 (2002)
3.185.
Zurück zum Zitat H. Ulbricht, J. Kriebel, G. Moos, T. Hertel: Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles, Chem. Phys. Lett. 363, 252–260 (2002) H. Ulbricht, J. Kriebel, G. Moos, T. Hertel: Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles, Chem. Phys. Lett. 363, 252–260 (2002)
3.186.
Zurück zum Zitat R. Saito, G. Dresselhaus, M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998) R. Saito, G. Dresselhaus, M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)
3.187.
Zurück zum Zitat A. Charlier, E. McRae, R. Heyd, M. F. Charlier, D. Moretti: Classification for double-walled carbon nanotubes, Carbon 37, 1779–1783 (1999) A. Charlier, E. McRae, R. Heyd, M. F. Charlier, D. Moretti: Classification for double-walled carbon nanotubes, Carbon 37, 1779–1783 (1999)
3.188.
Zurück zum Zitat A. Charlier, E. McRae, R. Heyd, M. F. Charlier: Metal semi-conductor transitions under uniaxial stress for single- and double-walled carbon nanotubes, J. Phys. Chem. Solids 62, 439–444 (2001) A. Charlier, E. McRae, R. Heyd, M. F. Charlier: Metal semi-conductor transitions under uniaxial stress for single- and double-walled carbon nanotubes, J. Phys. Chem. Solids 62, 439–444 (2001)
3.189.
Zurück zum Zitat P. Puech, H. Hubel, D. Dunstan, R. R. Bacsa, Ch. Laurent, W. S. Bacsa: Discontinuous tangential stress in double wall carbon nanotubes, Phys. Rev. Lett. 93, 095506 (2004) P. Puech, H. Hubel, D. Dunstan, R. R. Bacsa, Ch. Laurent, W. S. Bacsa: Discontinuous tangential stress in double wall carbon nanotubes, Phys. Rev. Lett. 93, 095506 (2004)
3.190.
Zurück zum Zitat P. M. Ajayan, M. Terrrones, A. de la Guardia, V. Hue, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, T. W. Ebbesen: Nanotubes in a flash – Ignition and reconstruction, Science 296, 705 (2002) P. M. Ajayan, M. Terrrones, A. de la Guardia, V. Hue, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, T. W. Ebbesen: Nanotubes in a flash – Ignition and reconstruction, Science 296, 705 (2002)
3.191.
Zurück zum Zitat H. Ajiki, T. Ando: Electronic states of carbon nanotubes, J. Phys. Soc. Jap. 62, 1255–1266 (1993) H. Ajiki, T. Ando: Electronic states of carbon nanotubes, J. Phys. Soc. Jap. 62, 1255–1266 (1993)
3.192.
Zurück zum Zitat S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361 (2002) S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361 (2002)
3.193.
Zurück zum Zitat M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, P. L. McEuen: Luttinger liquid behaviour in carbon nanotubes, Nature 397, 598–601 (1999) M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, P. L. McEuen: Luttinger liquid behaviour in carbon nanotubes, Nature 397, 598–601 (1999)
3.194.
Zurück zum Zitat C. T. White, T. N. Todorov: Carbon nanotubes as long ballistic conductors, Nature 393, 240–242 (1998) C. T. White, T. N. Todorov: Carbon nanotubes as long ballistic conductors, Nature 393, 240–242 (1998)
3.195.
Zurück zum Zitat S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer: Carbon nanotube quantum resistors, Science 280, 1744–1746 (1998) S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer: Carbon nanotube quantum resistors, Science 280, 1744–1746 (1998)
3.196.
Zurück zum Zitat W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, H. Park: Fabry–Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001) W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, H. Park: Fabry–Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)
3.197.
Zurück zum Zitat L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J.-P. Heremans, C. H. Olk, L. Stockman, C. van Haesendonck, Y. Buynseraeder: Quantum transport in a multi-walled carbon nanotube, Phys. Rev. Lett. 76, 479–482 (1996) L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J.-P. Heremans, C. H. Olk, L. Stockman, C. van Haesendonck, Y. Buynseraeder: Quantum transport in a multi-walled carbon nanotube, Phys. Rev. Lett. 76, 479–482 (1996)
3.198.
Zurück zum Zitat K. Liu, S. Roth, G. S. Duesberg, G. T. Kim, D. Popa, K. Mukhopadhyay, R. Doome, J. B'Nagy: Antilocalization in multiwalled carbon nanotubes, Phys. Rev. B 61, 2375–2379 (2000) K. Liu, S. Roth, G. S. Duesberg, G. T. Kim, D. Popa, K. Mukhopadhyay, R. Doome, J. B'Nagy: Antilocalization in multiwalled carbon nanotubes, Phys. Rev. B 61, 2375–2379 (2000)
3.199.
Zurück zum Zitat G. Fedorov, B. Lassagne, M. Sagnes, B. Raquet, J. M. Broto, F. Triozon, S. Roche, E. Flahaut: Gate-dependent magnetoresistance phenomena in carbon nanotubes, Phys. Rev. Lett. 94, 66801–66804 (2005) G. Fedorov, B. Lassagne, M. Sagnes, B. Raquet, J. M. Broto, F. Triozon, S. Roche, E. Flahaut: Gate-dependent magnetoresistance phenomena in carbon nanotubes, Phys. Rev. Lett. 94, 66801–66804 (2005)
3.200.
Zurück zum Zitat A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai: Ballistic carbon nanotube field-effect transistors, Nature 424, 654–657 (2003) A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai: Ballistic carbon nanotube field-effect transistors, Nature 424, 654–657 (2003)
3.201.
Zurück zum Zitat Y. A. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. I. Khodos, Y. B. Gorbatov, V. T. Volkov, C. Journet, M. Burghard: Supercurrents through single-walled carbon nanotubes, Science 284, 1508–1511 (1999) Y. A. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. I. Khodos, Y. B. Gorbatov, V. T. Volkov, C. Journet, M. Burghard: Supercurrents through single-walled carbon nanotubes, Science 284, 1508–1511 (1999)
3.202.
Zurück zum Zitat B. W. Alphenaar, K. Tsukagoshi, M. Wagner: Magnetoresistance of ferromagnetically contacted carbon nanotubes, Phys. Eng. 10, 499–504 (2001) B. W. Alphenaar, K. Tsukagoshi, M. Wagner: Magnetoresistance of ferromagnetically contacted carbon nanotubes, Phys. Eng. 10, 499–504 (2001)
3.203.
Zurück zum Zitat S. Berber, Y. Kwon, D. Tomanek: Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84, 4613–4616 (2000) S. Berber, Y. Kwon, D. Tomanek: Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84, 4613–4616 (2000)
3.204.
Zurück zum Zitat S. N. Song, X. K. Wang, R. P. H. Chang, J. B. Ketterson: Electronic properties of graphite nanotubules from galvanomagnetic effects, Phys. Rev. Lett. 72, 697–700 (1994) S. N. Song, X. K. Wang, R. P. H. Chang, J. B. Ketterson: Electronic properties of graphite nanotubules from galvanomagnetic effects, Phys. Rev. Lett. 72, 697–700 (1994)
3.205.
Zurück zum Zitat M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelley, R. S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637–640 (2000) M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelley, R. S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637–640 (2000)
3.206.
Zurück zum Zitat D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, R. E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, 3803–3805 (1999) D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, R. E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, 3803–3805 (1999)
3.207.
Zurück zum Zitat B. G. Demczyk, Y. M. Wang, J. Cumingd, M. Hetamn, W. Han, A. Zettl, R. O. Ritchie: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. A 334, 173–178 (2002) B. G. Demczyk, Y. M. Wang, J. Cumingd, M. Hetamn, W. Han, A. Zettl, R. O. Ritchie: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. A 334, 173–178 (2002)
3.208.
Zurück zum Zitat R. P. Gao, Z. L. Wang, Z. G. Bai, W. A. De Heer, L. M. Dai, M. Gao: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays, Phys. Rev. Lett. 85, 622–625 (2000) R. P. Gao, Z. L. Wang, Z. G. Bai, W. A. De Heer, L. M. Dai, M. Gao: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays, Phys. Rev. Lett. 85, 622–625 (2000)
3.209.
Zurück zum Zitat M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson: Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996) M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson: Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996)
3.210.
Zurück zum Zitat N. Yao, V. Lordie: Young's modulus of single-wall carbon nanotubes, J. Appl. Phys. 84, 1939–1943 (1998) N. Yao, V. Lordie: Young's modulus of single-wall carbon nanotubes, J. Appl. Phys. 84, 1939–1943 (1998)
3.211.
Zurück zum Zitat O. Lourie, H. D. Wagner: Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension, Appl. Phys. Lett. 73, 3527–3529 (1998) O. Lourie, H. D. Wagner: Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension, Appl. Phys. Lett. 73, 3527–3529 (1998)
3.212.
Zurück zum Zitat S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green: A simple chemical method of opening and filling carbon nanotubes, Nature 372, 159–162 (1994) S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green: A simple chemical method of opening and filling carbon nanotubes, Nature 372, 159–162 (1994)
3.213.
Zurück zum Zitat M. Monthioux: Filling single-wall carbon nanotubes, Carbon 40, 1809–1823 (2002) M. Monthioux: Filling single-wall carbon nanotubes, Carbon 40, 1809–1823 (2002)
3.214.
Zurück zum Zitat W. K. Hsu, S. Y. Chu, E. Munoz-Picone, J. L. Boldu, S. Firth, P. Franchi, B. P. Roberts, A. Shilder, H. Terrones, N. Grobert, Y. Q. Zhu, M. Terrones, M. E. McHenry, H. W. Kroto, D. R. M. Walton: Metallic behaviour of boron-containing carbon nanotubes, Chem. Phys. Lett. 323, 572–579 (2000) W. K. Hsu, S. Y. Chu, E. Munoz-Picone, J. L. Boldu, S. Firth, P. Franchi, B. P. Roberts, A. Shilder, H. Terrones, N. Grobert, Y. Q. Zhu, M. Terrones, M. E. McHenry, H. W. Kroto, D. R. M. Walton: Metallic behaviour of boron-containing carbon nanotubes, Chem. Phys. Lett. 323, 572–579 (2000)
3.215.
Zurück zum Zitat R. Czerw, M. Terrones, J. C. Charlier, X. Blasé, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Rühle, D. L. Caroll: Identification of electron donor states, in N -doped carbon nanotubes, Nanolett. 1, 457–460 (2001) R. Czerw, M. Terrones, J. C. Charlier, X. Blasé, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Rühle, D. L. Caroll: Identification of electron donor states, in N -doped carbon nanotubes, Nanolett. 1, 457–460 (2001)
3.216.
Zurück zum Zitat O. Stephan, P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier, P. Lefin: Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266, 1683–1685 (1994) O. Stephan, P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier, P. Lefin: Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266, 1683–1685 (1994)
3.217.
Zurück zum Zitat A. Loiseau, F. Willaime, N. Demoncy, N. Schramchenko, G. Hug, C. Colliex, H. Pascard: Boron nitride nanotubes, Carbon 36, 743–752 (1998) A. Loiseau, F. Willaime, N. Demoncy, N. Schramchenko, G. Hug, C. Colliex, H. Pascard: Boron nitride nanotubes, Carbon 36, 743–752 (1998)
3.218.
Zurück zum Zitat C. C. Tang, L.M. de la Chapelle, P. Li, Y. M. Liu, H. Y. Dang, S. S. Fan: Catalytic growth of nanotube and nanobamboo structures of boron nitride, Chem. Phys. Lett. 342, 492–496 (2001) C. C. Tang, L.M. de la Chapelle, P. Li, Y. M. Liu, H. Y. Dang, S. S. Fan: Catalytic growth of nanotube and nanobamboo structures of boron nitride, Chem. Phys. Lett. 342, 492–496 (2001)
3.219.
Zurück zum Zitat K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime: Synthesis of nanoparticles and nanotubes with well separated layers of boron-nitride and carbon, Science 278, 653–655 (1997) K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime: Synthesis of nanoparticles and nanotubes with well separated layers of boron-nitride and carbon, Science 278, 653–655 (1997)
3.220.
Zurück zum Zitat D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato: Large-scale synthesis and HRTEM analysis of single-walled B - and N -doped carbon nanotube bundles, Carbon 38, 2017–2027 (2000) D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato: Large-scale synthesis and HRTEM analysis of single-walled B - and N -doped carbon nanotube bundles, Carbon 38, 2017–2027 (2000)
3.221.
Zurück zum Zitat R. S. Lee, J. Gavillet, M. Lamy de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, F. Willaime: Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration, Phys. Rev. B 64, 121405.1–121405.4 (2001) R. S. Lee, J. Gavillet, M. Lamy de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, F. Willaime: Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration, Phys. Rev. B 64, 121405.1–121405.4 (2001)
3.222.
Zurück zum Zitat B. Burteaux, A. Claye, B. W. Smith, M. Monthioux, D. E. Luzzi, J. E. Fischer: Abundance of encapsulated C60 in single-wall carbon nanotubes, Chem. Phys. Lett. 310, 21–24 (1999) B. Burteaux, A. Claye, B. W. Smith, M. Monthioux, D. E. Luzzi, J. E. Fischer: Abundance of encapsulated C60 in single-wall carbon nanotubes, Chem. Phys. Lett. 310, 21–24 (1999)
3.223.
Zurück zum Zitat D. Ugarte, A. Châtelain, W. A. de Heer: Nanocapillarity and chemistry in carbon nanotubes, Science 274, 1897–1899 (1996) D. Ugarte, A. Châtelain, W. A. de Heer: Nanocapillarity and chemistry in carbon nanotubes, Science 274, 1897–1899 (1996)
3.224.
Zurück zum Zitat J. Cook, J. Sloan, M. L. H. Green: Opening and filling carbon nanotubes, Fuller. Sci. Technol. 5, 695–704 (1997) J. Cook, J. Sloan, M. L. H. Green: Opening and filling carbon nanotubes, Fuller. Sci. Technol. 5, 695–704 (1997)
3.225.
Zurück zum Zitat P. M. Ajayan, S. Iijima: Capillarity-induced filling of carbon nanotubes, Nature 361, 333–334 (1993) P. M. Ajayan, S. Iijima: Capillarity-induced filling of carbon nanotubes, Nature 361, 333–334 (1993)
3.226.
Zurück zum Zitat P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura: Opening carbon nanotubes with oxygen and implications for filling, Nature 362, 522–525 (1993) P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura: Opening carbon nanotubes with oxygen and implications for filling, Nature 362, 522–525 (1993)
3.227.
Zurück zum Zitat S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, R. Loufty: Yttrium carbide in nanotubes, Nature 362, 503 (1993) S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, R. Loufty: Yttrium carbide in nanotubes, Nature 362, 503 (1993)
3.228.
Zurück zum Zitat S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, R. Loufty: Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters, Appl. Phys. Lett. 63, 2073–2075 (1993) S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, R. Loufty: Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters, Appl. Phys. Lett. 63, 2073–2075 (1993)
3.229.
