Skip to main content

2017 | OriginalPaper | Buchkapitel

3. Introduction to Micro-/Nanofabrication

verfasst von : Gemma Rius, Antoni Baldi, Babak Ziaie, Massood Z. Atashbar

Erschienen in: Springer Handbook of Nanotechnology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter outlines and discusses important micro- and nanofabrication techniques. We focus on the most basic methods borrowed from the integrated circuit (IC) industry, such as thin-film deposition, lithography and etching, and then move on to look at microelectromechanical systems (MEMS) and nanofabrication technologies. We cover a broad range of dimensions, from the sub-millimeter to the nanometer scale. Although most of the current research is being geared towards the nanodomain, a good understanding of basic top-down methods for fabricating micron-sized objects can aid our understanding of this research. Due to space constraints, we focus here on the most important technologies; in the microdomain these include surface, bulk, and high-aspect-ratio micromachining; in the nanodomain we concentrate on e-beam lithography, epitaxial growth, scanning probe lithography, template manufacturing, and self-assembly. MEMS technology has matured rapidly, with some new technologies displacing older ones that have proven to be unsuited to manufacture on a commercial scale. However, due to limitations encountered on these methods used in the nanodomain, it appears that bottom-up methods or introduction of novel nanoforms and nanomaterials are the most feasible and promising solutions. Disruptive approaches are expected to have a major impact in a variety of application areas such as biology, medicine, environmental monitoring, and nanoelectronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.1
Zurück zum Zitat S.A. Campbell: The Science and Engineering of Microelectronic Fabrication (Oxford Univ. Press, New York 2001) S.A. Campbell: The Science and Engineering of Microelectronic Fabrication (Oxford Univ. Press, New York 2001)
3.2
Zurück zum Zitat C.J. Jaeger: Introduction to Microelectronic Fabrication (Prentice Hall, New Jersey 2002) C.J. Jaeger: Introduction to Microelectronic Fabrication (Prentice Hall, New Jersey 2002)
3.3
Zurück zum Zitat J.D. Plummer, M.D. Deal, P.B. Griffin: Silicon VLSI Technology (Prentice Hall, New Jersey 2000) J.D. Plummer, M.D. Deal, P.B. Griffin: Silicon VLSI Technology (Prentice Hall, New Jersey 2000)
3.4
Zurück zum Zitat J.E. Bjorkholm: EUV lithography: The successor to optical lithography, Intel Technol. J. 2, 1–8 (1998) J.E. Bjorkholm: EUV lithography: The successor to optical lithography, Intel Technol. J. 2, 1–8 (1998)
3.5
Zurück zum Zitat S. Owa, H. Nagasaka: Advantage and feasibility of immersion lithography, J. Microlithogr. Microfabr. Microsyst. 3, 97–103 (2004) S. Owa, H. Nagasaka: Advantage and feasibility of immersion lithography, J. Microlithogr. Microfabr. Microsyst. 3, 97–103 (2004)
3.6
Zurück zum Zitat H.U. Krebs, M. Störmer, J. Faupel, E. Süske, T. Scharf, C. Fuhse, N. Seibt, H. Kijewski, D. Nelke, E. Panchenko, M. Buback: Pulsed laser deposition (PLD) – A versatile thin film technique, Adv. Solid State Phys. 43, 505–517 (2003) H.U. Krebs, M. Störmer, J. Faupel, E. Süske, T. Scharf, C. Fuhse, N. Seibt, H. Kijewski, D. Nelke, E. Panchenko, M. Buback: Pulsed laser deposition (PLD) – A versatile thin film technique, Adv. Solid State Phys. 43, 505–517 (2003)
3.7
Zurück zum Zitat M. Leskela, M. Ritala: Atomic layer deposition chemistry: recent developments and future challenges, Angew. Chem. Int. Ed. 42, 5548–5554 (2003) M. Leskela, M. Ritala: Atomic layer deposition chemistry: recent developments and future challenges, Angew. Chem. Int. Ed. 42, 5548–5554 (2003)
3.8
Zurück zum Zitat J.L. Vossen: Thin Film Processes (Academic, New York 1976) J.L. Vossen: Thin Film Processes (Academic, New York 1976)
3.9
Zurück zum Zitat M. Gad-el-Hak (Ed.): The MEMS Handbook (CRC, Boca Raton 2002)MATH M. Gad-el-Hak (Ed.): The MEMS Handbook (CRC, Boca Raton 2002)MATH
3.10
Zurück zum Zitat T.-R. Hsu: MEMS and Microsystems Design and Manufacture (McGraw Hill, New York 2002) T.-R. Hsu: MEMS and Microsystems Design and Manufacture (McGraw Hill, New York 2002)
3.11
