Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Introduction to Compressive Sampling (CS)

verfasst von : Venkata Rajesh Pamula, Chris Van Hoof, Marian Verhelst

Erschienen in: Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides an overview of compressive sampling (CS), introducing both the signal acquisition and reconstruction protocols. A novel, computationally light, overlapped window reconstruction algorithm is introduced to circumvent the problem of edge artifacts in conventional CS reconstruction. The proposed approach is shown to reduce the central processing unit (CPU) execution time by a factor of 2.4 without degradation of reconstruction accuracy compared to a traditional longer window reconstruction approach for photoplethysmogram (PPG) signals. Finally, this chapter also presents the state-of-the-art CS implementations for biosignal acquisition and processing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Strictly speaking restricted isometry property (RIP) of Φ Ψ−1.
 
2
This is true for analog implementations of CS. Digital implementations acquire signal at Nyquist rate (f s,N).
 
3
For perfect reconstruction, X′ = X and S′ = S.
 
4
In analog implementations of CS, only M samples are acquired.
 
5
Assuming Bernoulli measurement matrix.
 
6
The overlapping window overlaps the original window by 50%.
 
7
Random sampling is equivalent to multiplying the signal with a reduced order identity matrix.
 
Literatur
27.
Zurück zum Zitat E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRef E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRef
38.
Zurück zum Zitat H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)CrossRef H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)CrossRef
52.
Zurück zum Zitat D. Gangopadhyay, E.G. Allstot, A.M.R. Dixon, K. Natarajan, S. Gupta, D.J. Allstot, Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid State Circuits 49(2), 426–438 (2014)CrossRef D. Gangopadhyay, E.G. Allstot, A.M.R. Dixon, K. Natarajan, S. Gupta, D.J. Allstot, Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid State Circuits 49(2), 426–438 (2014)CrossRef
53.
Zurück zum Zitat Y. Li, D. Zhao, W.A. Serdijn, A sub-microwatt asynchronous level-crossing ADC for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 149–157 (2013)CrossRef Y. Li, D. Zhao, W.A. Serdijn, A sub-microwatt asynchronous level-crossing ADC for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 149–157 (2013)CrossRef
55.
Zurück zum Zitat C. Weltin-Wu, Y. Tsividis, An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution. IEEE J. Solid State Circuits 48(9), 2180–2190 (2013)CrossRef C. Weltin-Wu, Y. Tsividis, An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution. IEEE J. Solid State Circuits 48(9), 2180–2190 (2013)CrossRef
56.
Zurück zum Zitat B. Schell, Y. Tsividis, A continuous-time ADC/DSP/DAC system with no clock and with activity-dependent power dissipation. IEEE J. Solid State Circuits 43(11), 2472–2481 (2008)CrossRef B. Schell, Y. Tsividis, A continuous-time ADC/DSP/DAC system with no clock and with activity-dependent power dissipation. IEEE J. Solid State Circuits 43(11), 2472–2481 (2008)CrossRef
57.
Zurück zum Zitat M. Trakimas, S.R. Sonkusale, An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 58(5), 921–934 (2011)MathSciNetCrossRef M. Trakimas, S.R. Sonkusale, An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 58(5), 921–934 (2011)MathSciNetCrossRef
58.
Zurück zum Zitat E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process Mag. 25(2), 21–30 (2008)CrossRef E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process Mag. 25(2), 21–30 (2008)CrossRef