Zurück zum Zitat R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, S. Subramoney: Single-crystal metals encapsulated in carbon nanoparticles, Science 259, 346–348 (1993) R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, S. Subramoney: Single-crystal metals encapsulated in carbon nanoparticles, Science 259, 346–348 (1993)
3.230.
Zurück zum Zitat A. Loiseau, H. Pascard: Synthesis of long carbon nanotubes filled with Se , S , Sb , and Ge by the arc method, Chem. Phys. Lett. 256, 246–252 (1996) A. Loiseau, H. Pascard: Synthesis of long carbon nanotubes filled with Se , S , Sb , and Ge by the arc method, Chem. Phys. Lett. 256, 246–252 (1996)
3.231.
Zurück zum Zitat N. Demoncy, O. Stephan, N. Brun, C. Colliex, A. Loiseau, H. Pascard: Filling carbon nanotubes with metals by the arc discharge method: The key role of sulfur, Eur. Phys. J. B 4, 147–157 (1998) N. Demoncy, O. Stephan, N. Brun, C. Colliex, A. Loiseau, H. Pascard: Filling carbon nanotubes with metals by the arc discharge method: The key role of sulfur, Eur. Phys. J. B 4, 147–157 (1998)
3.232.
Zurück zum Zitat E. Flahaut, J. Sloan, K. S. Coleman, V. C. Williams, S. Friedrichs, N. Hanson, M. L. H. Green: 1D p-block halide crystals confined into single walled carbon nanotubes, Proc. Mater. Res. Soc. Symp. 633, A13.15.1–A13.15.6 (2001) E. Flahaut, J. Sloan, K. S. Coleman, V. C. Williams, S. Friedrichs, N. Hanson, M. L. H. Green: 1D p-block halide crystals confined into single walled carbon nanotubes, Proc. Mater. Res. Soc. Symp. 633, A13.15.1–A13.15.6 (2001)
3.233.
Zurück zum Zitat C. H. Kiang, J. S. Choi, T. T. Tran, A. D. Bacher: Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes, J. Phys. Chem. B 103, 7449–7551 (1999) C. H. Kiang, J. S. Choi, T. T. Tran, A. D. Bacher: Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes, J. Phys. Chem. B 103, 7449–7551 (1999)
3.234.
Zurück zum Zitat Z. L. Zhang, B. Li, Z. J. Shi, Z. N. Gu, Z. Q. Xue, L. M. Peng: Filling of single-walled carbon nanotubes with silver, J. Mater. Res. 15, 2658–2661 (2000) Z. L. Zhang, B. Li, Z. J. Shi, Z. N. Gu, Z. Q. Xue, L. M. Peng: Filling of single-walled carbon nanotubes with silver, J. Mater. Res. 15, 2658–2661 (2000)
3.235.
Zurück zum Zitat A. Govindaraj, B. C. Satishkumar, M. Nath, C. N. R. Tao: Metal nanowires and intercalated metal layers in single-walled carbon nanotubes bundles, Chem. Mater. 12, 202–205 (2000) A. Govindaraj, B. C. Satishkumar, M. Nath, C. N. R. Tao: Metal nanowires and intercalated metal layers in single-walled carbon nanotubes bundles, Chem. Mater. 12, 202–205 (2000)
3.236.
Zurück zum Zitat J. Mittal, M. Monthioux, H. Allouche: Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air, Chem. Phys. Lett. 339, 311–318 (2001) J. Mittal, M. Monthioux, H. Allouche: Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air, Chem. Phys. Lett. 339, 311–318 (2001)
3.237.
Zurück zum Zitat E. Dujardin, T. W. Ebbesen, H. Hiura, K. Tanigaki: Capillarity and wetting of carbon nanotubes, Science 265, 1850–1852 (1994) E. Dujardin, T. W. Ebbesen, H. Hiura, K. Tanigaki: Capillarity and wetting of carbon nanotubes, Science 265, 1850–1852 (1994)
3.238.
Zurück zum Zitat J. Sloan, A. I. Kirkland, J. L. Hutchison, M. L. H. Green: Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes, Chem. Commun., 1319–1332 (2002) J. Sloan, A. I. Kirkland, J. L. Hutchison, M. L. H. Green: Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes, Chem. Commun., 1319–1332 (2002)
3.239.
Zurück zum Zitat J. Sloan, M. C. Novotny, S. R. Bailey, G. Brown, C. Xu, V. C. Williams, S. Friedrichs, E. Flahaut, R. L. Callender, A. P. E. York, K. S. Coleman, M. L. H. Green, R. E. Dunin-Borkowski, J. L. Hutchison: Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes, Chem. Phys. Lett. 329, 61–65 (2000) J. Sloan, M. C. Novotny, S. R. Bailey, G. Brown, C. Xu, V. C. Williams, S. Friedrichs, E. Flahaut, R. L. Callender, A. P. E. York, K. S. Coleman, M. L. H. Green, R. E. Dunin-Borkowski, J. L. Hutchison: Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes, Chem. Phys. Lett. 329, 61–65 (2000)
3.240.
Zurück zum Zitat G. Brown, S. R. Bailey, J. Sloan, C. Xu, S. Friedrichs, E. Flahaut, K. S. Coleman, J. L. Hutchinson, R. E. Dunin-Borkowski, M. L. H. Green: Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes, Chem. Commun., 845–846 (2001) G. Brown, S. R. Bailey, J. Sloan, C. Xu, S. Friedrichs, E. Flahaut, K. S. Coleman, J. L. Hutchinson, R. E. Dunin-Borkowski, M. L. H. Green: Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes, Chem. Commun., 845–846 (2001)
3.241.
Zurück zum Zitat J. Sloan, D. M. Wright, H. G. Woo, S. Bailey, G. Brown, A. P. E. York, K. S. Coleman, J. L. Hutchison, M. L. H. Green: Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun., 699–700 (1999) J. Sloan, D. M. Wright, H. G. Woo, S. Bailey, G. Brown, A. P. E. York, K. S. Coleman, J. L. Hutchison, M. L. H. Green: Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun., 699–700 (1999)
3.242.
Zurück zum Zitat X. Fan, E. C. Dickey, P. C. Eklund, K. A. Williams, L. Grigorian, R. Buczko, S. T. Pantelides, S. J. Pennycook: Atomic arrangement of iodine atoms inside single-walled carbon nanotubes, Phys. Rev. Lett. 84, 4621–4624 (2000) X. Fan, E. C. Dickey, P. C. Eklund, K. A. Williams, L. Grigorian, R. Buczko, S. T. Pantelides, S. J. Pennycook: Atomic arrangement of iodine atoms inside single-walled carbon nanotubes, Phys. Rev. Lett. 84, 4621–4624 (2000)
3.243.
Zurück zum Zitat G. Brown, S. R. Bailey, M. Novotny, R. Carter, E. Flahaut, K. S. Coleman, J. L. Hutchison, M. L. H. Green, J. Sloan: High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes, Appl. Phys. A 76, 457–462 (2003) G. Brown, S. R. Bailey, M. Novotny, R. Carter, E. Flahaut, K. S. Coleman, J. L. Hutchison, M. L. H. Green, J. Sloan: High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes, Appl. Phys. A 76, 457–462 (2003)
3.244.
Zurück zum Zitat J. Sloan, D. E. Luzzi, A. I. Kirkland, J. L. Hutchison, M. L. H. Green: Imaging and characterization of molecules and one-dimensional crystals formed within carbon nanotubes, Mater. Res. Soc. Bull. 29, 265–271 (2004) J. Sloan, D. E. Luzzi, A. I. Kirkland, J. L. Hutchison, M. L. H. Green: Imaging and characterization of molecules and one-dimensional crystals formed within carbon nanotubes, Mater. Res. Soc. Bull. 29, 265–271 (2004)
3.245.
Zurück zum Zitat J. Chancolon, F. Archaimbault, A. Pineau, S. Bonnamy: Confinement of selenium into carbon nanotubes, Fuller. Nanotub. Car. N. 13, 189–194 (2005) J. Chancolon, F. Archaimbault, A. Pineau, S. Bonnamy: Confinement of selenium into carbon nanotubes, Fuller. Nanotub. Car. N. 13, 189–194 (2005)
3.246.
Zurück zum Zitat B. W. Smith, M. Monthioux, D. E. Luzzi: Encapsulated C60 in carbon nanotubes, Nature 396, 323–324 (1998) B. W. Smith, M. Monthioux, D. E. Luzzi: Encapsulated C60 in carbon nanotubes, Nature 396, 323–324 (1998)
3.247.
Zurück zum Zitat B. W. Smith, D. E. Luzzi: Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis, Chem. Phys. Lett. 321, 169–174 (2000) B. W. Smith, D. E. Luzzi: Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis, Chem. Phys. Lett. 321, 169–174 (2000)
3.248.
Zurück zum Zitat K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, S. Iijima: One-dimensional metallo-fullerene crystal generated inside single-walled carbon nanotubes, Phys. Rev. Lett. 85, 5384–5387 (2000) K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, S. Iijima: One-dimensional metallo-fullerene crystal generated inside single-walled carbon nanotubes, Phys. Rev. Lett. 85, 5384–5387 (2000)
3.249.
Zurück zum Zitat B. W. Smith, M. Monthioux, D. E. Luzzi: Carbon nanotube encapsulated fullerenes: A unique class of hybrid material, Chem. Phys. Lett. 315, 31–36 (1999) B. W. Smith, M. Monthioux, D. E. Luzzi: Carbon nanotube encapsulated fullerenes: A unique class of hybrid material, Chem. Phys. Lett. 315, 31–36 (1999)
3.250.
Zurück zum Zitat D. E. Luzzi, B. W. Smith: Carbon cage structures in single wall carbon nanotubes: A new class of materials, Carbon 38, 1751–1756 (2000) D. E. Luzzi, B. W. Smith: Carbon cage structures in single wall carbon nanotubes: A new class of materials, Carbon 38, 1751–1756 (2000)
3.251.
Zurück zum Zitat S. Bandow, M. Takisawa, K. Hirahara, M. Yudasoka, S. Iijima: Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes, Chem. Phys. Lett. 337, 48–54 (2001) S. Bandow, M. Takisawa, K. Hirahara, M. Yudasoka, S. Iijima: Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes, Chem. Phys. Lett. 337, 48–54 (2001)
3.252.
Zurück zum Zitat Y. Sakurabayashi, M. Monthioux, K. Kishita, Y. Suzuki, T. Kondo, M. Le Lay: Tayloring double wall carbon nanotubes?. In: Molecular Nanostructures, Amer. Inst. Phys. Conf. Proc., Vol. 685, ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2003) pp. 302–305 Y. Sakurabayashi, M. Monthioux, K. Kishita, Y. Suzuki, T. Kondo, M. Le Lay: Tayloring double wall carbon nanotubes?. In: Molecular Nanostructures, Amer. Inst. Phys. Conf. Proc., Vol. 685, ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2003) pp. 302–305
3.253.
Zurück zum Zitat B. W. Smith, D. E. Luzzi, Y. Achiba: Tumbling atoms and evidence for charge transfer in La2 @C80 @SWNT, Chem. Phys. Lett. 331, 137–142 (2000) B. W. Smith, D. E. Luzzi, Y. Achiba: Tumbling atoms and evidence for charge transfer in La2 @C80 @SWNT, Chem. Phys. Lett. 331, 137–142 (2000)
3.254.
Zurück zum Zitat K. Suenaga, M. Tence, C. Mory, C. Colliex, H. Kato, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima: Element-selective single atom imaging, Science 290, 2280–2282 (2000) K. Suenaga, M. Tence, C. Mory, C. Colliex, H. Kato, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima: Element-selective single atom imaging, Science 290, 2280–2282 (2000)
3.255.
Zurück zum Zitat D. E. Luzzi, B. W. Smith, R. Russo, B. C. Satishkumar, F. Stercel, N. R. C. Nemes: Encapsulation of metallofullerenes and metallocenes in carbon nanotubes, Proc. Electronic Properties of Novel Materials-XVI Int. Winterschool – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2001) 622–626 D. E. Luzzi, B. W. Smith, R. Russo, B. C. Satishkumar, F. Stercel, N. R. C. Nemes: Encapsulation of metallofullerenes and metallocenes in carbon nanotubes, Proc. Electronic Properties of Novel Materials-XVI Int. Winterschool – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2001) 622–626
3.256.
Zurück zum Zitat D. J. Hornbaker, S.-J. Kahng, S. Misra, B. W. Smith, A. T. Johnson, E. J. Mele, D. E. Luzzi, A. Yazdani: Mapping the one-dimensional electronic states of nanotube peapod structures, Science 295, 828–831 (2002) D. J. Hornbaker, S.-J. Kahng, S. Misra, B. W. Smith, A. T. Johnson, E. J. Mele, D. E. Luzzi, A. Yazdani: Mapping the one-dimensional electronic states of nanotube peapod structures, Science 295, 828–831 (2002)
3.257.
Zurück zum Zitat H. Kondo, H. Kino, T. Ohno: Transport properties of carbon nanotubes encapsulating C60 and related materials, Phys. Rev. B 71, 115413 (2005) H. Kondo, H. Kino, T. Ohno: Transport properties of carbon nanotubes encapsulating C60 and related materials, Phys. Rev. B 71, 115413 (2005)
3.258.
Zurück zum Zitat S. H. Jhang, S. W. Lee, D. S. Lee, Y. W. Park, G. H. Jeong, T. Hirata, R. Hatakeyama, U. Dettlaff, S. Roth, M. S. Kabir, E. E. B. Campbell: Random telegraph noise in carbon nanotube peapod transistors, Fuller. Nanotub. Car. N. 13, 195–198 (2005) S. H. Jhang, S. W. Lee, D. S. Lee, Y. W. Park, G. H. Jeong, T. Hirata, R. Hatakeyama, U. Dettlaff, S. Roth, M. S. Kabir, E. E. B. Campbell: Random telegraph noise in carbon nanotube peapod transistors, Fuller. Nanotub. Car. N. 13, 195–198 (2005)
3.259.
Zurück zum Zitat G. H. Jeong, R. Hatakeyama, T. Hirata, K. Tohji, K. Motomiya, N. Sato, Y. Kawazoe: Structural deformation of single-walled carbon nanotubes and fullerene encapsulation due to magnetized plasma ion irradiation, Appl. Phys. Lett. 79, 4213–4215 (2001) G. H. Jeong, R. Hatakeyama, T. Hirata, K. Tohji, K. Motomiya, N. Sato, Y. Kawazoe: Structural deformation of single-walled carbon nanotubes and fullerene encapsulation due to magnetized plasma ion irradiation, Appl. Phys. Lett. 79, 4213–4215 (2001)
3.260.
Zurück zum Zitat Y. P. Sun, K. Fu, Y. Lin, W. Huang: Functionalized carbon nanotubes: Properties and applications, Acc. Chem. Res. 35, 1095–1104 (2002) Y. P. Sun, K. Fu, Y. Lin, W. Huang: Functionalized carbon nanotubes: Properties and applications, Acc. Chem. Res. 35, 1095–1104 (2002)
3.261.