Zurück zum Zitat G.T.A. Kovacs: Micromachined Transducers Sourcebook (McGraw Hill, New York 1998) G.T.A. Kovacs: Micromachined Transducers Sourcebook (McGraw Hill, New York 1998)
3.12
Zurück zum Zitat P. Rai-Choudhury (Ed.): Handbook of Microlithography, Micromachining and Microfabrication. Vol. 2: Micromachining and Microfabrication (SPIE/IEE, Bellingham, Washington/London 1997) P. Rai-Choudhury (Ed.): Handbook of Microlithography, Micromachining and Microfabrication. Vol. 2: Micromachining and Microfabrication (SPIE/IEE, Bellingham, Washington/London 1997)
3.13
Zurück zum Zitat M.F. Aimi, M.P. Rao, N.C. MacDonald, A.S. Zuruzi, D.P. Bothman: High-aspect-ratio bulk micromachining of titanium, Nat. Mater. 3, 103–105 (2004) M.F. Aimi, M.P. Rao, N.C. MacDonald, A.S. Zuruzi, D.P. Bothman: High-aspect-ratio bulk micromachining of titanium, Nat. Mater. 3, 103–105 (2004)
3.14
Zurück zum Zitat T.J. Cotler, M.E. Elta: Plasma-etch technology, IEEE Circuits Devices Mag. 6, 38–43 (1990) T.J. Cotler, M.E. Elta: Plasma-etch technology, IEEE Circuits Devices Mag. 6, 38–43 (1990)
3.15
Zurück zum Zitat U. Gosele, Q.Y. Tong: Semiconductor wafer bonding, Annu. Rev. Mater. Sci. 28, 215–241 (1998) U. Gosele, Q.Y. Tong: Semiconductor wafer bonding, Annu. Rev. Mater. Sci. 28, 215–241 (1998)
3.16
Zurück zum Zitat Q.Y. Tong, U. Gosele: Semiconductor Wafer Bonding: Science and Technology (Wiley, New York 1999) Q.Y. Tong, U. Gosele: Semiconductor Wafer Bonding: Science and Technology (Wiley, New York 1999)
3.17
Zurück zum Zitat F. Niklaus, P. Enoksson, E. Kalveston, G. Stemme: Void-free full-wafer adhesive bonding, J. Micromech. Microeng. 11, 100–107 (2000) F. Niklaus, P. Enoksson, E. Kalveston, G. Stemme: Void-free full-wafer adhesive bonding, J. Micromech. Microeng. 11, 100–107 (2000)
3.18
Zurück zum Zitat C.A. Harper: Electronic Packaging and Interconnection Handbook (McGraw-Hill, New York 2000) C.A. Harper: Electronic Packaging and Interconnection Handbook (McGraw-Hill, New York 2000)
3.19
Zurück zum Zitat W.H. Ko, J.T. Suminto, G.J. Yeh: Bonding techniques for microsensors. In: Micromachining and Micropackaging for Transducers, ed. by W.H. Ko (Elsevier, Amsterdam 1985) W.H. Ko, J.T. Suminto, G.J. Yeh: Bonding techniques for microsensors. In: Micromachining and Micropackaging for Transducers, ed. by W.H. Ko (Elsevier, Amsterdam 1985)
3.20
Zurück zum Zitat G.T.A. Kovacs, N.I. Maluf, K.A. Petersen: Bulk micromachining of silicon, Proc. IEEE 86(8), 1536–1551 (1998) G.T.A. Kovacs, N.I. Maluf, K.A. Petersen: Bulk micromachining of silicon, Proc. IEEE 86(8), 1536–1551 (1998)
3.21
Zurück zum Zitat K. Najafi, K.D. Wise, T. Mochizuki: A high-yield IC-compatible multichannel recording array, IEEE Trans. Electron Devices 32, 1206–1211 (1985) K. Najafi, K.D. Wise, T. Mochizuki: A high-yield IC-compatible multichannel recording array, IEEE Trans. Electron Devices 32, 1206–1211 (1985)
3.22
Zurück zum Zitat A. Selvakumar, K. Najafi: A high-sensitivity z-axis capacitive silicon microaccelerometer with a tortional suspension, J. Microelectromech. Syst. 7, 192–200 (1998) A. Selvakumar, K. Najafi: A high-sensitivity z-axis capacitive silicon microaccelerometer with a tortional suspension, J. Microelectromech. Syst. 7, 192–200 (1998)
3.23
Zurück zum Zitat H. Baltes, O. Paul, O. Brand: Micromachined thermally based CMOS microsensors, Proc. IEEE 86(8), 1660–1678 (1998) H. Baltes, O. Paul, O. Brand: Micromachined thermally based CMOS microsensors, Proc. IEEE 86(8), 1660–1678 (1998)
3.24
Zurück zum Zitat B. Eyre, K.S.J. Pister, W. Gekelman: Multi-axis microcoil sensors in standard CMOS. In: Proc. SPIE Conf. Micromach. Devices Compon., Austin (1995) pp. 183–191 B. Eyre, K.S.J. Pister, W. Gekelman: Multi-axis microcoil sensors in standard CMOS. In: Proc. SPIE Conf. Micromach. Devices Compon., Austin (1995) pp. 183–191
3.25
Zurück zum Zitat K.A. Shaw, Z.L. Zhang, N.C. MacDonnald: SCREAM: A single mask, single-crystal silicon process for microelectromechanical structures. In: Proc. IEEE Workshop Micro Electro Mech. Syst., Fort Lauderdale (1993) pp. 155–160 K.A. Shaw, Z.L. Zhang, N.C. MacDonnald: SCREAM: A single mask, single-crystal silicon process for microelectromechanical structures. In: Proc. IEEE Workshop Micro Electro Mech. Syst., Fort Lauderdale (1993) pp. 155–160