59.
Zurück zum Zitat D.L. Donoho, Y. Tsaig, Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)CrossRef D.L. Donoho, Y. Tsaig, Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)CrossRef
61.
Zurück zum Zitat R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. (1996), pp. 267–288MathSciNetMATH R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. (1996), pp. 267–288MathSciNetMATH
62.
Zurück zum Zitat W. Lu, N. Vaswani, Modified basis pursuit denoising(modified-BPDN) for noisy compressive sensing with partially known support, in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 2010), pp. 3926–3929CrossRef W. Lu, N. Vaswani, Modified basis pursuit denoising(modified-BPDN) for noisy compressive sensing with partially known support, in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 2010), pp. 3926–3929CrossRef
63.
Zurück zum Zitat M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Sign. Proces. 1(4), 586–597 (2007)CrossRef M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Sign. Proces. 1(4), 586–597 (2007)CrossRef
64.
Zurück zum Zitat A.M.R. Dixon, E.G. Allstot, D. Gangopadhyay, D.J. Allstot, Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circuits Syst. 6(2), 156–166 (2012)CrossRef A.M.R. Dixon, E.G. Allstot, D. Gangopadhyay, D.J. Allstot, Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circuits Syst. 6(2), 156–166 (2012)CrossRef
65.
Zurück zum Zitat F. Ren, D. Marković, 18.5 A configurable 12-to-237kS/s 12.8 mW sparse-approximation engine for mobile ExG data aggregation, in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers (IEEE, Piscataway, 2015), pp. 1–3 F. Ren, D. Marković, 18.5 A configurable 12-to-237kS/s 12.8 mW sparse-approximation engine for mobile ExG data aggregation, in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers (IEEE, Piscataway, 2015), pp. 1–3
66.
Zurück zum Zitat P. Maechler, C. Studer, D.E. Bellasi, A. Maleki, A. Burg, N. Felber, H. Kaeslin, R.G. Baraniuk, VLSI design of approximate message passing for signal restoration and compressive sensing. IEEE J. Emerging Sel. Top. Circuits Syst. 2(3), 579–590 (2012)CrossRef P. Maechler, C. Studer, D.E. Bellasi, A. Maleki, A. Burg, N. Felber, H. Kaeslin, R.G. Baraniuk, VLSI design of approximate message passing for signal restoration and compressive sensing. IEEE J. Emerging Sel. Top. Circuits Syst. 2(3), 579–590 (2012)CrossRef
67.
Zurück zum Zitat P. Maechler, P. Greisen, B. Sporrer, S. Steiner, N. Felber, A. Burg, Implementation of greedy algorithms for LTE sparse channel estimation, in 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (Nov 2010) P. Maechler, P. Greisen, B. Sporrer, S. Steiner, N. Felber, A. Burg, Implementation of greedy algorithms for LTE sparse channel estimation, in 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (Nov 2010)
68.
Zurück zum Zitat V.R. Pamula, M. Verhelst, C. Van Hoof, R.F. Yazicioglu, Computationally-efficient compressive sampling for low-power pulseoximeter system, in 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings (IEEE, Piscataway, 2014), pp. 69–72 V.R. Pamula, M. Verhelst, C. Van Hoof, R.F. Yazicioglu, Computationally-efficient compressive sampling for low-power pulseoximeter system, in 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings (IEEE, Piscataway, 2014), pp. 69–72
69.
Zurück zum Zitat V.R. Pamula, System and method for compressed sensing, U.S. Patent App. 14/886,537, 21 Apr 2016 V.R. Pamula, System and method for compressed sensing, U.S. Patent App. 14/886,537, 21 Apr 2016
70.