Zurück zum Zitat S. Osswald, E. Flahaut, H. Ye, Y. Gogotsi: Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation, Chem. Phys. Lett. 402, 422–427 (2005) S. Osswald, E. Flahaut, H. Ye, Y. Gogotsi: Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation, Chem. Phys. Lett. 402, 422–427 (2005)
3.262.
Zurück zum Zitat J. Chen, M. A. Hamon, M. Hui, C. Yongsheng, A. M. Rao, P. C. Eklund, R. C. Haddon: Solution properties of single-walled carbon nanotubes, Science 282, 95–98 (1998) J. Chen, M. A. Hamon, M. Hui, C. Yongsheng, A. M. Rao, P. C. Eklund, R. C. Haddon: Solution properties of single-walled carbon nanotubes, Science 282, 95–98 (1998)
3.263.
Zurück zum Zitat J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon, H. Hu, R. W. Cohn, P. C. Eklund, D. T. Colbert, R. E. Smalley, R. C. Haddon: Dissolution of full-length single-walled carbon nanotubes, J. Phys. Chem. B 105, 2525–2528 (2001) J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon, H. Hu, R. W. Cohn, P. C. Eklund, D. T. Colbert, R. E. Smalley, R. C. Haddon: Dissolution of full-length single-walled carbon nanotubes, J. Phys. Chem. B 105, 2525–2528 (2001)
3.264.
Zurück zum Zitat F. Pompeo, D. E. Resasco: Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine, Nanolett. 2, 369–373 (2002) F. Pompeo, D. E. Resasco: Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine, Nanolett. 2, 369–373 (2002)
3.265.
Zurück zum Zitat Y. P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L. A. Riddle, Y. J. Yu, D. L. Carroll: Soluble dendron-functionalized carbon nanotubes: Preparation, characterization, and properties, Chem. Mater. 13, 2864–2869 (2001) Y. P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L. A. Riddle, Y. J. Yu, D. L. Carroll: Soluble dendron-functionalized carbon nanotubes: Preparation, characterization, and properties, Chem. Mater. 13, 2864–2869 (2001)
3.266.
Zurück zum Zitat K. Fu, W. Huang, Y. Lin, L. A. Riddle, D. L. Carroll, Y. P. Sun: Defunctionalization of functionalized carbon nanotubes, Nanolett. 1, 439–441 (2001) K. Fu, W. Huang, Y. Lin, L. A. Riddle, D. L. Carroll, Y. P. Sun: Defunctionalization of functionalized carbon nanotubes, Nanolett. 1, 439–441 (2001)
3.267.
Zurück zum Zitat P. W. Chiu, G. S. Duesberg, U. Dettlaff-Weglikowska, S. Roth: Interconnection of carbon nanotubes by chemical functionalization, Appl. Phys. Lett. 80, 3811–3813 (2002) P. W. Chiu, G. S. Duesberg, U. Dettlaff-Weglikowska, S. Roth: Interconnection of carbon nanotubes by chemical functionalization, Appl. Phys. Lett. 80, 3811–3813 (2002)
3.268.
Zurück zum Zitat E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge, J. L. Margrave: Fluorination of single-wall carbon nanotubes, Chem. Phys. Lett. 296, 188–194 (1998) E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge, J. L. Margrave: Fluorination of single-wall carbon nanotubes, Chem. Phys. Lett. 296, 188–194 (1998)
3.269.
Zurück zum Zitat V. N. Khabashesku, W. E. Billups, J. L. Margrave: Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions, Acc. Chem. Res. 35, 1087–1095 (2002) V. N. Khabashesku, W. E. Billups, J. L. Margrave: Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions, Acc. Chem. Res. 35, 1087–1095 (2002)
3.270.
Zurück zum Zitat P. J. Boul, J. Liu, E. T. Michelson, C. B. Huffman, L. M. Ericson, I. W. Chiang, K. A. Smith, D. T. Colbert, R. H. Hauge, J. L. Margrave, R. E. Smalley: Reversible side-wall functionalization of buckytubes, Chem. Phys. Lett. 310, 367–372 (1999) P. J. Boul, J. Liu, E. T. Michelson, C. B. Huffman, L. M. Ericson, I. W. Chiang, K. A. Smith, D. T. Colbert, R. H. Hauge, J. L. Margrave, R. E. Smalley: Reversible side-wall functionalization of buckytubes, Chem. Phys. Lett. 310, 367–372 (1999)
3.271.
Zurück zum Zitat J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, J. M. Tour: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode, J. Am. Chem. Soc. 123, 6536–6542 (2001) J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, J. M. Tour: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode, J. Am. Chem. Soc. 123, 6536–6542 (2001)
3.272.
Zurück zum Zitat M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, F. Jellen: Sidewall functionalization of carbon nanotubes, Angew. Chem. Int. Ed. 40, 4002–4005 (2001) M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, F. Jellen: Sidewall functionalization of carbon nanotubes, Angew. Chem. Int. Ed. 40, 4002–4005 (2001)
3.273.
Zurück zum Zitat Y. Chen, R. C. Haddon, S. Fang, A. M. Rao, P. C. Eklund, W. H. Lee, E. C. Dickey, E. A. Grulke, J. C. Pendergrass, A. Chavan, B. E. Haley, R. E. Smalley: Chemical attachment of organic functional groups to single-walled carbon nanotube material, J. Mater. Res. 13, 2423–2431 (1998) Y. Chen, R. C. Haddon, S. Fang, A. M. Rao, P. C. Eklund, W. H. Lee, E. C. Dickey, E. A. Grulke, J. C. Pendergrass, A. Chavan, B. E. Haley, R. E. Smalley: Chemical attachment of organic functional groups to single-walled carbon nanotube material, J. Mater. Res. 13, 2423–2431 (1998)
3.274.
Zurück zum Zitat C. Velasco-Santos, A. L. Martinez-Hernandez, M. Lozada-Cassou, A. Alvarez-Castillo, V. M. Castano: Chemical functionalization of carbon nanotubes through an organosilane, Nanotechnology 13, 495–498 (2002) C. Velasco-Santos, A. L. Martinez-Hernandez, M. Lozada-Cassou, A. Alvarez-Castillo, V. M. Castano: Chemical functionalization of carbon nanotubes through an organosilane, Nanotechnology 13, 495–498 (2002)
3.275.
Zurück zum Zitat A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S. W. Chung, H. Choi, J. R. Heath: Preparation and properties of polymer-wrapped single-walled carbon nanotubes, Angew. Chem. Int. Ed. 41, 1721–1725 (2002) A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S. W. Chung, H. Choi, J. R. Heath: Preparation and properties of polymer-wrapped single-walled carbon nanotubes, Angew. Chem. Int. Ed. 41, 1721–1725 (2002)
3.276.
Zurück zum Zitat A. Pénicaud, P. Poulin, A. Derré, E. Anglaret, P. Petit: Spontaneous dissolution of a single-wall carbon nanotube salt, J. Amer. Chem. Soc. 127, 8–9 (2005) A. Pénicaud, P. Poulin, A. Derré, E. Anglaret, P. Petit: Spontaneous dissolution of a single-wall carbon nanotube salt, J. Amer. Chem. Soc. 127, 8–9 (2005)
3.277.
Zurück zum Zitat R. Stevens, C. Nguyen, A. Cassel, L. Delzeit, M. Meyyapan, J. Han: Improved fabrication approach for carbon nanotube probe devices, Appl. Phys. Lett. 77, 3453–3455 (2000) R. Stevens, C. Nguyen, A. Cassel, L. Delzeit, M. Meyyapan, J. Han: Improved fabrication approach for carbon nanotube probe devices, Appl. Phys. Lett. 77, 3453–3455 (2000)
3.278.
Zurück zum Zitat J. H. Hafner, C. L. Cheung, A. T. Wooley, C. M. Lieber: Structural and functional imaging with carbon nanotube AFM probes, Progr. Biophys. Molec. Biol. 77, 73–110 (2001) J. H. Hafner, C. L. Cheung, A. T. Wooley, C. M. Lieber: Structural and functional imaging with carbon nanotube AFM probes, Progr. Biophys. Molec. Biol. 77, 73–110 (2001)
3.279.
Zurück zum Zitat S. S. Wong, E. Joselevich, A. T. Woodley, C. L. Cheung, C. M. Lieber: Covalently functionalized nanotubes as nanometre-size probes in chemistry and biology, Nature 394, 52–55 (1998) S. S. Wong, E. Joselevich, A. T. Woodley, C. L. Cheung, C. M. Lieber: Covalently functionalized nanotubes as nanometre-size probes in chemistry and biology, Nature 394, 52–55 (1998)
3.280.
Zurück zum Zitat C. L. Cheung, J. H. Hafner, C. M. Lieber: Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proc. Natl. Acad. Sci. USA 97, 3809–3813 (2000) C. L. Cheung, J. H. Hafner, C. M. Lieber: Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proc. Natl. Acad. Sci. USA 97, 3809–3813 (2000)
3.281.
Zurück zum Zitat W. A. de Heer, A. Châtelain, D. Ugarte: A carbon nanotube field-emission electron source, Science 270, 1179–1180 (1995) W. A. de Heer, A. Châtelain, D. Ugarte: A carbon nanotube field-emission electron source, Science 270, 1179–1180 (1995)
3.282.
Zurück zum Zitat J. M. Bonard, J. P. Salvetat, T. Stockli, W. A. de Heer, L. Forro, A. Chatelâin: Field emission from single-wall carbon nanotube films, Appl. Phys. Lett. 73, 918–920 (1998) J. M. Bonard, J. P. Salvetat, T. Stockli, W. A. de Heer, L. Forro, A. Chatelâin: Field emission from single-wall carbon nanotube films, Appl. Phys. Lett. 73, 918–920 (1998)
3.283.
Zurück zum Zitat W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin: Large curent density from carbon nanotube field emitters, Appl. Phys. Lett. 75, 873–875 (1999) W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin: Large curent density from carbon nanotube field emitters, Appl. Phys. Lett. 75, 873–875 (1999)
3.284.
Zurück zum Zitat Y. Saito, R. Mizushima, T. Tanaka, K. Tohji, K. Uchida, M. Yumura, S. Uemura: Synthesis, structure, and field emission of carbon nanotubes, Fuller. Sci. Technol. 7, 653–664 (1999) Y. Saito, R. Mizushima, T. Tanaka, K. Tohji, K. Uchida, M. Yumura, S. Uemura: Synthesis, structure, and field emission of carbon nanotubes, Fuller. Sci. Technol. 7, 653–664 (1999)
3.285.
Zurück zum Zitat J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai: Nanotube molecular wire as chemical sensors, Science 287, 622–625 (2000) J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai: Nanotube molecular wire as chemical sensors, Science 287, 622–625 (2000)
3.286.
Zurück zum Zitat P. G. Collins, K. Bradley, M. Ishigami, A. Zettl: Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287, 1801–1804 (2000) P. G. Collins, K. Bradley, M. Ishigami, A. Zettl: Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287, 1801–1804 (2000)
3.287.
Zurück zum Zitat H. Chang, J. D. Lee, S. M. Lee, Y. H. Lee: Adsorption of NH3 and NO2 molecules on carbon nanotubes, Appl. Phys. Lett. 79, 3863–3865 (2001) H. Chang, J. D. Lee, S. M. Lee, Y. H. Lee: Adsorption of NH3 and NO2 molecules on carbon nanotubes, Appl. Phys. Lett. 79, 3863–3865 (2001)
3.288.
Zurück zum Zitat C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J. M. Kenny, S. Santucci: NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition, Sensor. Actuat. B 93, 333–337 (2003) C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J. M. Kenny, S. Santucci: NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition, Sensor. Actuat. B 93, 333–337 (2003)
3.289.
Zurück zum Zitat J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan: Carbon nanotubes sensors for gas and organic vapor detection, Nano Lett. 3, 929–933 (2003) J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan: Carbon nanotubes sensors for gas and organic vapor detection, Nano Lett. 3, 929–933 (2003)
3.290.
Zurück zum Zitat O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey, C. A. Grimes: Gas sensing characteristics of multi-wall carbon nanotubes, Sensor. Actuat. B 81, 32–41 (2001) O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey, C. A. Grimes: Gas sensing characteristics of multi-wall carbon nanotubes, Sensor. Actuat. B 81, 32–41 (2001)
3.291.
Zurück zum Zitat K. G. Ong, K. Zeng, C. A. Grimes: A wireless, passive carbon nanotube-based gas sensor, IEEE Sens. J. 2/2, 82–88 (2002) K. G. Ong, K. Zeng, C. A. Grimes: A wireless, passive carbon nanotube-based gas sensor, IEEE Sens. J. 2/2, 82–88 (2002)
3.292.
Zurück zum Zitat J. Kong, M. G. Chapline, H. Dai: Functionalized carbon nanotubes for molecular hydrogen sensors, Adv. Mater. 13, 1384–1386 (2001) J. Kong, M. G. Chapline, H. Dai: Functionalized carbon nanotubes for molecular hydrogen sensors, Adv. Mater. 13, 1384–1386 (2001)
3.293.
Zurück zum Zitat A. Modi, N. Koratkar, E. Lass, B. Wei, P. M. Ajayan: Miniaturized gas ionisation sensors using carbon nanotubes, Nature 424, 171–174 (2003) A. Modi, N. Koratkar, E. Lass, B. Wei, P. M. Ajayan: Miniaturized gas ionisation sensors using carbon nanotubes, Nature 424, 171–174 (2003)
3.294.
Zurück zum Zitat F. Rodriguez-Reinoso: The role of carbon materials in heterogeneous catalysis, Carbon 36, 159–175 (1998) F. Rodriguez-Reinoso: The role of carbon materials in heterogeneous catalysis, Carbon 36, 159–175 (1998)
3.295.
Zurück zum Zitat E. Auer, A. Freund, J. Pietsch, T. Tacke: Carbon as support for industrial precious metal catalysts, Appl. Catal. A 173, 259–271 (1998) E. Auer, A. Freund, J. Pietsch, T. Tacke: Carbon as support for industrial precious metal catalysts, Appl. Catal. A 173, 259–271 (1998)
3.296.
Zurück zum Zitat J. M. Planeix, N. Coustel, B. Coq, B. Botrons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P. M. Ajayan: Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc. 116, 7935–7936 (1994) J. M. Planeix, N. Coustel, B. Coq, B. Botrons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P. M. Ajayan: Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc. 116, 7935–7936 (1994)
3.297.
Zurück zum Zitat P. Serp, M. Corrias, P. Kalck: Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A 253, 337–358 (2003) P. Serp, M. Corrias, P. Kalck: Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A 253, 337–358 (2003)
3.298.
Zurück zum Zitat K. P. De Jong, J. W. Geus: Carbon nanofibers: catalytic synthesis and applications, Catal. Rev. 42, 481–510 (2000) K. P. De Jong, J. W. Geus: Carbon nanofibers: catalytic synthesis and applications, Catal. Rev. 42, 481–510 (2000)
3.299.