3.26
Zurück zum Zitat G.K. Fedder, S. Santhanam, M.L. Reed, S.C. Eagle, D.F. Guillo, M.S.C. Lu, L.R. Carley: Laminated high-aspect-ratio microstructures in a conventional CMOS process. In: Proc. IEEE Workshop Micro Electro Mech. Syst., San Diego (1996) pp. 13–18 G.K. Fedder, S. Santhanam, M.L. Reed, S.C. Eagle, D.F. Guillo, M.S.C. Lu, L.R. Carley: Laminated high-aspect-ratio microstructures in a conventional CMOS process. In: Proc. IEEE Workshop Micro Electro Mech. Syst., San Diego (1996) pp. 13–18
3.27
Zurück zum Zitat B.P. Van Drieenhuizen, N.I. Maluf, I.E. Opris, G.T.A. Kovacs: Force-balanced accelerometer with mG resolution fabricated using silicon fusion bonding and deep reactive ion etching. In: Proc. Int. Conf. Solid-State Sens. Actuators, Chicago (1997) pp. 1229–1230 B.P. Van Drieenhuizen, N.I. Maluf, I.E. Opris, G.T.A. Kovacs: Force-balanced accelerometer with mG resolution fabricated using silicon fusion bonding and deep reactive ion etching. In: Proc. Int. Conf. Solid-State Sens. Actuators, Chicago (1997) pp. 1229–1230
3.28
Zurück zum Zitat N.C. MacDonald: SCREAM MicroElectroMechanical Systems, Microelectron. Eng. 32, 51–55 (1996) N.C. MacDonald: SCREAM MicroElectroMechanical Systems, Microelectron. Eng. 32, 51–55 (1996)
3.29
Zurück zum Zitat X. Huikai, L. Erdmann, Z. Xu, K.J. Gabriel, G.K. Fedder: Post-CMOS processing for high-aspect-ratio integrated silicon microstructures, J. Microelectromech. Syst. 11, 93–101 (2002) X. Huikai, L. Erdmann, Z. Xu, K.J. Gabriel, G.K. Fedder: Post-CMOS processing for high-aspect-ratio integrated silicon microstructures, J. Microelectromech. Syst. 11, 93–101 (2002)
3.30
Zurück zum Zitat J.M. Bustillo, R.S. Muller: Surface micromachining for microelectromechanical systems, Proc. IEEE 86(8), 1552–1574 (1998) J.M. Bustillo, R.S. Muller: Surface micromachining for microelectromechanical systems, Proc. IEEE 86(8), 1552–1574 (1998)
3.31
Zurück zum Zitat H.C. Nathanson, W.E. Newell, R.A. Wickstrom, J.R. Davis: The resonant gate transistor, IEEE Trans. Electron Devices 14, 117–133 (1967) H.C. Nathanson, W.E. Newell, R.A. Wickstrom, J.R. Davis: The resonant gate transistor, IEEE Trans. Electron Devices 14, 117–133 (1967)
3.32
Zurück zum Zitat R.T. Howe, R.S. Muller: Polycrystalline silicon micromechanical beams. In: Proc. Electrochem. Soc. Spring Meet., Montreal (1982) pp. 184–185 R.T. Howe, R.S. Muller: Polycrystalline silicon micromechanical beams. In: Proc. Electrochem. Soc. Spring Meet., Montreal (1982) pp. 184–185
3.33
Zurück zum Zitat G. Rius, F. Pérez Murano: Nanocantilever beam fabrication techniques in silicon. In: Nanocantilever Beams: Modeling, Fabrication, and Applications, ed. by I. Voiculescu, M. Zaghloul (CRC, Boca Raton 2015) pp. 3–36 G. Rius, F. Pérez Murano: Nanocantilever beam fabrication techniques in silicon. In: Nanocantilever Beams: Modeling, Fabrication, and Applications, ed. by I. Voiculescu, M. Zaghloul (CRC, Boca Raton 2015) pp. 3–36
3.34
Zurück zum Zitat P.F. Van Kessel, L.J. Hornbeck, R.E. Meier, M.R. Douglass: A MEMS-based projection display, Proc. IEEE 86(8), 1687–1704 (1998) P.F. Van Kessel, L.J. Hornbeck, R.E. Meier, M.R. Douglass: A MEMS-based projection display, Proc. IEEE 86(8), 1687–1704 (1998)
3.35
Zurück zum Zitat J.A. Geen, S.J. Sherman, J.F. Chang, S.R. Lewis: Single-chip surface-micromachined integrated gyroscope with \({\mathrm{50}}\,{\mathrm{{}^{\circ}/h}}\) root Allan deviation, IEEE J. Solid-State Circuits 37, 1860–1866 (2002) J.A. Geen, S.J. Sherman, J.F. Chang, S.R. Lewis: Single-chip surface-micromachined integrated gyroscope with \({\mathrm{50}}\,{\mathrm{{}^{\circ}/h}}\) root Allan deviation, IEEE J. Solid-State Circuits 37, 1860–1866 (2002)
3.36
Zurück zum Zitat A.E. Franke, D. Bilic, D.T. Chang, P.T. Jones, R.T. Howe, G.C. Johnson: Post-CMOS integration of germanium microstructures. In: Proc. Micro Electro Mech. Syst., Orlando (1999) pp. 630–637 A.E. Franke, D. Bilic, D.T. Chang, P.T. Jones, R.T. Howe, G.C. Johnson: Post-CMOS integration of germanium microstructures. In: Proc. Micro Electro Mech. Syst., Orlando (1999) pp. 630–637
3.37