Zurück zum Zitat M. Mangia, R. Rovatti, G. Setti, Rakeness in the design of analog-to-information conversion of sparse and localized signals. IEEE Trans. Circuits Syst. Regul. Pap. 59(5), 1001–1014 (2012)MathSciNetCrossRef M. Mangia, R. Rovatti, G. Setti, Rakeness in the design of analog-to-information conversion of sparse and localized signals. IEEE Trans. Circuits Syst. Regul. Pap. 59(5), 1001–1014 (2012)MathSciNetCrossRef
71.
Zurück zum Zitat S. Mallet, A Wavelet Tour of Signal Processing (Academic Press, Cambridge, 2009) S. Mallet, A Wavelet Tour of Signal Processing (Academic Press, Cambridge, 2009)
72.
Zurück zum Zitat H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Design and exploration of low-power analog to information conversion based on compressed sensing. IEEE J. Emerging Sel. Top. Circuits Syst. 2(3), 493–501 (2012)CrossRef H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Design and exploration of low-power analog to information conversion based on compressed sensing. IEEE J. Emerging Sel. Top. Circuits Syst. 2(3), 493–501 (2012)CrossRef
73.
Zurück zum Zitat M. Shoaran, M.H. Kamal, C. Pollo, P. Vandergheynst, A. Schmid, Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans. Biomed. Circuits Syst. 8(6), 857–870 (2014)CrossRef M. Shoaran, M.H. Kamal, C. Pollo, P. Vandergheynst, A. Schmid, Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans. Biomed. Circuits Syst. 8(6), 857–870 (2014)CrossRef
74.
Zurück zum Zitat F. Chen, A.P. Chandrakasan, V.M. Stojanovic, Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid State Circuits 47(3), 744–756 (2012)CrossRef F. Chen, A.P. Chandrakasan, V.M. Stojanovic, Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid State Circuits 47(3), 744–756 (2012)CrossRef
75.
Zurück zum Zitat Y. Suo, J. Zhang, T. Xiong, P.S. Chin, R. Etienne-Cummings, T.D. Tran, Energy-efficient multi-mode compressed sensing system for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(5), 648–659 (2014)CrossRef Y. Suo, J. Zhang, T. Xiong, P.S. Chin, R. Etienne-Cummings, T.D. Tran, Energy-efficient multi-mode compressed sensing system for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(5), 648–659 (2014)CrossRef
76.
Zurück zum Zitat W. Guo, N. Sun, A 9.8b-ENOB 5.5fj/step fully-passive compressive sensing SAR ADC for WSN applications, in 2016 46th European Solid-State Device Research Conference (ESSDERC) (Sep 2016) W. Guo, N. Sun, A 9.8b-ENOB 5.5fj/step fully-passive compressive sensing SAR ADC for WSN applications, in 2016 46th European Solid-State Device Research Conference (ESSDERC) (Sep 2016)
77.
Zurück zum Zitat P.V. Rajesh, J.M. Valero-Sarmiento, L. Yan, A. Bozkurt, C. Van Hoof, N. Van Helleputte, R.F. Yazicioglu, M. Verhelst, A 172μW compressive sampling photoplethysmographic readout with embedded direct heart-rate and variability extraction from compressively sampled data, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, Piscataway, 2016), pp. 386–387 P.V. Rajesh, J.M. Valero-Sarmiento, L. Yan, A. Bozkurt, C. Van Hoof, N. Van Helleputte, R.F. Yazicioglu, M. Verhelst, A 172μW compressive sampling photoplethysmographic readout with embedded direct heart-rate and variability extraction from compressively sampled data, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, Piscataway, 2016), pp. 386–387
78.
Zurück zum Zitat M. Trakimas, R. D’Angelo, S. Aeron, T. Hancock, S. Sonkusale, A compressed sensing analog-to-information converter with edge-triggered SAR ADC core. IEEE Trans. Circuits Syst. I, Reg. Pap. 60(5), 1135–1148 (2013)MathSciNetCrossRef M. Trakimas, R. D’Angelo, S. Aeron, T. Hancock, S. Sonkusale, A compressed sensing analog-to-information converter with edge-triggered SAR ADC core. IEEE Trans. Circuits Syst. I, Reg. Pap. 60(5), 1135–1148 (2013)MathSciNetCrossRef