Zurück zum Zitat N. F. Goldshleger: Fullerene and fullerene-based materials in catalysis, Fuller. Sci. Technol. 9, 255–280 (2001) N. F. Goldshleger: Fullerene and fullerene-based materials in catalysis, Fuller. Sci. Technol. 9, 255–280 (2001)
3.300.
Zurück zum Zitat M. F. R. Pereira, J. L. Figueiredo, J. J. M. Órfão, P. Serp, P. Kalck, Y. Kihn: Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene, Carbon 42, 2807–2813 (2004) M. F. R. Pereira, J. L. Figueiredo, J. J. M. Órfão, P. Serp, P. Kalck, Y. Kihn: Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene, Carbon 42, 2807–2813 (2004)
3.301.
Zurück zum Zitat G. Mestl, N. I. Maksimova, N. Keller, V. V. Roddatis, R. Schlögl: Carbon nanofilaments in heterogeneous catalysis: An industrial application for new carbon materials?, Angew. Chem. Int. Ed. Engl. 40, 2066–2068 (2001) G. Mestl, N. I. Maksimova, N. Keller, V. V. Roddatis, R. Schlögl: Carbon nanofilaments in heterogeneous catalysis: An industrial application for new carbon materials?, Angew. Chem. Int. Ed. Engl. 40, 2066–2068 (2001)
3.302.
Zurück zum Zitat N. Muradov: Catalysis of methane decomposition over elemental carbon, Catal. Commun. 2, 89–94 (2001) N. Muradov: Catalysis of methane decomposition over elemental carbon, Catal. Commun. 2, 89–94 (2001)
3.303.
Zurück zum Zitat J. E. Fischer, A. T. Johnson: Electronic properties of carbon nanotubes, Curr. Opin. Solid State Mater. Sci. 4, 28–33 (1999) J. E. Fischer, A. T. Johnson: Electronic properties of carbon nanotubes, Curr. Opin. Solid State Mater. Sci. 4, 28–33 (1999)
3.304.
Zurück zum Zitat M. Menon, A. N. Andriotis, G. E. Froudakis: Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls, Chem. Phys. Lett. 320, 425–434 (2000) M. Menon, A. N. Andriotis, G. E. Froudakis: Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls, Chem. Phys. Lett. 320, 425–434 (2000)
3.305.
Zurück zum Zitat Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, L. M. Gan: Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir 18, 4054–4060 (2002) Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, L. M. Gan: Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir 18, 4054–4060 (2002)
3.306.
Zurück zum Zitat R. Giordano, P. Serp, P. Kalck, Y. Kihn, J. Schreiber, C. Marhic, J.-L. Duvail: Preparation of rhodium supported on carbon canotubes catalysts via surface mediated organometallic reaction, Eur. J. Inorg. Chem., 610–617 (2003) R. Giordano, P. Serp, P. Kalck, Y. Kihn, J. Schreiber, C. Marhic, J.-L. Duvail: Preparation of rhodium supported on carbon canotubes catalysts via surface mediated organometallic reaction, Eur. J. Inorg. Chem., 610–617 (2003)
3.307.
Zurück zum Zitat H.-B. Chen, J. D. Lin, Y. Cai, X. Y. Wang, J. Yi, J. Wang, G. Wei, Y. Z. Lin, D. W. Liao: Novel multi-walled nanotube-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure, Appl. Surf. Sci. 180, 328–335 (2001) H.-B. Chen, J. D. Lin, Y. Cai, X. Y. Wang, J. Yi, J. Wang, G. Wei, Y. Z. Lin, D. W. Liao: Novel multi-walled nanotube-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure, Appl. Surf. Sci. 180, 328–335 (2001)
3.308.
Zurück zum Zitat Y. Zhang, H. B. Zhang, G. D. Lin, P. Chen, Y. Z. Yuan, K. R. Tsai: Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh -phosphine catalyst, Appl. Catal. A 187, 213–224 (1999) Y. Zhang, H. B. Zhang, G. D. Lin, P. Chen, Y. Z. Yuan, K. R. Tsai: Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh -phosphine catalyst, Appl. Catal. A 187, 213–224 (1999)
3.309.
Zurück zum Zitat T. Kyotani, S. Nakazaki, W.-H. Xu, A. Tomita: Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation, Carbon 39, 782–785 (2001) T. Kyotani, S. Nakazaki, W.-H. Xu, A. Tomita: Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation, Carbon 39, 782–785 (2001)
3.310.
Zurück zum Zitat Z. J. Liu, Z. Y. Yuan, W. Zhou, L. M. Peng, Z. Xu: Co /carbon nanotubes monometallic system: The effects of oxidation by nitric acid, Phys. Chem. Chem. Phys. 3, 2518–2521 (2001) Z. J. Liu, Z. Y. Yuan, W. Zhou, L. M. Peng, Z. Xu: Co /carbon nanotubes monometallic system: The effects of oxidation by nitric acid, Phys. Chem. Chem. Phys. 3, 2518–2521 (2001)
3.311.
Zurück zum Zitat Carillo, J. A. Swartz, J. M. Gamba, R. S. Kane, N. Chakrapani, B. Wei, P. M. Ajayan: Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles, Nano Lett. 3, 1437–1440 (2003) Carillo, J. A. Swartz, J. M. Gamba, R. S. Kane, N. Chakrapani, B. Wei, P. M. Ajayan: Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles, Nano Lett. 3, 1437–1440 (2003)
3.312.
Zurück zum Zitat M. S. Dresselhaus, K. A. Williams, P. C. Eklund: Hydrogen adsorption in carbon materials, Mater. Res. Soc. Bull. 24, 45–50 (1999) M. S. Dresselhaus, K. A. Williams, P. C. Eklund: Hydrogen adsorption in carbon materials, Mater. Res. Soc. Bull. 24, 45–50 (1999)
3.313.
Zurück zum Zitat H.-M. Cheng, Q.-H. Yang, C. Liu: Hydrogen storage in carbon nanotubes, Carbon 39, 1447–1454 (2001) H.-M. Cheng, Q.-H. Yang, C. Liu: Hydrogen storage in carbon nanotubes, Carbon 39, 1447–1454 (2001)
3.314.
Zurück zum Zitat G. G. Tibbetts, G. P. Meisner, C. H. Olk: Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers, Carbon 39, 2291–2301 (2001) G. G. Tibbetts, G. P. Meisner, C. H. Olk: Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers, Carbon 39, 2291–2301 (2001)
3.315.
Zurück zum Zitat F. L. Darkrim, P. Malbrunot, G. P. Tartaglia: Review of hydrogen storage adsorption in carbon nanotubes, Int. J. Hydrogen Energy 27, 193–202 (2002) F. L. Darkrim, P. Malbrunot, G. P. Tartaglia: Review of hydrogen storage adsorption in carbon nanotubes, Int. J. Hydrogen Energy 27, 193–202 (2002)
3.316.
Zurück zum Zitat G. E. Froudakis: Hydrogen interaction with carbon nanotubes: a review of ab initio studies, J. Phys.: Condens. Matter 14, R453–R465 (2002) G. E. Froudakis: Hydrogen interaction with carbon nanotubes: a review of ab initio studies, J. Phys.: Condens. Matter 14, R453–R465 (2002)
3.317.
Zurück zum Zitat M. Hirscher, M. Becher: Hydrogen storage in carbon nanotubes, J. Nanosci. Nanotechnol. 3(1-2), 3–17 (2003) M. Hirscher, M. Becher: Hydrogen storage in carbon nanotubes, J. Nanosci. Nanotechnol. 3(1-2), 3–17 (2003)
3.318.
Zurück zum Zitat C. Park, P. E. Anderson, C. D. Tan, R. Hidalgo, N. Rodriguez: Further studies of the interaction of hydrogen with graphite nanofibers, J. Phys. Chem. B 103, 10572–1058 (1999) C. Park, P. E. Anderson, C. D. Tan, R. Hidalgo, N. Rodriguez: Further studies of the interaction of hydrogen with graphite nanofibers, J. Phys. Chem. B 103, 10572–1058 (1999)
3.319.
Zurück zum Zitat A. D. Lueking, R. T. Yang, N. M. Rodriguez, R. T. K. Baker: Hydrogen storage in graphite nanofibers: effect of synthesis catalyst and pretreatment conditions, Langmuir 20(3), 714–721 (2004) A. D. Lueking, R. T. Yang, N. M. Rodriguez, R. T. K. Baker: Hydrogen storage in graphite nanofibers: effect of synthesis catalyst and pretreatment conditions, Langmuir 20(3), 714–721 (2004)
3.320.
Zurück zum Zitat A. D. Lueking, R. T. Yang: Hydrogen storage in carbon nanotubes: residual metal content and pretreatment temperature, AIChE J. 49(6), 1556–1568 (2003) A. D. Lueking, R. T. Yang: Hydrogen storage in carbon nanotubes: residual metal content and pretreatment temperature, AIChE J. 49(6), 1556–1568 (2003)
3.321.
Zurück zum Zitat C. C. Ahn, Y. Ye, B. V. Ratnakumar, C. Witham, R. C. Bowman, B. Fultz: Hydrogen adsorption measurements on graphite nanofibers, Appl. Phys. Lett. 73, 3378–3380 (1998) C. C. Ahn, Y. Ye, B. V. Ratnakumar, C. Witham, R. C. Bowman, B. Fultz: Hydrogen adsorption measurements on graphite nanofibers, Appl. Phys. Lett. 73, 3378–3380 (1998)
3.322.
Zurück zum Zitat Q. Wang, J. K. Johnson: Computer simulations of hydrogen adsorption on graphite nanofibers, J. Phys. Chem. B 103, 277–281 (1999) Q. Wang, J. K. Johnson: Computer simulations of hydrogen adsorption on graphite nanofibers, J. Phys. Chem. B 103, 277–281 (1999)
3.323.
Zurück zum Zitat M. Rzepka, P. Lamp, M. A. de la Casa-Lillo: Physisorption of hydrogen on microporous carbon and carbon nanotubes, J. Phys. Chem. B 102, 10894–10898 (1998) M. Rzepka, P. Lamp, M. A. de la Casa-Lillo: Physisorption of hydrogen on microporous carbon and carbon nanotubes, J. Phys. Chem. B 102, 10894–10898 (1998)
3.324.
Zurück zum Zitat A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben: Storage of hydrogen in single-walled carbon nanotubes, Nature 386, 377–379 (1997) A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben: Storage of hydrogen in single-walled carbon nanotubes, Nature 386, 377–379 (1997)
3.325.
Zurück zum Zitat K. Shen, T. Pietrass: 1H and 2H NMR of hydrogen adsorption on carbon nanotubes, J. Phys. Chem. B 108, 9937–9942 (2004) K. Shen, T. Pietrass: 1H and 2H NMR of hydrogen adsorption on carbon nanotubes, J. Phys. Chem. B 108, 9937–9942 (2004)
3.326.
Zurück zum Zitat Y. Ye, C. C. Ahn, C. Witham, R. C. Bowman, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith, R. E. Smalley: Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Appl. Phys. Lett. 74, 2307–2309 (1999) Y. Ye, C. C. Ahn, C. Witham, R. C. Bowman, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith, R. E. Smalley: Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Appl. Phys. Lett. 74, 2307–2309 (1999)
3.327.
Zurück zum Zitat C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus: Hydrogen storage in single-walled carbon nanotubes at room temperature, Science 286, 1127–1129 (1999) C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus: Hydrogen storage in single-walled carbon nanotubes at room temperature, Science 286, 1127–1129 (1999)
3.328.
Zurück zum Zitat M. Hirscher, M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintel, G. S. Duesberg, Y. M. Choi, P. Dwones, M. Hulman, S. Roth, I. Stepanek, P. Bernier: Hydrogen storage in sonicated carbon materials, Appl. Phys. A 72, 129–132 (2001) M. Hirscher, M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintel, G. S. Duesberg, Y. M. Choi, P. Dwones, M. Hulman, S. Roth, I. Stepanek, P. Bernier: Hydrogen storage in sonicated carbon materials, Appl. Phys. A 72, 129–132 (2001)
3.329.
Zurück zum Zitat H. G. Schimmel, G. J. Kearley, M. G. Nijkamp, C. T. Visser, K. P. de Jong, F. M. Mulder: Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals, Chem. Eur. J. 9, 4764–4770 (2003) H. G. Schimmel, G. J. Kearley, M. G. Nijkamp, C. T. Visser, K. P. de Jong, F. M. Mulder: Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals, Chem. Eur. J. 9, 4764–4770 (2003)
3.330.
Zurück zum Zitat M. R. Smith Jr, E. W. Bittner, W. Shi, J. K. Johnson, B. C. Bockrath: Chemical activation of single-walled nanotubes for hydrogen adsorption, J. Phys. Chem. B 107, 3752–3760 (2003) M. R. Smith Jr, E. W. Bittner, W. Shi, J. K. Johnson, B. C. Bockrath: Chemical activation of single-walled nanotubes for hydrogen adsorption, J. Phys. Chem. B 107, 3752–3760 (2003)
3.331.
Zurück zum Zitat A. Ansón, M. A. Callejas, A. M. Benito, W. K. Maser, M. T. Izquieredo, B. Rubio, J. Jagiello, M. Tomes, J. B. Parra, M. T. Martinez: Hydrogen adsorption studies on single wall carbon nanotubes, Carbon 42, 1243–1248 (2004) A. Ansón, M. A. Callejas, A. M. Benito, W. K. Maser, M. T. Izquieredo, B. Rubio, J. Jagiello, M. Tomes, J. B. Parra, M. T. Martinez: Hydrogen adsorption studies on single wall carbon nanotubes, Carbon 42, 1243–1248 (2004)
3.332.
Zurück zum Zitat C. Q. Ning, F. Wei, G. H. Luo, Q. X. Wang, Y. L. Wu, H. Yu: Hydrogen storage in multi-wall carbon nanotubes using samples up to 85 g, Appl. Phys. A 78, 955–959 (2004) C. Q. Ning, F. Wei, G. H. Luo, Q. X. Wang, Y. L. Wu, H. Yu: Hydrogen storage in multi-wall carbon nanotubes using samples up to 85 g, Appl. Phys. A 78, 955–959 (2004)
3.333.
Zurück zum Zitat P. A. Gordon, R. B. Saeger: Molecular modeling of adsorptive energy storage: Hydrogen storage in single-walled carbon nanotubes, Ind. Eng. Chem. Res. 38, 4647–4655 (1999) P. A. Gordon, R. B. Saeger: Molecular modeling of adsorptive energy storage: Hydrogen storage in single-walled carbon nanotubes, Ind. Eng. Chem. Res. 38, 4647–4655 (1999)
3.334.
Zurück zum Zitat P. Marinelli, R. Pellenq, J. Conard: H stocké dans les carbones un site légèrement métastable, AF-14-020 (National Conference on Materials, Tours, France 2002) P. Marinelli, R. Pellenq, J. Conard: H stocké dans les carbones un site légèrement métastable, AF-14-020 (National Conference on Materials, Tours, France 2002)
3.335.