Zurück zum Zitat S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens: Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications, J. Microelectromech. Syst. 7, 365–372 (1998) S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens: Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications, J. Microelectromech. Syst. 7, 365–372 (1998)
3.38
Zurück zum Zitat N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, M. Elwenspoek: Stiction in surface micromachining, J. Micromech. Microeng. 6, 385–397 (1996) N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, M. Elwenspoek: Stiction in surface micromachining, J. Micromech. Microeng. 6, 385–397 (1996)
3.39
Zurück zum Zitat R. Maboudian, R.T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15(1), 1–20 (1997) R. Maboudian, R.T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15(1), 1–20 (1997)
3.40
Zurück zum Zitat J.H. Smith, S. Montague, J.J. Sniegowski, J.R. Murray, P.J. McWhorter: Embedded micromechanical devices for the monolithic integration of MEMS with CMOS. In: Proc. Int. Electron Devices Meet., Washington (1995) pp. 609–612 J.H. Smith, S. Montague, J.J. Sniegowski, J.R. Murray, P.J. McWhorter: Embedded micromechanical devices for the monolithic integration of MEMS with CMOS. In: Proc. Int. Electron Devices Meet., Washington (1995) pp. 609–612
3.41
Zurück zum Zitat K.S.J. Pister, M.W. Judy, S.R. Burgett, R.S. Fearing: Microfabricated hinges: 1 mm vertical features with surface micromachining. In: Proc. 6th Int. Conf. Solid-State Sens. Actuators, San Francisco (1991) pp. 647–650 K.S.J. Pister, M.W. Judy, S.R. Burgett, R.S. Fearing: Microfabricated hinges: 1 mm vertical features with surface micromachining. In: Proc. 6th Int. Conf. Solid-State Sens. Actuators, San Francisco (1991) pp. 647–650
3.42
Zurück zum Zitat L.Y. Lin, S.S. Lee, M.C. Wu, K.S.J. Pister: Micromachined integrated optics for free space interconnection. In: Proc. IEEE Micro Electro Mech. Syst. Workshop, Amsterdam (1995) pp. 77–82 L.Y. Lin, S.S. Lee, M.C. Wu, K.S.J. Pister: Micromachined integrated optics for free space interconnection. In: Proc. IEEE Micro Electro Mech. Syst. Workshop, Amsterdam (1995) pp. 77–82
3.43
Zurück zum Zitat R.S. Muller, K.Y. Lau: Surface-micromachined microoptical elements and systems, Proc. IEEE 86(8), 1705–1720 (1998) R.S. Muller, K.Y. Lau: Surface-micromachined microoptical elements and systems, Proc. IEEE 86(8), 1705–1720 (1998)
3.44
Zurück zum Zitat E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer: Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process), Microelectron. Eng. 4, 35–56 (1986) E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer: Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process), Microelectron. Eng. 4, 35–56 (1986)
3.45
Zurück zum Zitat H. Guckel: High-aspect-ratio micromachining via deep x-ray lithography, Proc. IEEE 86(8), 1586–1593 (1998) H. Guckel: High-aspect-ratio micromachining via deep x-ray lithography, Proc. IEEE 86(8), 1586–1593 (1998)
3.46
Zurück zum Zitat K.Y. Lee, N. LaBianca, S.A. Rishton, S. Zolgharnain, J.D. Gelorme, J. Shaw, T.H.P. Chang: Micromachining applications of a high resolution ultra-thick photoresist, J. Vac. Sci. Technol. B 13, 3012–3016 (1995) K.Y. Lee, N. LaBianca, S.A. Rishton, S. Zolgharnain, J.D. Gelorme, J. Shaw, T.H.P. Chang: Micromachining applications of a high resolution ultra-thick photoresist, J. Vac. Sci. Technol. B 13, 3012–3016 (1995)
3.47
Zurück zum Zitat K. Roberts, F. Williamson, G. Cibuzar, L. Thomas: The fabrication of an array of microcavities utilizing SU-8 photoresist as an alternative ‘LIGA’ technology. In: Proc. 13th Bienn. Univ./Gov./Ind. Microelectron. Symp. (IEEE), Minneapolis (1999) pp. 139–141 K. Roberts, F. Williamson, G. Cibuzar, L. Thomas: The fabrication of an array of microcavities utilizing SU-8 photoresist as an alternative ‘LIGA’ technology. In: Proc. 13th Bienn. Univ./Gov./Ind. Microelectron. Symp. (IEEE), Minneapolis (1999) pp. 139–141
3.48
Zurück zum Zitat C. Burbaum, J. Mohr, P. Bley, W. Ehrfeld: Fabrication of capacitive acceleration sensors by the LIGA technique, Sens. Actuators A Phys. A27, 559–563 (1991) C. Burbaum, J. Mohr, P. Bley, W. Ehrfeld: Fabrication of capacitive acceleration sensors by the LIGA technique, Sens. Actuators A Phys. A27, 559–563 (1991)
3.49