79.
Zurück zum Zitat M. Lustig, D. Donoho, J.M. Pauly, Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRef M. Lustig, D. Donoho, J.M. Pauly, Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRef
80.
Zurück zum Zitat T. Moy, L. Huang, W. Rieutort-Louis, C. Wu, P. Cuff, S. Wagner, J.C. Sturm, N. Verma, An EEG acquisition and biomarker-extraction system using low-noise-amplifier and compressive-sensing circuits based on flexible, thin-film electronics. IEEE J. Solid State Circuits 52(1), 309–321 (2017)CrossRef T. Moy, L. Huang, W. Rieutort-Louis, C. Wu, P. Cuff, S. Wagner, J.C. Sturm, N. Verma, An EEG acquisition and biomarker-extraction system using low-noise-amplifier and compressive-sensing circuits based on flexible, thin-film electronics. IEEE J. Solid State Circuits 52(1), 309–321 (2017)CrossRef
81.
Zurück zum Zitat B. Hu, F. Ren, Z.-Z. Chen, X. Jiang, M.-C. Chang, 9-bit time–digital-converter-assisted compressive-sensing analogue–digital-converter with 4 GS/s equivalent speed. Electron. Lett. 52(6), 430–432 (2016)CrossRef B. Hu, F. Ren, Z.-Z. Chen, X. Jiang, M.-C. Chang, 9-bit time–digital-converter-assisted compressive-sensing analogue–digital-converter with 4 GS/s equivalent speed. Electron. Lett. 52(6), 430–432 (2016)CrossRef
82.
Zurück zum Zitat D.E. Bellasi, L. Benini, Energy-efficiency analysis of analog and digital compressive sensing in wireless sensors. IEEE Trans. Circuits Syst. Reg. Pap. 62(11), 2718–2729 (2015)MathSciNetCrossRef D.E. Bellasi, L. Benini, Energy-efficiency analysis of analog and digital compressive sensing in wireless sensors. IEEE Trans. Circuits Syst. Reg. Pap. 62(11), 2718–2729 (2015)MathSciNetCrossRef
83.
Zurück zum Zitat D. Bortolotti, A. Bartolini, L. Benini, V.R. Pamula, N. Van Helleputte, C. Van Hoof, M. Verhelst, T. Gemmeke, R.B. Lopez, G. Ansaloni et al., PHIDIAS: ultra-low-power holistic design for smart bio-signals computing platforms, in Proceedings of the ACM International Conference on Computing Frontiers (ACM, New York, 2016), pp. 309–314 D. Bortolotti, A. Bartolini, L. Benini, V.R. Pamula, N. Van Helleputte, C. Van Hoof, M. Verhelst, T. Gemmeke, R.B. Lopez, G. Ansaloni et al., PHIDIAS: ultra-low-power holistic design for smart bio-signals computing platforms, in Proceedings of the ACM International Conference on Computing Frontiers (ACM, New York, 2016), pp. 309–314
84.
Zurück zum Zitat J. Zhang, Y. Suo, S. Mitra, S.P. Chin, S. Hsiao, R.F. Yazicioglu, T.D. Tran, R. Etienne-Cummings, An efficient and compact compressed sensing microsystem for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(4), 485–496 (2014)CrossRef J. Zhang, Y. Suo, S. Mitra, S.P. Chin, S. Hsiao, R.F. Yazicioglu, T.D. Tran, R. Etienne-Cummings, An efficient and compact compressed sensing microsystem for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(4), 485–496 (2014)CrossRef
85.
Zurück zum Zitat P.K. Baheti, H. Garudadri, S. Majumdar, Blood oxygen estimation from compressively sensed photoplethysmograph, in Wireless Health 2010, ser. WH ’10 (ACM, New York, 2010), pp. 10–14 P.K. Baheti, H. Garudadri, S. Majumdar, Blood oxygen estimation from compressively sensed photoplethysmograph, in Wireless Health 2010, ser. WH ’10 (ACM, New York, 2010), pp. 10–14
Metadaten
Titel
Introduction to Compressive Sampling (CS)
verfasst von
Venkata Rajesh Pamula
Chris Van Hoof
Marian Verhelst
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05870-8_3

Neuer Inhalt