Zurück zum Zitat S. M. Lee, H. Y. Lee, T. Frauenheim, M. Elstner, Y. G. Hwang: Hydrogen storage in single-walled and multi walled carbon nanotubes, Proc. of Material Research Society Symposium 593, 187–192 (1999) S. M. Lee, H. Y. Lee, T. Frauenheim, M. Elstner, Y. G. Hwang: Hydrogen storage in single-walled and multi walled carbon nanotubes, Proc. of Material Research Society Symposium 593, 187–192 (1999)
3.336.
Zurück zum Zitat S. M. Lee, H. Y. Lee: Hydrogen storage in single-walled carbon nanotubes, Appl. Phys. Lett. 76, 2877–2879 (2000) S. M. Lee, H. Y. Lee: Hydrogen storage in single-walled carbon nanotubes, Appl. Phys. Lett. 76, 2877–2879 (2000)
3.337.
Zurück zum Zitat S. M. Lee, K. S. Park, Y. C. Choi, Y. S. Park, J. M. Bok, D. J. Bae, K. S. Nahm, Y. G. Choi, C. S. Yu, N. Kim, T. Frauenheim, Y. H. Lee: Hydrogen adsorption in carbon nanotubes, Synth. Met. 113, 209–216 (2000) S. M. Lee, K. S. Park, Y. C. Choi, Y. S. Park, J. M. Bok, D. J. Bae, K. S. Nahm, Y. G. Choi, C. S. Yu, N. Kim, T. Frauenheim, Y. H. Lee: Hydrogen adsorption in carbon nanotubes, Synth. Met. 113, 209–216 (2000)
3.338.
Zurück zum Zitat X. Zhang, D. Cao, J. Chen: Hydrogen adsorption storage on single-walled carbon nanotube arrays by a combination of classical potential and density functional theory, J. Phys. Chem. B 107, 4942–4950 (2003) X. Zhang, D. Cao, J. Chen: Hydrogen adsorption storage on single-walled carbon nanotube arrays by a combination of classical potential and density functional theory, J. Phys. Chem. B 107, 4942–4950 (2003)
3.339.
Zurück zum Zitat H. M. Cheng, G. P. Pez, A. C. Cooper: Mechanism of hydrogen sorption in single-walled carbon nanotubes, J. Am. Chem. Soc. 123, 5845–5846 (2001) H. M. Cheng, G. P. Pez, A. C. Cooper: Mechanism of hydrogen sorption in single-walled carbon nanotubes, J. Am. Chem. Soc. 123, 5845–5846 (2001)
3.340.
Zurück zum Zitat M. A. de la Casa-Lillo, F. Lamari-Darkrim, D. Cazorla-Amoros, A. Linares-Solano: Hydrogen storage in activated carbons and activated carbon fibers, J. Phys. Chem. B 106, 10930–10934 (2002) M. A. de la Casa-Lillo, F. Lamari-Darkrim, D. Cazorla-Amoros, A. Linares-Solano: Hydrogen storage in activated carbons and activated carbon fibers, J. Phys. Chem. B 106, 10930–10934 (2002)
3.341.
Zurück zum Zitat A. Kusnetzova, D. B. Mawhinney, V. Naumenko, J. T. Yates, J. Liu, R. E. Smalley: Enhancement of adsorption inside of single-walled nanotubes: Opening the entry ports, Chem. Phys. Lett. 321, 292–296 (2000) A. Kusnetzova, D. B. Mawhinney, V. Naumenko, J. T. Yates, J. Liu, R. E. Smalley: Enhancement of adsorption inside of single-walled nanotubes: Opening the entry ports, Chem. Phys. Lett. 321, 292–296 (2000)
3.342.
Zurück zum Zitat G. E. Gadd, M. Blackford, S. Moricca, N. Webb, P. J. Evans, A. M. Smith, G. Jacobsen, S. Leung, A. Day, Q. Hua: The world's smallest gas cylinders?, Science 277, 933–936 (1997) G. E. Gadd, M. Blackford, S. Moricca, N. Webb, P. J. Evans, A. M. Smith, G. Jacobsen, S. Leung, A. Day, Q. Hua: The world's smallest gas cylinders?, Science 277, 933–936 (1997)
3.343.
Zurück zum Zitat Z. Mao, S. B. Sinnott: A computational study of molecular diffusion and dynamic flow through carbon nanotubes, J. Phys. Chem. B 104, 4618–4624 (2000) Z. Mao, S. B. Sinnott: A computational study of molecular diffusion and dynamic flow through carbon nanotubes, J. Phys. Chem. B 104, 4618–4624 (2000)
3.344.
Zurück zum Zitat Z. Mao, S. B. Sinnott: Separation of organic molecular mixtures in carbon nanotubes and bundles: Molecular dynamics simulations, J. Phys. Chem. B 105, 6916–6924 (2001) Z. Mao, S. B. Sinnott: Separation of organic molecular mixtures in carbon nanotubes and bundles: Molecular dynamics simulations, J. Phys. Chem. B 105, 6916–6924 (2001)
3.345.
Zurück zum Zitat H. Chen, D. S. Sholl: Rapid diffusion of CH4/H2 mixtures in single-walled carbon nanotubes, J. Am. Chem. Soc. 126, 7778–7779 (2004) H. Chen, D. S. Sholl: Rapid diffusion of CH4/H2 mixtures in single-walled carbon nanotubes, J. Am. Chem. Soc. 126, 7778–7779 (2004)
3.346.
Zurück zum Zitat C. Gu, G.-H. Gao, Y. X. Yu, T. Nitta: Simulation for separation of hydrogen and carbon monoxide by adsorption on single-walled carbon nanotubes, Fluid Phase Equil. 194/197, 297–307 (2002) C. Gu, G.-H. Gao, Y. X. Yu, T. Nitta: Simulation for separation of hydrogen and carbon monoxide by adsorption on single-walled carbon nanotubes, Fluid Phase Equil. 194/197, 297–307 (2002)
3.347.
Zurück zum Zitat R. Q. Long, R. T. Yang: Carbon nanotubes as superior sorbent for dioxine removal, J. Am. Chem. Soc. 123, 2058–2059 (2001) R. Q. Long, R. T. Yang: Carbon nanotubes as superior sorbent for dioxine removal, J. Am. Chem. Soc. 123, 2058–2059 (2001)
3.348.
Zurück zum Zitat Y. H. Li, S. Wang, A. Cao, D. Zhao, X. Zhang, C. Xu, Z. Luan, D. Ruan, J. Liang, D. Wu, B. Wei: Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes, Chem. Phys. Lett. 350, 412–416 (2001) Y. H. Li, S. Wang, A. Cao, D. Zhao, X. Zhang, C. Xu, Z. Luan, D. Ruan, J. Liang, D. Wu, B. Wei: Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes, Chem. Phys. Lett. 350, 412–416 (2001)
3.349.
Zurück zum Zitat Y. H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei: Lead adsorption on carbon nanotubes, Chem. Phys. Lett. 357, 263–266 (2002) Y. H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei: Lead adsorption on carbon nanotubes, Chem. Phys. Lett. 357, 263–266 (2002)
3.350.
Zurück zum Zitat C. Park, E. S. Engel, A. Crowe, T. R. Gilbert, N. M. Rodriguez: Use of carbon nanofibers in the removal of organic solvents from water, Langmuir 16, 8050–8056 (2000) C. Park, E. S. Engel, A. Crowe, T. R. Gilbert, N. M. Rodriguez: Use of carbon nanofibers in the removal of organic solvents from water, Langmuir 16, 8050–8056 (2000)
3.351.
Zurück zum Zitat X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, Z. Jia: Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes, Chem. Phys. Lett. 376, 154–158 (2003) X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, Z. Jia: Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes, Chem. Phys. Lett. 376, 154–158 (2003)
3.352.
Zurück zum Zitat P. Kondratyuk, J. T. Yates: Nanotubes as molecular sponges: the adsorption of CCl4, Chem. Phys. Lett. 383, 314–316 (2004) P. Kondratyuk, J. T. Yates: Nanotubes as molecular sponges: the adsorption of CCl4, Chem. Phys. Lett. 383, 314–316 (2004)
3.353.
Zurück zum Zitat A. Huczko, H. Lange, E. Calko, H. Grubek-Jaworska, P. Droszcz: Physiological testing of carbon nanotubes: are they asbestos-like?, Full. Sci. Technol. 9, 251–254 (2001) A. Huczko, H. Lange, E. Calko, H. Grubek-Jaworska, P. Droszcz: Physiological testing of carbon nanotubes: are they asbestos-like?, Full. Sci. Technol. 9, 251–254 (2001)
3.354.
Zurück zum Zitat A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. M. Maynard, P. Baron: Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells, Toxical Env. Health A 66, 1909–1926 (2003) A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. M. Maynard, P. Baron: Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells, Toxical Env. Health A 66, 1909–1926 (2003)
3.355.
Zurück zum Zitat C. W. Lam, J. T. James, R. McCluskey, R. L. Hunter: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation, Toxicol. Sci. 77, 126–134 (2004) C. W. Lam, J. T. James, R. McCluskey, R. L. Hunter: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation, Toxicol. Sci. 77, 126–134 (2004)
3.356.
Zurück zum Zitat D. Pantarotto, J. P. Briand, M. Prato, A. Bianco: Translocation of bioactive peptides across cell membranes by carbon nanotubes, Chem. Commun., 16–17 (2004) D. Pantarotto, J. P. Briand, M. Prato, A. Bianco: Translocation of bioactive peptides across cell membranes by carbon nanotubes, Chem. Commun., 16–17 (2004)
3.357.
Zurück zum Zitat C. Salvador-Morales, E. Flahaut, E. Sim, J. Sloan, M. L. H. Green, R. B. Sim: Complement activation and protein adsorption by carbon nanotubes, Molec. Immun. 43, 193–201 (2006) C. Salvador-Morales, E. Flahaut, E. Sim, J. Sloan, M. L. H. Green, R. B. Sim: Complement activation and protein adsorption by carbon nanotubes, Molec. Immun. 43, 193–201 (2006)
3.358.
Zurück zum Zitat M. P. Mattson, R. C. Haddon, A. M. Rao: Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth, J. Molec. Neurosci. 14, 175–182 (2000) M. P. Mattson, R. C. Haddon, A. M. Rao: Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth, J. Molec. Neurosci. 14, 175–182 (2000)
3.359.
Zurück zum Zitat J. J. Davis, M. L. H. Green, H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Sloan, A. V. Xavier, S. C. Tsang: The immobilization of proteins in carbon nanotubes, Inorg. Chim. Acta 272, 261–266 (1998) J. J. Davis, M. L. H. Green, H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Sloan, A. V. Xavier, S. C. Tsang: The immobilization of proteins in carbon nanotubes, Inorg. Chim. Acta 272, 261–266 (1998)
3.360.
Zurück zum Zitat R. J. Chen, Y. Zhang, D. Wang, H. Dai: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc. 123, 3838–3839 (2001) R. J. Chen, Y. Zhang, D. Wang, H. Dai: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc. 123, 3838–3839 (2001)
3.361.
Zurück zum Zitat M. Shim, N. W. S. Kam, R. J. Chen, Y. Li, H. Dai: Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition, Nanolett. 2, 285–288 (2002) M. Shim, N. W. S. Kam, R. J. Chen, Y. Li, H. Dai: Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition, Nanolett. 2, 285–288 (2002)
3.362.
Zurück zum Zitat C. Dwyer, M. Guthold, M. Falvo, S. Washburn, R. Superfine, D. Erie: DNA-functionalized single-walled carbon nanotubes, Nanotechnology 13, 601–604 (2002) C. Dwyer, M. Guthold, M. Falvo, S. Washburn, R. Superfine, D. Erie: DNA-functionalized single-walled carbon nanotubes, Nanotechnology 13, 601–604 (2002)
3.363.
Zurück zum Zitat H. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T. W. Hanks, A. M. Rao, Y. Sun: Attaching proteins to carbon nanotubes via diimide-activated amidation, Nanolett. 2, 311–314 (2002) H. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T. W. Hanks, A. M. Rao, Y. Sun: Attaching proteins to carbon nanotubes via diimide-activated amidation, Nanolett. 2, 311–314 (2002)
3.364.
Zurück zum Zitat C. V. Nguyen, L. Delzeit, A. M. Cassell, J. Li, J. Han, M. Meyyappan: Preparation of nucleic acid functionalized carbon nanotube arrays, Nanolett. 2, 1079–1081 (2002) C. V. Nguyen, L. Delzeit, A. M. Cassell, J. Li, J. Han, M. Meyyappan: Preparation of nucleic acid functionalized carbon nanotube arrays, Nanolett. 2, 1079–1081 (2002)
3.365.
Zurück zum Zitat B. R. Azamian, J. J. Davis, K. S. Coleman, C. B. Bagshaw, M. L. H. Green: Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem. Soc. 124, 12664–12665 (2002) B. R. Azamian, J. J. Davis, K. S. Coleman, C. B. Bagshaw, M. L. H. Green: Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem. Soc. 124, 12664–12665 (2002)
3.366.
Zurück zum Zitat E. Katz, I. Willner: Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics, Chem. Phys. Chem. 5, 1084–1104 (2004) E. Katz, I. Willner: Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics, Chem. Phys. Chem. 5, 1084–1104 (2004)
3.367.
Zurück zum Zitat J. Wang: Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis 17, 7–14 (2005) J. Wang: Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis 17, 7–14 (2005)
3.368.
Zurück zum Zitat T. Laha, A. Agarwal, T. McKechnie, S. Seal: Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite, Mater. Sci. Eng. A 381, 249–258 (2004) T. Laha, A. Agarwal, T. McKechnie, S. Seal: Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite, Mater. Sci. Eng. A 381, 249–258 (2004)
3.369.
Zurück zum Zitat T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu, M. Seki: Carbon nanotube/aluminium composites with uniform dispersion, Mater. Transact. 45, 602–604 (2004) T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu, M. Seki: Carbon nanotube/aluminium composites with uniform dispersion, Mater. Transact. 45, 602–604 (2004)
3.370.
Zurück zum Zitat Y. B. Li, Q. Ya, B. Q. Wei, J. Liang, D. H. Wu: Processing of a carbon nanotubes-Fe82P18 metallic glass composite, J. Mater. Sci. Lett. 17, 607–609 (1998) Y. B. Li, Q. Ya, B. Q. Wei, J. Liang, D. H. Wu: Processing of a carbon nanotubes-Fe82P18 metallic glass composite, J. Mater. Sci. Lett. 17, 607–609 (1998)
3.371.
Zurück zum Zitat K. T. Kim, K. H. Lee, S. I. Cha, C.-B. Mo, S. H. Hong: Characterization of carbon nanotubes/Cu nanocomposites processed by using nano-sized Cu powders, Mater. Res. Soc. Symp. Proc. 821, 111–116 (2004) K. T. Kim, K. H. Lee, S. I. Cha, C.-B. Mo, S. H. Hong: Characterization of carbon nanotubes/Cu nanocomposites processed by using nano-sized Cu powders, Mater. Res. Soc. Symp. Proc. 821, 111–116 (2004)
3.372.