Zurück zum Zitat D.A. Horsley, M.B. Cohn, A. Singh, R. Horowitz, A.P. Pisano: Design and fabrication of an angular microactuator for magnetic disk drives, J. Microelectromech. Syst. 7, 141–148 (1998) D.A. Horsley, M.B. Cohn, A. Singh, R. Horowitz, A.P. Pisano: Design and fabrication of an angular microactuator for magnetic disk drives, J. Microelectromech. Syst. 7, 141–148 (1998)
3.50
Zurück zum Zitat C.G. Keller, R.T. Howe: Hexsil bimorphs for vertical actuation. In: Dig. Tech. Pap. 8th Int. Conf. Solid-State Sens. Actuators Eurosens. IX, Stockholm (1995) pp. 99–102 C.G. Keller, R.T. Howe: Hexsil bimorphs for vertical actuation. In: Dig. Tech. Pap. 8th Int. Conf. Solid-State Sens. Actuators Eurosens. IX, Stockholm (1995) pp. 99–102
3.51
Zurück zum Zitat C.G. Keller, R.T. Howe: Nickel-filled hexsil thermally actuated tweezers. In: Dig. Tech. Pap. 8th Int. Conf. Solid-State Sens. Actuators Eurosens. IX, Stockholm (1995) pp. 376–379 C.G. Keller, R.T. Howe: Nickel-filled hexsil thermally actuated tweezers. In: Dig. Tech. Pap. 8th Int. Conf. Solid-State Sens. Actuators Eurosens. IX, Stockholm (1995) pp. 376–379
3.52
Zurück zum Zitat F. Ayazi, K. Najafi: High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology, J. Microelectromech. Syst. 9, 288–294 (1998) F. Ayazi, K. Najafi: High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology, J. Microelectromech. Syst. 9, 288–294 (1998)
3.53
Zurück zum Zitat F. Ayazi, K. Najafi: A HARPSS polysilicon vibrating ring gyroscope, J. Microelectromech. Syst. 10, 169–179 (2001) F. Ayazi, K. Najafi: A HARPSS polysilicon vibrating ring gyroscope, J. Microelectromech. Syst. 10, 169–179 (2001)
3.54
Zurück zum Zitat Y.S. No, F. Ayazi: The HARPSS process for fabrication of nano-precision silicon electromechanical resonators. In: Proc. 2001 1st IEEE Conf. Nanotechnol., Maui (2001) pp. 489–494 Y.S. No, F. Ayazi: The HARPSS process for fabrication of nano-precision silicon electromechanical resonators. In: Proc. 2001 1st IEEE Conf. Nanotechnol., Maui (2001) pp. 489–494
3.55
Zurück zum Zitat N. Yazdi, F. Ayazi, K. Najafi: Micromachined inertial sensors, Proc. IEEE 86, 1640–1659 (1998) N. Yazdi, F. Ayazi, K. Najafi: Micromachined inertial sensors, Proc. IEEE 86, 1640–1659 (1998)
3.56
Zurück zum Zitat G. Timp: Nanotechnology (Springer, New York 1998) G. Timp: Nanotechnology (Springer, New York 1998)
3.58
Zurück zum Zitat P. Rai-Choudhury (Ed.): Handbook of Microlithography, Micromachining and Microfabrication. Vol. 1: Microlithography (SPIE/IEE, Bellingham, Washington/London 1997) P. Rai-Choudhury (Ed.): Handbook of Microlithography, Micromachining and Microfabrication. Vol. 1: Microlithography (SPIE/IEE, Bellingham, Washington/London 1997)
3.59
Zurück zum Zitat L. Ming, C. Bao-qin, Y. Tian-Chun, Q. He, X. Qiuxia: The sub-micron fabrication technology. In: Proc. 6th Int. Conf. Solid-State Integr.-Circuit Technol., San Francisco, Vol. 1 (2001) pp. 452–455 L. Ming, C. Bao-qin, Y. Tian-Chun, Q. He, X. Qiuxia: The sub-micron fabrication technology. In: Proc. 6th Int. Conf. Solid-State Integr.-Circuit Technol., San Francisco, Vol. 1 (2001) pp. 452–455
3.60
Zurück zum Zitat M.A. Herman: Molecular Beam Epitaxy: Fundamentals and Current Status (Springer, New York 1996) M.A. Herman: Molecular Beam Epitaxy: Fundamentals and Current Status (Springer, New York 1996)
3.61
Zurück zum Zitat J.S. Frood, G.J. Davis, W.T. Tsang: Chemical Beam Epitaxy and Related Techniques (Wiley, New York 1997) J.S. Frood, G.J. Davis, W.T. Tsang: Chemical Beam Epitaxy and Related Techniques (Wiley, New York 1997)
3.62
Zurück zum Zitat S. Mahajan, K.S. Sree Harsha: Principles of Growth and Processing of Semiconductors (McGraw Hill, New York 1999) S. Mahajan, K.S. Sree Harsha: Principles of Growth and Processing of Semiconductors (McGraw Hill, New York 1999)
3.63
Zurück zum Zitat S. Kim, M. Razegi: Advances in quantum dot structures. In: Processing and Properties of Compound Semiconductors, ed. by K. Willardson, E.R. Weber (Academic, New York 2001) S. Kim, M. Razegi: Advances in quantum dot structures. In: Processing and Properties of Compound Semiconductors, ed. by K. Willardson, E.R. Weber (Academic, New York 2001)
3.64
Zurück zum Zitat D. Bimberg, M. Grundmann, N.N. Ledentsov: Quantum Dot Heterostructures (Wiley, New York 1999) D. Bimberg, M. Grundmann, N.N. Ledentsov: Quantum Dot Heterostructures (Wiley, New York 1999)