Zurück zum Zitat F. Zhang, J. Shen, J. Sun: Processing and properties of carbon nanotubes-nano-WC-Co composites, Mater. Sci. Eng. A 381, 86–91 (2004) F. Zhang, J. Shen, J. Sun: Processing and properties of carbon nanotubes-nano-WC-Co composites, Mater. Sci. Eng. A 381, 86–91 (2004)
3.373.
Zurück zum Zitat C. L. Xu, B. Q. Wei, R. Z. Ma, J. Liang, X. K. Ma, D. H. Wu: Fabrication of aluminum-carbon nanotube composites and their electrical properties, Carbon 37, 855–858 (1999) C. L. Xu, B. Q. Wei, R. Z. Ma, J. Liang, X. K. Ma, D. H. Wu: Fabrication of aluminum-carbon nanotube composites and their electrical properties, Carbon 37, 855–858 (1999)
3.374.
Zurück zum Zitat T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito: Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res. 13, 2445–2449 (1998) T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito: Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res. 13, 2445–2449 (1998)
3.375.
Zurück zum Zitat T. Kuzumaki, O. Ujiie, H. Ichinose, K. Ito: Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite, Adv. Eng. Mater. 2, 416–418 (2000) T. Kuzumaki, O. Ujiie, H. Ichinose, K. Ito: Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite, Adv. Eng. Mater. 2, 416–418 (2000)
3.376.
Zurück zum Zitat S.-N. Li, S.-Z. Song, T.-Q. Yu, H.-M. Chen, Y.-S. Zhang, J.-L. Shen: Properties of structure of magnesium matrix composite reinforced with CNTs, J. Wuhan Univ. Technol., Mater. Sci. Ed. 19, 65–68 (2004) S.-N. Li, S.-Z. Song, T.-Q. Yu, H.-M. Chen, Y.-S. Zhang, J.-L. Shen: Properties of structure of magnesium matrix composite reinforced with CNTs, J. Wuhan Univ. Technol., Mater. Sci. Ed. 19, 65–68 (2004)
3.377.
Zurück zum Zitat E. Carreno-Morelli, J. Yang, E. Couteau, K. Hernadi, J. W. Seo, C. Bonjour, L. Forro, R. Schaller: Carbon nanotube/magnesium composites, Phys. Stat. Solidi A 201, R53–R55 (2004) E. Carreno-Morelli, J. Yang, E. Couteau, K. Hernadi, J. W. Seo, C. Bonjour, L. Forro, R. Schaller: Carbon nanotube/magnesium composites, Phys. Stat. Solidi A 201, R53–R55 (2004)
3.378.
Zurück zum Zitat Z. Bian, R. J. Wang, W. H. Wang, T. Zhang, A. Inoue: Carbon-nanotube-reinforced Zr-based bulk metallic glass composites and their properties, Adv. Funct. Mater. 14, 55–63 (2004) Z. Bian, R. J. Wang, W. H. Wang, T. Zhang, A. Inoue: Carbon-nanotube-reinforced Zr-based bulk metallic glass composites and their properties, Adv. Funct. Mater. 14, 55–63 (2004)
3.379.
Zurück zum Zitat S. R. Dong, J. P. Tu, X. B. Zhang: An investigation of the sliding wear behavior of Cu -matrix composite reinforced by carbon nanotubes, Mater. Sci. Eng. A 313, 83–87 (2001) S. R. Dong, J. P. Tu, X. B. Zhang: An investigation of the sliding wear behavior of Cu -matrix composite reinforced by carbon nanotubes, Mater. Sci. Eng. A 313, 83–87 (2001)
3.380.
Zurück zum Zitat J. Wang, G. Chen, M. Wang, M. P. Chatrathi: Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates, Analyst (Cambridge) 129, 512–515 (2004) J. Wang, G. Chen, M. Wang, M. P. Chatrathi: Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates, Analyst (Cambridge) 129, 512–515 (2004)
3.381.
Zurück zum Zitat Q. Ngo, B. A. Cruden, A. M. Cassell, M. D. Walker, Q. Ye, J. E. Koehne, M. Meyyappan, J. Li, C. Y. Yang: Thermal conductivity of carbon nanotube composite films, Mater. Res. Soc. Symp. Proc. 812, 179–184 (2004) Q. Ngo, B. A. Cruden, A. M. Cassell, M. D. Walker, Q. Ye, J. E. Koehne, M. Meyyappan, J. Li, C. Y. Yang: Thermal conductivity of carbon nanotube composite films, Mater. Res. Soc. Symp. Proc. 812, 179–184 (2004)
3.382.
Zurück zum Zitat X. H. Chen, C. S. Chen, H. N. Xiao, F. Q. Cheng, G. Zhang, G. J. Yi: Corrosion behavior of carbon nanotubes-Ni composite coating, Surf. Coat. Technol. 191, 351–356 (2005) X. H. Chen, C. S. Chen, H. N. Xiao, F. Q. Cheng, G. Zhang, G. J. Yi: Corrosion behavior of carbon nanotubes-Ni composite coating, Surf. Coat. Technol. 191, 351–356 (2005)
3.383.
Zurück zum Zitat J.-P. Tu, T.-Z. Zou, L.-Y. Wang, W.-X. Chen, Z.-D. Xu, F. Liu, X.-B. Zhang: Friction and wear behavior of Ni-based carbon nanotube composite coatings, Zhejiang Daxue Xuebao, Gongxueban 38, 931–934 (2004) J.-P. Tu, T.-Z. Zou, L.-Y. Wang, W.-X. Chen, Z.-D. Xu, F. Liu, X.-B. Zhang: Friction and wear behavior of Ni-based carbon nanotube composite coatings, Zhejiang Daxue Xuebao, Gongxueban 38, 931–934 (2004)
3.384.
Zurück zum Zitat Z. Yang, H. Xu, M.-K. Li, Y.-L. Shi, Y. Huang, H.-L. Li: Preparation and properties of Ni-P/single-walled carbon nanotubes composite coatings by means of electroless plating, Thin Solid Films 466, 86–91 (2004) Z. Yang, H. Xu, M.-K. Li, Y.-L. Shi, Y. Huang, H.-L. Li: Preparation and properties of Ni-P/single-walled carbon nanotubes composite coatings by means of electroless plating, Thin Solid Films 466, 86–91 (2004)
3.385.
Zurück zum Zitat A. Peigney: Tougher ceramics with carbon nanotubes, Nature Mater. 2, 15–16 (2003) A. Peigney: Tougher ceramics with carbon nanotubes, Nature Mater. 2, 15–16 (2003)
3.386.
Zurück zum Zitat G. D. Zhan, J. D. Kuntz, J. Wan, A. K. Mukherjee: Single-wall carbon nanotubes as attractive toughening agents in alumina-based composites, Nature Mater. 2, 38–42 (2003) G. D. Zhan, J. D. Kuntz, J. Wan, A. K. Mukherjee: Single-wall carbon nanotubes as attractive toughening agents in alumina-based composites, Nature Mater. 2, 38–42 (2003)
3.387.
Zurück zum Zitat J. Sun, L. Gao, W. Li: Colloidal processing of carbon nanotube/alumina composites, Chem. Mater. 14, 5169–5172 (2002) J. Sun, L. Gao, W. Li: Colloidal processing of carbon nanotube/alumina composites, Chem. Mater. 14, 5169–5172 (2002)
3.388.
Zurück zum Zitat J. Ning, J. Zhang, Y. Pan, J. Guo: Surfactants assisted processing of carbon nanotube-reinforced SiO2 matrix composites, Ceram. Int. 30, 63–67 (2004) J. Ning, J. Zhang, Y. Pan, J. Guo: Surfactants assisted processing of carbon nanotube-reinforced SiO2 matrix composites, Ceram. Int. 30, 63–67 (2004)
3.389.
Zurück zum Zitat V. G. Gavalas, R. Andrews, D. Bhattacharyya, L. G. Bachas: Carbon nanotube sol-gel composite materials, Nanolett. 1, 719–721 (2001) V. G. Gavalas, R. Andrews, D. Bhattacharyya, L. G. Bachas: Carbon nanotube sol-gel composite materials, Nanolett. 1, 719–721 (2001)
3.390.
Zurück zum Zitat S. Rul, Ch. Laurent, A. Peigney, A. Rousset: Carbon nanotubes prepared in-situ in a cellular ceramic by the gel casting-foam method, J. Eur. Ceram. Soc. 23, 1233–1241 (2003) S. Rul, Ch. Laurent, A. Peigney, A. Rousset: Carbon nanotubes prepared in-situ in a cellular ceramic by the gel casting-foam method, J. Eur. Ceram. Soc. 23, 1233–1241 (2003)
3.391.
Zurück zum Zitat R. Z. Ma, J. Wu, B. Q. Wei, J. Liang, D. H. Wu: Processing and properties of carbon nanotube/nano-SiC ceramic, J. Mater. Sci. 33, 5243–5246 (1998) R. Z. Ma, J. Wu, B. Q. Wei, J. Liang, D. H. Wu: Processing and properties of carbon nanotube/nano-SiC ceramic, J. Mater. Sci. 33, 5243–5246 (1998)
3.392.
Zurück zum Zitat R. W. Siegel, S. K. Chang, B. J. Ash, J. Stone, P. M. Ajayan, R. W. Doremus, L. S. Schadler: Mechanical behavior of polymer and ceramic matrix nanocomposites, Scr. Mater. 44, 2061–2064 (2001) R. W. Siegel, S. K. Chang, B. J. Ash, J. Stone, P. M. Ajayan, R. W. Doremus, L. S. Schadler: Mechanical behavior of polymer and ceramic matrix nanocomposites, Scr. Mater. 44, 2061–2064 (2001)
3.393.
Zurück zum Zitat X. Wang, N. P. Padture, H. Tanaka: Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites, Nature Mater. 3, 539–544 (2004) X. Wang, N. P. Padture, H. Tanaka: Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites, Nature Mater. 3, 539–544 (2004)
3.394.
Zurück zum Zitat C. Laurent, A. Peigney, O. Dumortier, A. Rousset: Carbon nanotubes-Fe -alumina nanocomposites. Part II: Microstructure and mechanical properties of the hot-pressed composites, J. Eur. Ceram. Soc. 18, 2005–2013 (1998) C. Laurent, A. Peigney, O. Dumortier, A. Rousset: Carbon nanotubes-Fe -alumina nanocomposites. Part II: Microstructure and mechanical properties of the hot-pressed composites, J. Eur. Ceram. Soc. 18, 2005–2013 (1998)
3.395.
Zurück zum Zitat A. Peigney, C. Laurent, A. Rousset: Synthesis and characterization of alumina matrix nanocomposites containing carbon nanotubes, Key Eng. Mater. 132-136, 743–746 (1997) A. Peigney, C. Laurent, A. Rousset: Synthesis and characterization of alumina matrix nanocomposites containing carbon nanotubes, Key Eng. Mater. 132-136, 743–746 (1997)
3.396.
Zurück zum Zitat A. Peigney, C. Laurent, E. Flahaut, A. Rousset: Carbon nanotubes in novel ceramic matrix nanocomposites, Ceram. Intern. 26, 677–683 (2000) A. Peigney, C. Laurent, E. Flahaut, A. Rousset: Carbon nanotubes in novel ceramic matrix nanocomposites, Ceram. Intern. 26, 677–683 (2000)
3.397.
Zurück zum Zitat S. Rul: Synthèse de composites nanotubes de carbone-métal-oxyde. Ph.D. Thesis (Université Toulouse III, Toulouse 2002) S. Rul: Synthèse de composites nanotubes de carbone-métal-oxyde. Ph.D. Thesis (Université Toulouse III, Toulouse 2002)
3.398.
Zurück zum Zitat E. Flahaut, A. Peigney, C. Laurent, C. Marlière, F. Chastel, A. Rousset: Carbon nanotube-metal-oxide nanocomposites: Microstructure, electrical conductivity and mechanical properties, Acta Mater. 48, 3803–3812 (2000) E. Flahaut, A. Peigney, C. Laurent, C. Marlière, F. Chastel, A. Rousset: Carbon nanotube-metal-oxide nanocomposites: Microstructure, electrical conductivity and mechanical properties, Acta Mater. 48, 3803–3812 (2000)
3.399.
Zurück zum Zitat R. R. Bacsa, C. Laurent, A. Peigney, W. S. Bacsa, T. Vaugien, A. Rousset: High specific surface area carbon nanotubes from catalytic chemical vapor deposition process, Chem. Phys. Lett. 323, 566–571 (2000) R. R. Bacsa, C. Laurent, A. Peigney, W. S. Bacsa, T. Vaugien, A. Rousset: High specific surface area carbon nanotubes from catalytic chemical vapor deposition process, Chem. Phys. Lett. 323, 566–571 (2000)
3.400.
Zurück zum Zitat P. Coquay, A. Peigney, E. De Grave, R. E. Vandenberghe, C. Laurent: Carbon nanotubes by a CVD method. Part II: Formation of nanotubes from (Mg ,Fe )O catalysts, J. Phys. Chem. B 106, 13199–13210 (2002) P. Coquay, A. Peigney, E. De Grave, R. E. Vandenberghe, C. Laurent: Carbon nanotubes by a CVD method. Part II: Formation of nanotubes from (Mg ,Fe )O catalysts, J. Phys. Chem. B 106, 13199–13210 (2002)
3.401.
Zurück zum Zitat E. Flahaut, Ch. Laurent, A. Peigney: Double-walled carbon nanotubes in composite powders, J. Nanosci. Nanotech. 3, 151–158 (2003) E. Flahaut, Ch. Laurent, A. Peigney: Double-walled carbon nanotubes in composite powders, J. Nanosci. Nanotech. 3, 151–158 (2003)
3.402.
Zurück zum Zitat A. Peigney, P. Coquay, E. Flahaut, R. E. Vandenberghe, E. De Grave, C. Laurent: A study of the formation of single- and double-walled carbon nanotubes by a CVD method, J Phys. Chem. B 105, 9699–9710 (2001) A. Peigney, P. Coquay, E. Flahaut, R. E. Vandenberghe, E. De Grave, C. Laurent: A study of the formation of single- and double-walled carbon nanotubes by a CVD method, J Phys. Chem. B 105, 9699–9710 (2001)
3.403.
Zurück zum Zitat A. Peigney, S. Rul, F. Lefevre-Schlick, C. Laurent: Densification during hot-pressing of carbon nanotube metal-ceramic composites, J.Europ. Ceram. Soc., submitted (2006) A. Peigney, S. Rul, F. Lefevre-Schlick, C. Laurent: Densification during hot-pressing of carbon nanotube metal-ceramic composites, J.Europ. Ceram. Soc., submitted (2006)
3.404.
Zurück zum Zitat Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, J. M. Xu: Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites, Acta Mater. 52, 931–944 (2004) Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, J. M. Xu: Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites, Acta Mater. 52, 931–944 (2004)
3.405.
Zurück zum Zitat S. Rul, F. Lefevre-Schlick, E. Capria, C. Laurent, A. Peigney: Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites, Acta Materialia 52, 1061–1067 (2004) S. Rul, F. Lefevre-Schlick, E. Capria, C. Laurent, A. Peigney: Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites, Acta Materialia 52, 1061–1067 (2004)
3.406.
Zurück zum Zitat A. Peigney, E. Flahaut, C. Laurent, F. Chastel, A. Rousset: Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion, Chem. Phys. Lett. 352, 20–25 (2002) A. Peigney, E. Flahaut, C. Laurent, F. Chastel, A. Rousset: Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion, Chem. Phys. Lett. 352, 20–25 (2002)
3.407.
Zurück zum Zitat G.-D. Zhan, J. D. Kuntz, J. E. Garay, A. K. Mukherjee: Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes, Appl. Phys. Lett. 83, 1228–1230 (2003) G.-D. Zhan, J. D. Kuntz, J. E. Garay, A. K. Mukherjee: Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes, Appl. Phys. Lett. 83, 1228–1230 (2003)
3.408.
Zurück zum Zitat Q. Huang, L. Gao: Manufacture and electrical properties of multiwalled carbon nanotube/BaTiO3 nanocomposite ceramics, J. Mater Chem. 14, 2536–2541 (2004) Q. Huang, L. Gao: Manufacture and electrical properties of multiwalled carbon nanotube/BaTiO3 nanocomposite ceramics, J. Mater Chem. 14, 2536–2541 (2004)
3.409.
Zurück zum Zitat S. L. Huang, M. R. Koblischka, K. Fossheim, T. W. Ebbesen, T. H. Johansen: Microstructure and flux distribution in both pure and carbon-nanotube-embedded Bi2Sr2CaCu2O 8+δ superconductors, Physica C 311, 172–186 (1999) S. L. Huang, M. R. Koblischka, K. Fossheim, T. W. Ebbesen, T. H. Johansen: Microstructure and flux distribution in both pure and carbon-nanotube-embedded Bi2Sr2CaCu2O 8+δ superconductors, Physica C 311, 172–186 (1999)
3.410.
Zurück zum Zitat T. Seeger, G. de la Fuente, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez: Evolution of multiwalled carbon-nanotube/SiO2 composites via laser treatment, Nanotechnology 14, 184–187 (2003) T. Seeger, G. de la Fuente, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez: Evolution of multiwalled carbon-nanotube/SiO2 composites via laser treatment, Nanotechnology 14, 184–187 (2003)
3.411.
Zurück zum Zitat G.-D. Zhan, J. D. Kuntz, H. Wang, C.-M. Wang, A. K. Mukherjee: Anisotropic thermal properties of single-wall-carbon-nanotube-reinforced nanoceramics, Phil. Mag. Lett. 84, 419–423 (2004) G.-D. Zhan, J. D. Kuntz, H. Wang, C.-M. Wang, A. K. Mukherjee: Anisotropic thermal properties of single-wall-carbon-nanotube-reinforced nanoceramics, Phil. Mag. Lett. 84, 419–423 (2004)
3.412.
Zurück zum Zitat A. Weidenkaff, S. G. Ebbinghaus, T. Lippert: Ln 1-x A x CoO3 (Ln = Er, La; A = Ca, Sr)/carbon nanotube composite materials applied for rechargeable Zn /Air batteries, Chem. Mater. 14, 1797–1805 (2002) A. Weidenkaff, S. G. Ebbinghaus, T. Lippert: Ln 1-x A x CoO3 (Ln = Er, La; A = Ca, Sr)/carbon nanotube composite materials applied for rechargeable Zn /Air batteries, Chem. Mater. 14, 1797–1805 (2002)
3.413.
Zurück zum Zitat D. S. Lim, J. W. An, H. J. Lee: Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites, Wear 252, 512–517 (2002) D. S. Lim, J. W. An, H. J. Lee: Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites, Wear 252, 512–517 (2002)
3.414.
Zurück zum Zitat R. Andrews, D. Jacques, A. M. Rao, T. Rantell, F. Derbyshire, Y. Chen, J. Chen, R. C. Haddon: Nanotube composite carbon fibers, Appl. Phys. Lett. 75, 1329–1331 (1999) R. Andrews, D. Jacques, A. M. Rao, T. Rantell, F. Derbyshire, Y. Chen, J. Chen, R. C. Haddon: Nanotube composite carbon fibers, Appl. Phys. Lett. 75, 1329–1331 (1999)
3.415.
Zurück zum Zitat P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science 265, 1212–14 (1994) P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science 265, 1212–14 (1994)
3.416.
Zurück zum Zitat R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, K. I. Winey: Aligned single-wall carbon nanotubes in composites by melt processing methods, Chem. Phys. Lett. 330, 219–225 (2000) R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, K. I. Winey: Aligned single-wall carbon nanotubes in composites by melt processing methods, Chem. Phys. Lett. 330, 219–225 (2000)
3.417.
Zurück zum Zitat L. S. Schadler, S. C. Giannaris, P. M. Ajayan: Load transfer in carbon nanotube epoxy composites, Appl. Phys. Lett. 73, 3842–3844 (1998) L. S. Schadler, S. C. Giannaris, P. M. Ajayan: Load transfer in carbon nanotube epoxy composites, Appl. Phys. Lett. 73, 3842–3844 (1998)
3.418.
Zurück zum Zitat S. J. V. Frankland, A. Caglar, D. W. Brenner, M. Griebel: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces, J. Phys. Chem. B 106, 3046–3048 (2002) S. J. V. Frankland, A. Caglar, D. W. Brenner, M. Griebel: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces, J. Phys. Chem. B 106, 3046–3048 (2002)
3.419.
Zurück zum Zitat H. D. Wagner: Nanotube-polymer adhesion: A mechanics approach, Chem. Phys. Lett. 361, 57–61 (2002) H. D. Wagner: Nanotube-polymer adhesion: A mechanics approach, Chem. Phys. Lett. 361, 57–61 (2002)
3.420.
Zurück zum Zitat P. M. Ajayan, L. S. Schadler, C. Giannaris, A. Rubio: Single-walled carbon nanotube-polymer composites: Strength and weakness, Adv. Mater. 12, 750–753 (2000) P. M. Ajayan, L. S. Schadler, C. Giannaris, A. Rubio: Single-walled carbon nanotube-polymer composites: Strength and weakness, Adv. Mater. 12, 750–753 (2000)
3.421.
Zurück zum Zitat X. Gong, J. Liu, S. Baskaran, R. D. Voise, J. S. Young: Surfactant-assisted processing of carbon nanotube/polymer composites, Chem. Mater. 12, 1049–1052 (2000) X. Gong, J. Liu, S. Baskaran, R. D. Voise, J. S. Young: Surfactant-assisted processing of carbon nanotube/polymer composites, Chem. Mater. 12, 1049–1052 (2000)
3.422.
Zurück zum Zitat E. T. Thostenson, W. Z. Li, D. Z. Wang, Z. F. Ren, T. W. Chou: Carbon nanotube/carbon fiber hybrid multiscale composites, J. Appl. Phys. 91, 6034–6037 (2002) E. T. Thostenson, W. Z. Li, D. Z. Wang, Z. F. Ren, T. W. Chou: Carbon nanotube/carbon fiber hybrid multiscale composites, J. Appl. Phys. 91, 6034–6037 (2002)
3.423.
Zurück zum Zitat S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne: Effect of palmitic acid on the electrical conductivity of carbon nanotubes-polyepoxy composite, Macromolecules 36, 9678–9680 (2003) S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne: Effect of palmitic acid on the electrical conductivity of carbon nanotubes-polyepoxy composite, Macromolecules 36, 9678–9680 (2003)
3.424.
Zurück zum Zitat S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne: DC and AC conductivity of carbon nanotubes-polyepoxy composites, Macromolecules 36, 5187–5194 (2003) S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne: DC and AC conductivity of carbon nanotubes-polyepoxy composites, Macromolecules 36, 5187–5194 (2003)
3.425.
Zurück zum Zitat J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A. H. Windle: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer 40, 5967–5971 (1999) J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A. H. Windle: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer 40, 5967–5971 (1999)
3.426.
Zurück zum Zitat M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, J. E. Fischer: Carbon nanotube composites for thermal management, Appl. Phys. Lett. 80, 2767–2769 (2002) M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, J. E. Fischer: Carbon nanotube composites for thermal management, Appl. Phys. Lett. 80, 2767–2769 (2002)
3.427.
Zurück zum Zitat F. H. Gojny, K. Schulte: Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites, Compos. Sci. Technol. 64, 2303–2308 (2004) F. H. Gojny, K. Schulte: Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites, Compos. Sci. Technol. 64, 2303–2308 (2004)
3.428.
Zurück zum Zitat F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fiedler, K. Schulte: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content, Compos. Sci. Technol. 64, 2363–2371 (2004) F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fiedler, K. Schulte: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content, Compos. Sci. Technol. 64, 2363–2371 (2004)
3.429.
Zurück zum Zitat G. Pecastaings, P. Delhaes, A. Derre, H. Saadaoui, F. Carmona, S. Cui: Role of interfacial effects in carbon nanotube/epoxy nanocomposite behavior, J. Nanosci. Nanotech. 4, 838–843 (2004) G. Pecastaings, P. Delhaes, A. Derre, H. Saadaoui, F. Carmona, S. Cui: Role of interfacial effects in carbon nanotube/epoxy nanocomposite behavior, J. Nanosci. Nanotech. 4, 838–843 (2004)
3.430.
Zurück zum Zitat Z. Jin, K. P. Pramoda, G. Xu, S. H. Goh: Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites, Chem. Phys. Lett. 337, 43–47 (2001) Z. Jin, K. P. Pramoda, G. Xu, S. H. Goh: Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites, Chem. Phys. Lett. 337, 43–47 (2001)
3.431.
Zurück zum Zitat Z. Jin, K. P. Pramoda, S. H. Goh, G. Xu: Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites, Mater. Res. Bull. 37, 271–278 (2002) Z. Jin, K. P. Pramoda, S. H. Goh, G. Xu: Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites, Mater. Res. Bull. 37, 271–278 (2002)
3.432.
Zurück zum Zitat C. A. Cooper, D. Ravich, D. Lips, J. Mayer, H. D. Wagner: Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix, Compos. Sci. Technol. 62, 1105–1112 (2002) C. A. Cooper, D. Ravich, D. Lips, J. Mayer, H. D. Wagner: Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix, Compos. Sci. Technol. 62, 1105–1112 (2002)
3.433.
Zurück zum Zitat J. M. Benoit, B. Corraze, S. Lefrant, W. J. Blau, P. Bernier, O. Chauvet: Transport properties of PMMA-carbon nanotubes composites, Synth. Met. 121, 1215–1216 (2001) J. M. Benoit, B. Corraze, S. Lefrant, W. J. Blau, P. Bernier, O. Chauvet: Transport properties of PMMA-carbon nanotubes composites, Synth. Met. 121, 1215–1216 (2001)
3.434.
Zurück zum Zitat J. M. Benoit, B. Corraze, O. Chauvet: Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites, Phys. Rev. B 65, 241405/1–241405/4 (2002) J. M. Benoit, B. Corraze, O. Chauvet: Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites, Phys. Rev. B 65, 241405/1–241405/4 (2002)
3.435.
Zurück zum Zitat F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, K. I. Winey: Nanotube networks in polymer nanocomposites: rheology and electrical conductivity, Macromolecules 37, 9048–9055 (2004) F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, K. I. Winey: Nanotube networks in polymer nanocomposites: rheology and electrical conductivity, Macromolecules 37, 9048–9055 (2004)
3.436.
Zurück zum Zitat T. Kashiwagi, F. Du, K. I. Winey, K. M. Groth, J. R. Shields, R. H. Harris Jr., J. F. Douglas: Flammability properties of PMMA-single walled carbon nanotube nanocomposites, Polymer. Mater. Sci. Eng. 91, 90–91 (2004) T. Kashiwagi, F. Du, K. I. Winey, K. M. Groth, J. R. Shields, R. H. Harris Jr., J. F. Douglas: Flammability properties of PMMA-single walled carbon nanotube nanocomposites, Polymer. Mater. Sci. Eng. 91, 90–91 (2004)
3.437.
Zurück zum Zitat M. S. P. Shaffer, A. H. Windle: Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites, Adv. Mater. 11, 937–941 (1999) M. S. P. Shaffer, A. H. Windle: Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites, Adv. Mater. 11, 937–941 (1999)
3.438.
Zurück zum Zitat L. Jin, C. Bower, O. Zhou: Alignment of carbon nanotubes in a polymer matrix by mechanical stretching, Appl. Phys. Lett. 73, 1197–1199 (1998) L. Jin, C. Bower, O. Zhou: Alignment of carbon nanotubes in a polymer matrix by mechanical stretching, Appl. Phys. Lett. 73, 1197–1199 (1998)
3.439.
Zurück zum Zitat H. D. Wagner, O. Lourie, Y. Feldman, R. Tenne: Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl. Phys. Lett. 72, 188–190 (1998) H. D. Wagner, O. Lourie, Y. Feldman, R. Tenne: Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl. Phys. Lett. 72, 188–190 (1998)
3.440.
Zurück zum Zitat H. D. Wagner, O. Lourie, X. F. Zhou: Macrofragmentation and microfragmentation phenomena in composite materials, Compos. Part A 30A, 59–66 (1998) H. D. Wagner, O. Lourie, X. F. Zhou: Macrofragmentation and microfragmentation phenomena in composite materials, Compos. Part A 30A, 59–66 (1998)
3.441.
Zurück zum Zitat J. R. Wood, Q. Zhao, H. D. Wagner: Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy, Compos. Part A 32A, 391–399 (2001) J. R. Wood, Q. Zhao, H. D. Wagner: Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy, Compos. Part A 32A, 391–399 (2001)
3.442.
Zurück zum Zitat Q. Zhao, J. R. Wood, H. D. Wagner: Using carbon nanotubes to detect polymer transitions, J. Polym. Sci. Part B 39, 1492–1495 (2001) Q. Zhao, J. R. Wood, H. D. Wagner: Using carbon nanotubes to detect polymer transitions, J. Polym. Sci. Part B 39, 1492–1495 (2001)
3.443.
Zurück zum Zitat M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinesz, J. M. Benoit, J. Schreiber, O. Chauvet: Synthesis of a new polyaniline/nanotube composite: In-situ polymerisation and charge transfer through site-selective interaction, Chem. Commun., 1450–1451 (2001) M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinesz, J. M. Benoit, J. Schreiber, O. Chauvet: Synthesis of a new polyaniline/nanotube composite: In-situ polymerisation and charge transfer through site-selective interaction, Chem. Commun., 1450–1451 (2001)
3.444.
Zurück zum Zitat D. Qian, E. C. Dickey, R. Andrews, T. Rantell: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Appl. Phys. Lett. 76, 2868–2870 (2000) D. Qian, E. C. Dickey, R. Andrews, T. Rantell: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Appl. Phys. Lett. 76, 2868–2870 (2000)
3.445.