3.65
Zurück zum Zitat G. Seebohm, H.G. Craighead: Lithography and patterning for nanostructure fabrication. In: Quantum Semiconductor Devices and Technologies, ed. by T.P. Pearsall (Kluwer, Boston 2000) G. Seebohm, H.G. Craighead: Lithography and patterning for nanostructure fabrication. In: Quantum Semiconductor Devices and Technologies, ed. by T.P. Pearsall (Kluwer, Boston 2000)
3.66
Zurück zum Zitat E. Kapon: Lateral patterning of quantum well heterostructures by growth on nonplanar substrates. In: Epitaxial Microstructures, ed. by A.C. Gossard (Academic, New York 1994) E. Kapon: Lateral patterning of quantum well heterostructures by growth on nonplanar substrates. In: Epitaxial Microstructures, ed. by A.C. Gossard (Academic, New York 1994)
3.67
Zurück zum Zitat F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N.N. Ledentsov, A.R. Kovsh, V.M. Ustinov, D. Bimberg: Strain engineering of self-organized InAs quantum dots, Phys. Rev. B 64, 085305–1–085305–7 (2001) F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N.N. Ledentsov, A.R. Kovsh, V.M. Ustinov, D. Bimberg: Strain engineering of self-organized InAs quantum dots, Phys. Rev. B 64, 085305–1–085305–7 (2001)
3.68
Zurück zum Zitat M. Sugawara: Self-Assembled InGaAs/GaAs Quantum Dots (Academic, New York 1999) M. Sugawara: Self-Assembled InGaAs/GaAs Quantum Dots (Academic, New York 1999)
3.69
Zurück zum Zitat B.C. Lee, S.D. Lin, C.P. Lee, H.M. Lee, J.C. Wu, K.W. Sun: Selective growth of single InAs quantum dots using strain engineering, Appl. Phys. Lett. 80, 326–328 (2002) B.C. Lee, S.D. Lin, C.P. Lee, H.M. Lee, J.C. Wu, K.W. Sun: Selective growth of single InAs quantum dots using strain engineering, Appl. Phys. Lett. 80, 326–328 (2002)
3.70
Zurück zum Zitat F.S.S. Chien, W.F. Hsieh, S. Gwo, A.E. Vladar, J.A. Dagata: Silicon nanostructures fabricated by scanning-probe oxidation and tetra-methyl ammonium hydroxide etching, J. Appl. Phys. 91, 10044–10050 (2002) F.S.S. Chien, W.F. Hsieh, S. Gwo, A.E. Vladar, J.A. Dagata: Silicon nanostructures fabricated by scanning-probe oxidation and tetra-methyl ammonium hydroxide etching, J. Appl. Phys. 91, 10044–10050 (2002)
3.71
Zurück zum Zitat M. Calleja, J. Anguita, R. Garcia, K. Birkelund, F. Perez-Murano, J.A. Dagata: Nanometer-scale oxidation of silicon surfaces by dynamic force microscopy: Reproducibility, kinetics and nanofabrication, Nanotechnology 10, 34–38 (1999) M. Calleja, J. Anguita, R. Garcia, K. Birkelund, F. Perez-Murano, J.A. Dagata: Nanometer-scale oxidation of silicon surfaces by dynamic force microscopy: Reproducibility, kinetics and nanofabrication, Nanotechnology 10, 34–38 (1999)
3.72
Zurück zum Zitat E.S. Snow, P.M. Campbell, F.K. Perkins: Nanofabrication with proximal probes, Proc. IEEE 85, 601–611 (1997) E.S. Snow, P.M. Campbell, F.K. Perkins: Nanofabrication with proximal probes, Proc. IEEE 85, 601–611 (1997)
3.73
Zurück zum Zitat H. Sugimura, T. Uchida, N. Kitamura, H. Masuhara: Tip-induced anodization of titanium surfaces by scanning tunneling microscopy: A humidity effect on nanolithography, Appl. Phys. Lett. 63, 1288–1290 (1993) H. Sugimura, T. Uchida, N. Kitamura, H. Masuhara: Tip-induced anodization of titanium surfaces by scanning tunneling microscopy: A humidity effect on nanolithography, Appl. Phys. Lett. 63, 1288–1290 (1993)
3.74
Zurück zum Zitat N. Kramer, J. Jorritsma, H. Birk, C. Schonenberger: Nanometer lithography on silicon and hydrogenated amorphous silicon with low energy electrons, J. Vac. Sci. Technol. B 13, 805–811 (1995) N. Kramer, J. Jorritsma, H. Birk, C. Schonenberger: Nanometer lithography on silicon and hydrogenated amorphous silicon with low energy electrons, J. Vac. Sci. Technol. B 13, 805–811 (1995)
3.75
Zurück zum Zitat H.T. Soh, K.W. Guarini, C.F. Quate: Scanning Probe Lithography (Kluwer Academic, Boston 2001) H.T. Soh, K.W. Guarini, C.F. Quate: Scanning Probe Lithography (Kluwer Academic, Boston 2001)
3.76
Zurück zum Zitat C.A. Mirkin: Dip-pen nanolithography: automated fabrication of custom multicomponent, sub-100-nanometer surface architectures, MRS Bull. 26, 535–538 (2001) C.A. Mirkin: Dip-pen nanolithography: automated fabrication of custom multicomponent, sub-100-nanometer surface architectures, MRS Bull. 26, 535–538 (2001)
3.77
Zurück zum Zitat P.E. Sheehan, L.J. Whitman, W.P. King, B.A. Nelson: Nanoscale deposition of solid inks via thermal dip pen nanolithography, Appl. Phys. Lett. 85, 1589–1591 (2004) P.E. Sheehan, L.J. Whitman, W.P. King, B.A. Nelson: Nanoscale deposition of solid inks via thermal dip pen nanolithography, Appl. Phys. Lett. 85, 1589–1591 (2004)
3.78
Zurück zum Zitat R. Garcia, A.W. Knoll, E. Riedo: Advanced scanning probe lithography, Nat. Nanotechnol. 9, 577–587 (2014) R. Garcia, A.W. Knoll, E. Riedo: Advanced scanning probe lithography, Nat. Nanotechnol. 9, 577–587 (2014)
3.79
Zurück zum Zitat L.L. Sohn, R.L. Willett: Fabrication of nanostructures using atomic-force-microscope-based lithography, Appl. Phys. Lett. 67, 1552–1554 (1995) L.L. Sohn, R.L. Willett: Fabrication of nanostructures using atomic-force-microscope-based lithography, Appl. Phys. Lett. 67, 1552–1554 (1995)
3.80
Zurück zum Zitat H.J. Mamin, B.D. Terris, L.S. Fan, S. Hoen, R.C. Barrett, D. Rugar: High-density data storage using proximal probe techniques, IBM J. Res. Dev. 39, 681–699 (1995) H.J. Mamin, B.D. Terris, L.S. Fan, S. Hoen, R.C. Barrett, D. Rugar: High-density data storage using proximal probe techniques, IBM J. Res. Dev. 39, 681–699 (1995)
3.81
Zurück zum Zitat K. Bessho, S. Hashimoto: Fabricating nanoscale structures on Au surface with scanning tunneling microscope, Appl. Phys. Lett. 65, 2142–2144 (1994) K. Bessho, S. Hashimoto: Fabricating nanoscale structures on Au surface with scanning tunneling microscope, Appl. Phys. Lett. 65, 2142–2144 (1994)
3.82
Zurück zum Zitat I.W. Lyo, P. Avouris: Field-induced nanometer- to atomic-scale manipulation of silicon surfaces with the STM, Science 253, 173–176 (1991) I.W. Lyo, P. Avouris: Field-induced nanometer- to atomic-scale manipulation of silicon surfaces with the STM, Science 253, 173–176 (1991)
3.83
Zurück zum Zitat M.F. Crommie, C.P. Lutz, D.M. Eigler: Confinement of electrons to quantum corrals on a metal surface, Science 262, 218–220 (1993) M.F. Crommie, C.P. Lutz, D.M. Eigler: Confinement of electrons to quantum corrals on a metal surface, Science 262, 218–220 (1993)
3.84
Zurück zum Zitat A. de Lozanne: Pattern generation below 0.1 micron by localized chemical vapor deposition with the scanning tunneling microscope, Jpn. J. Appl. Phys. 33, 7090–7093 (1994) A. de Lozanne: Pattern generation below 0.1 micron by localized chemical vapor deposition with the scanning tunneling microscope, Jpn. J. Appl. Phys. 33, 7090–7093 (1994)
3.85
Zurück zum Zitat L.A. Nagahara, T. Thundat, S.M. Lindsay: Nanolithography on semiconductor surfaces under an etching solution, Appl. Phys. Lett. 57, 270–272 (1990) L.A. Nagahara, T. Thundat, S.M. Lindsay: Nanolithography on semiconductor surfaces under an etching solution, Appl. Phys. Lett. 57, 270–272 (1990)
3.86
Zurück zum Zitat T. Thundat, L.A. Nagahara, S.M. Lindsay: Scanning tunneling microscopy studies of semiconductor electrochemistry, J. Vac. Sci. Technol. A 8, 539–543 (1990) T. Thundat, L.A. Nagahara, S.M. Lindsay: Scanning tunneling microscopy studies of semiconductor electrochemistry, J. Vac. Sci. Technol. A 8, 539–543 (1990)
3.87
Zurück zum Zitat S.C. Minne, S.R. Manalis, A. Atalar, C.F. Quate: Independent parallel lithography using the atomic force microscope, J. Vac. Sci. Technol. B 14, 2456–2461 (1996) S.C. Minne, S.R. Manalis, A. Atalar, C.F. Quate: Independent parallel lithography using the atomic force microscope, J. Vac. Sci. Technol. B 14, 2456–2461 (1996)
3.88
Zurück zum Zitat M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Häberle, H. Rohrer, H. Rothuizen, P. Vettiger: Microfabrication and parallel operation of 5 × 5 2-D AFM cantilever arrays for data storage and imaging, Proc. MEMS 98, 8–11 (1998) M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Häberle, H. Rohrer, H. Rothuizen, P. Vettiger: Microfabrication and parallel operation of 5 × 5 2-D AFM cantilever arrays for data storage and imaging, Proc. MEMS 98, 8–11 (1998)
3.89
Zurück zum Zitat G.M. Whitesides, B. Grzybowski: Self-assembly at all scales, Science 295, 2418–2421 (2002) G.M. Whitesides, B. Grzybowski: Self-assembly at all scales, Science 295, 2418–2421 (2002)
3.90