Zurück zum Zitat V. Datsyuk, Christelle Guerret-Piecourt, S. Dagreou, L. Billon, J.-C. Dupin, E. Flahaut, A. Peigney, C. Laurent: Double walled carbon nanotube/polymer composites via in-situ nitroxide mediated polymerisation of amphiphilic block copolymers, Carbon 43, 873–876 (2005) V. Datsyuk, Christelle Guerret-Piecourt, S. Dagreou, L. Billon, J.-C. Dupin, E. Flahaut, A. Peigney, C. Laurent: Double walled carbon nanotube/polymer composites via in-situ nitroxide mediated polymerisation of amphiphilic block copolymers, Carbon 43, 873–876 (2005)
3.446.
Zurück zum Zitat R. Blake, Y. K. Gun'ko, J. Coleman, M. Cadek, A. Fonseca, J. B. Nagy, W. J. Blau: A generic organometallic approach toward ultra-strong carbon nanotube polymer composites, J. Am. Chem. Soc. 126, 10226–10227 (2004) R. Blake, Y. K. Gun'ko, J. Coleman, M. Cadek, A. Fonseca, J. B. Nagy, W. J. Blau: A generic organometallic approach toward ultra-strong carbon nanotube polymer composites, J. Am. Chem. Soc. 126, 10226–10227 (2004)
3.447.
Zurück zum Zitat T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, J. Douglas: Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites, Polymer 45, 4227–4239 (2004) T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, J. Douglas: Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites, Polymer 45, 4227–4239 (2004)
3.448.
Zurück zum Zitat C. Wei, D. Srivastava, K. Cho: Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites, Los Alamos Nat. Lab., Preprint Archive, Condensed Matter (archiv:cond-mat/0203349), 1–11 (2002) C. Wei, D. Srivastava, K. Cho: Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites, Los Alamos Nat. Lab., Preprint Archive, Condensed Matter (archiv:cond-mat/0203349), 1–11 (2002)
3.449.
Zurück zum Zitat J. C. Grunlan, M. V. Bannon, A. R. Mehrabi: Latex-based, single-walled nanotube composites: processing and electrical conductivity, Polym. Prepr. 45, 154–155 (2004) J. C. Grunlan, M. V. Bannon, A. R. Mehrabi: Latex-based, single-walled nanotube composites: processing and electrical conductivity, Polym. Prepr. 45, 154–155 (2004)
3.450.
Zurück zum Zitat J. C. Grunlan, A. R. Mehrabi, M. V. Bannon, J. L. Bahr: Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold, Adv. Mater. (Weinheim) 16, 150–153 (2004) J. C. Grunlan, A. R. Mehrabi, M. V. Bannon, J. L. Bahr: Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold, Adv. Mater. (Weinheim) 16, 150–153 (2004)
3.451.
Zurück zum Zitat C. Pirlot, I. Willems, A. Fonseca, J. B. Nagy, J. Delhalle: Preparation and characterization of carbon nanotube/polyacrylonitrile composites, Adv. Eng. Mater. 4, 109–114 (2002) C. Pirlot, I. Willems, A. Fonseca, J. B. Nagy, J. Delhalle: Preparation and characterization of carbon nanotube/polyacrylonitrile composites, Adv. Eng. Mater. 4, 109–114 (2002)
3.452.
Zurück zum Zitat H. Lam, H. Ye, Y. Gogotsi, F. Ko: Structure and properties of electrospun single-walled carbon nanotubes reinforced nanocomposite fibrils by co-electrospinning, Polym. Prepr. 45, 124–125 (2004) H. Lam, H. Ye, Y. Gogotsi, F. Ko: Structure and properties of electrospun single-walled carbon nanotubes reinforced nanocomposite fibrils by co-electrospinning, Polym. Prepr. 45, 124–125 (2004)
3.453.
Zurück zum Zitat L. Cao, H. Chen, M. Wang, J. Sun, X. Zhang, F. Kong: Photoconductivity study of modified carbon nanotube/oxotitanium phthalocyanine composites, J. Phys. Chem. B 106, 8971–8975 (2002) L. Cao, H. Chen, M. Wang, J. Sun, X. Zhang, F. Kong: Photoconductivity study of modified carbon nanotube/oxotitanium phthalocyanine composites, J. Phys. Chem. B 106, 8971–8975 (2002)
3.454.
Zurück zum Zitat I. Musa, M. Baxendale, G. A. J. Amaratunga, W. Eccleston: Properties of regular poly(3-octylthiophene)/multi-wall carbon nanotube composites, Synth. Met. 102, 1250 (1999) I. Musa, M. Baxendale, G. A. J. Amaratunga, W. Eccleston: Properties of regular poly(3-octylthiophene)/multi-wall carbon nanotube composites, Synth. Met. 102, 1250 (1999)
3.455.
Zurück zum Zitat E. Kymakis, I. Alexandou, G. A. J. Amaratunga: Single-walled carbon nanotube-polymer composites: Electrical, optical and structural investigation, Synth. Met. 127, 59–62 (2002) E. Kymakis, I. Alexandou, G. A. J. Amaratunga: Single-walled carbon nanotube-polymer composites: Electrical, optical and structural investigation, Synth. Met. 127, 59–62 (2002)
3.456.
Zurück zum Zitat K. Yoshino, H. Kajii, H. Araki, T. Sonoda, H. Take, S. Lee: Electrical and optical properties of conducting polymer-fullerene and conducting polymer-carbon nanotube composites, Fuller. Sci. Technol. 7, 695–711 (1999) K. Yoshino, H. Kajii, H. Araki, T. Sonoda, H. Take, S. Lee: Electrical and optical properties of conducting polymer-fullerene and conducting polymer-carbon nanotube composites, Fuller. Sci. Technol. 7, 695–711 (1999)
3.457.
Zurück zum Zitat B. Maruyama, K. Alam: Carbon nanotubes and nanofibers in composite materials, SAMPE J. 38, 59–70 (2002) B. Maruyama, K. Alam: Carbon nanotubes and nanofibers in composite materials, SAMPE J. 38, 59–70 (2002)
3.458.
Zurück zum Zitat S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens: A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes. A novel material for molecular optoelectronics, Adv. Mater. 10, 1091–1093 (1998) S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens: A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes. A novel material for molecular optoelectronics, Adv. Mater. 10, 1091–1093 (1998)
3.459.
Zurück zum Zitat P. Fournet, D.F. O'Brien, J. N. Coleman, H. H. Horhold, W. J. Blau: A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes, Synth. Met. 121, 1683–1684 (2001) P. Fournet, D.F. O'Brien, J. N. Coleman, H. H. Horhold, W. J. Blau: A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes, Synth. Met. 121, 1683–1684 (2001)
3.460.
Zurück zum Zitat H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. Ballato, A. E. Strevens, D. O'Brien, W. J. Blau: Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene vinylene), Appl. Phys. Lett. 77, 1393–1395 (2000) H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. Ballato, A. E. Strevens, D. O'Brien, W. J. Blau: Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene vinylene), Appl. Phys. Lett. 77, 1393–1395 (2000)
3.461.
Zurück zum Zitat H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. W. Park, J. H. Lee: Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: The role of carbon nanotubes in a hole conducting polymer, Synth. Met. 116, 369–372 (2001) H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. W. Park, J. H. Lee: Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: The role of carbon nanotubes in a hole conducting polymer, Synth. Met. 116, 369–372 (2001)
3.462.
Zurück zum Zitat H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, R. H. Friend: Composites of carbon nanotubes and conjugated polymers for photovoltaic devices, Adv. Mater. 11, 1281–1285 (1999) H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, R. H. Friend: Composites of carbon nanotubes and conjugated polymers for photovoltaic devices, Adv. Mater. 11, 1281–1285 (1999)
3.463.
Zurück zum Zitat B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin: Macroscopic fibers and ribbons of oriented carbon nanotubes, Science 290, 1331–1334 (2000) B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin: Macroscopic fibers and ribbons of oriented carbon nanotubes, Science 290, 1331–1334 (2000)
3.464.
Zurück zum Zitat B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier: Improved structure and properties of single-wall carbon nanotube spun fibers, Appl. Phys. Lett. 11, 1210–1212 (2002) B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier: Improved structure and properties of single-wall carbon nanotube spun fibers, Appl. Phys. Lett. 11, 1210–1212 (2002)
3.465.
Zurück zum Zitat P. Poulin, B. Vigolo, P. Launois: Films and fibers of oriented single wall nanotubes, Carbon 40, 1741–1749 (2002) P. Poulin, B. Vigolo, P. Launois: Films and fibers of oriented single wall nanotubes, Carbon 40, 1741–1749 (2002)
3.466.
Zurück zum Zitat K. Jiang, Q. Li, S. Fan: Spinning continuous carbon nanotube yarn, Nature 419, 801 (2002) K. Jiang, Q. Li, S. Fan: Spinning continuous carbon nanotube yarn, Nature 419, 801 (2002)
3.467.
Zurück zum Zitat M. Zhang, K. R. Atkinson, R. H. Baughman: Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306, 1356–1361 (2004) M. Zhang, K. R. Atkinson, R. H. Baughman: Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306, 1356–1361 (2004)
3.468.
Zurück zum Zitat J. Steinmetz, M. Glerup, M. Paillet, P. Bernier, M. Holzinger: Production of pure nanotube fibers using a modified wet-spinning method, Carbon 43, 2397–2400 (2005) J. Steinmetz, M. Glerup, M. Paillet, P. Bernier, M. Holzinger: Production of pure nanotube fibers using a modified wet-spinning method, Carbon 43, 2397–2400 (2005)
3.469.
Zurück zum Zitat P. Lambin, A. Fonseca, J. P. Vigneron, J. B'Nagy, A. A. Lucas: Structural and electronic properties of bent carbon nanotubes, Chem. Phys. Lett. 245, 85–89 (1995) P. Lambin, A. Fonseca, J. P. Vigneron, J. B'Nagy, A. A. Lucas: Structural and electronic properties of bent carbon nanotubes, Chem. Phys. Lett. 245, 85–89 (1995)
3.470.
Zurück zum Zitat L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, M. L. Cohen: Pure carbon nanoscale devices: Nanotube heterojunctions, Phys. Rev. Lett. 76, 971–974 (1996) L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, M. L. Cohen: Pure carbon nanoscale devices: Nanotube heterojunctions, Phys. Rev. Lett. 76, 971–974 (1996)
3.471.
Zurück zum Zitat Z. Yao, H. W. C. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273–276 (1999) Z. Yao, H. W. C. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273–276 (1999)
3.472.
Zurück zum Zitat S. J. Tans, A. R. M. Verschueren, C. Dekker: Room temperature transistor based on single carbon nanotube, Nature 393, 49–52 (1998) S. J. Tans, A. R. M. Verschueren, C. Dekker: Room temperature transistor based on single carbon nanotube, Nature 393, 49–52 (1998)
3.473.
Zurück zum Zitat R. Martel, T. Schmidt, H. R. Shea, T. Hertel, P. Avouris: Single and multi-wall carbon nanotube field effect transistors, Appl. Phys. Lett. 73, 2447–2449 (1998) R. Martel, T. Schmidt, H. R. Shea, T. Hertel, P. Avouris: Single and multi-wall carbon nanotube field effect transistors, Appl. Phys. Lett. 73, 2447–2449 (1998)
3.474.
Zurück zum Zitat V. Derycke, R. Martel, J. Appenzeller, P. Avouris: Carbon nanotube inter- and intramolecular logic gates, Nanolett. 1, 453–456 (2001) V. Derycke, R. Martel, J. Appenzeller, P. Avouris: Carbon nanotube inter- and intramolecular logic gates, Nanolett. 1, 453–456 (2001)
3.475.
Zurück zum Zitat P. G. Collins, M. S. Arnold, P. Avouris: Engineering carbon nanotubes using electrical breakdown, Science 292, 706–709 (2001) P. G. Collins, M. S. Arnold, P. Avouris: Engineering carbon nanotubes using electrical breakdown, Science 292, 706–709 (2001)
3.476.
Zurück zum Zitat A. P. Graham, G. S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl, E. Unger: How do carbon nanotubes fit into the semiconductor roadmap?, Appl. Phys. A 80, 1141–1151 (2005) A. P. Graham, G. S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl, E. Unger: How do carbon nanotubes fit into the semiconductor roadmap?, Appl. Phys. A 80, 1141–1151 (2005)
3.477.
Zurück zum Zitat P. Kim, C. M. Lieber: Nanotube nanotweezers, Science 286, 2148–2150 (1999) P. Kim, C. M. Lieber: Nanotube nanotweezers, Science 286, 2148–2150 (1999)
3.478.
Zurück zum Zitat R. H. Baughman, C. Changxing, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. de Rossi, A. G. Rinzler, O. Jaschinki S. Roth, M. Kertesz: Carbon nanotubes actuators, Science 284, 1340–1344 (1999) R. H. Baughman, C. Changxing, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. de Rossi, A. G. Rinzler, O. Jaschinki S. Roth, M. Kertesz: Carbon nanotubes actuators, Science 284, 1340–1344 (1999)
3.479.
Zurück zum Zitat Y. Gao, Y. Bando: Carbon nanothermometer containing gallium, Nature 415, 599 (2002) Y. Gao, Y. Bando: Carbon nanothermometer containing gallium, Nature 415, 599 (2002)
3.480.
Zurück zum Zitat C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent: High power electro-chemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70, 1480–1482 (1997) C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent: High power electro-chemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70, 1480–1482 (1997)
3.481.
Zurück zum Zitat E. Frackowiak, F. Béguin: Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon 40, 1775–1787 (2002) E. Frackowiak, F. Béguin: Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon 40, 1775–1787 (2002)
3.482.
Zurück zum Zitat C. Portet, P. L. Taberna, P. Simon, E. Flahaut: Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte, J. Power. Sources 139, 371–378 (2005) C. Portet, P. L. Taberna, P. Simon, E. Flahaut: Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte, J. Power. Sources 139, 371–378 (2005)
3.483.
Zurück zum Zitat E. Frackowiak, K. Jurewicz, K. Szostak, S. Delpeux, F. Béguin: Nanotubular materials as electrodes for supercapacitors, Fuel Process. Technol. 77, 213–219 (2002) E. Frackowiak, K. Jurewicz, K. Szostak, S. Delpeux, F. Béguin: Nanotubular materials as electrodes for supercapacitors, Fuel Process. Technol. 77, 213–219 (2002)
3.484.
Zurück zum Zitat J. Mittal, E. Frackowiak, M. Monthioux, G. Lota: High performance supercapacitor from hybrid-nanotube-based electrodes, Nanotechnol. (2006) submitted J. Mittal, E. Frackowiak, M. Monthioux, G. Lota: High performance supercapacitor from hybrid-nanotube-based electrodes, Nanotechnol. (2006) submitted
Metadaten
Titel
Introduction to Carbon Nanotubes
verfasst von
Marc Monthioux, Prof.
Philippe Serp, Dr.
Emmanuel Flahaut, Dr.
Manitra Razafinimanana, Prof.
Christophe Laurent, Dr.
Alain Peigney, Dr.
Wolfgang Bacsa, Prof.
Jean-Marc Broto, Prof.
Copyright-Jahr
2007
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-540-29857-1_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.