Zurück zum Zitat P. Kazmaier, N. Chopra: Bridging size scales with self-assembling supramolecular materials, MRS Bull. 25, 30–35 (2000) P. Kazmaier, N. Chopra: Bridging size scales with self-assembling supramolecular materials, MRS Bull. 25, 30–35 (2000)
3.91
Zurück zum Zitat G.A. Gelves, Z.T.M. Murakami, M.J. Krantz, J.A. Haber: Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates, J. Mater. Chem. 16, 3075–3083 (2006) G.A. Gelves, Z.T.M. Murakami, M.J. Krantz, J.A. Haber: Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates, J. Mater. Chem. 16, 3075–3083 (2006)
3.93
Zurück zum Zitat R. Gronheid, P. Nealey (Eds.): Directed Self-Assembly of Block Copolymers for Nano-manufacturing, Woodhead Publishing Series in Electronic and Optical Materials, Vol. 83 (Elsevier, Cambridge 2015) R. Gronheid, P. Nealey (Eds.): Directed Self-Assembly of Block Copolymers for Nano-manufacturing, Woodhead Publishing Series in Electronic and Optical Materials, Vol. 83 (Elsevier, Cambridge 2015)
3.94
Zurück zum Zitat R. Plass, J.A. Last, N.C. Bartelt, G.L. Kellogg: Self-assembled domain patterns, Nature 412, 875 (2001) R. Plass, J.A. Last, N.C. Bartelt, G.L. Kellogg: Self-assembled domain patterns, Nature 412, 875 (2001)
3.95
Zurück zum Zitat Y.A. Vlasov, X.-Z. Bo, J.G. Sturm, D.J. Norris: On-chip natural self-assembly of silicon photonic bandgap crystals, Nature 414, 289–293 (2001) Y.A. Vlasov, X.-Z. Bo, J.G. Sturm, D.J. Norris: On-chip natural self-assembly of silicon photonic bandgap crystals, Nature 414, 289–293 (2001)
3.96
Zurück zum Zitat C. Gigault, K. Dalnoki-Veress, J.R. Dutcher: Changes in the morphology of self-assembled polystyrene microsphere monolayers produced by annealing, J. Colloid Interface Sci. 243, 143–155 (2001) C. Gigault, K. Dalnoki-Veress, J.R. Dutcher: Changes in the morphology of self-assembled polystyrene microsphere monolayers produced by annealing, J. Colloid Interface Sci. 243, 143–155 (2001)
3.97
Zurück zum Zitat J.C. Hulteen, C.R. Martin: A general template-based method for the preparation of nanomaterials, J. Mater. Chem. 7, 1075–1087 (1997) J.C. Hulteen, C.R. Martin: A general template-based method for the preparation of nanomaterials, J. Mater. Chem. 7, 1075–1087 (1997)
3.98
Zurück zum Zitat J.D. Joannopoulos, P.R. Villeneuve, S. Fan: Photonic crystals: putting a new twist on light, Nature 386, 143–149 (1997) J.D. Joannopoulos, P.R. Villeneuve, S. Fan: Photonic crystals: putting a new twist on light, Nature 386, 143–149 (1997)
3.99
Zurück zum Zitat T.D. Clark, R. Ferrigno, J. Tien, K.E. Paul, G.M. Whitesides: Template-directed self-assembly of 10-μm-sized hexagonal plates, J. Am. Chem. Soc. 124, 5419–5426 (2002) T.D. Clark, R. Ferrigno, J. Tien, K.E. Paul, G.M. Whitesides: Template-directed self-assembly of 10-μm-sized hexagonal plates, J. Am. Chem. Soc. 124, 5419–5426 (2002)
3.100
Zurück zum Zitat S.A. Sapp, D.T. Mitchell, C.R. Martin: Using template-synthesized micro- and nanowires as building blocks for self-assembly of supramolecular architectures, Chem. Mater. 11, 1183–1185 (1999) S.A. Sapp, D.T. Mitchell, C.R. Martin: Using template-synthesized micro- and nanowires as building blocks for self-assembly of supramolecular architectures, Chem. Mater. 11, 1183–1185 (1999)
3.101
Zurück zum Zitat Y. Yin, Y. Lu, B. Gates, Y. Xia: Template assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes and structures, J. Am. Chem. Soc. 123, 8718–8729 (2001) Y. Yin, Y. Lu, B. Gates, Y. Xia: Template assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes and structures, J. Am. Chem. Soc. 123, 8718–8729 (2001)
3.102
Zurück zum Zitat J.L. Wilbur, G.M. Whitesides: Self-assembly and self-assembles monolayers in micro- and nanofabrication. In: Nanotechnology, ed. by G. Timp (Springer, New York 1999) J.L. Wilbur, G.M. Whitesides: Self-assembly and self-assembles monolayers in micro- and nanofabrication. In: Nanotechnology, ed. by G. Timp (Springer, New York 1999)
3.103
Zurück zum Zitat S.R. Wasserman, Y.T. Tao, G.M. Whitesides: Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates, Langmuir 5, 1074–1087 (1989) S.R. Wasserman, Y.T. Tao, G.M. Whitesides: Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates, Langmuir 5, 1074–1087 (1989)
3.104
Zurück zum Zitat C.P. Tripp, M.L. Hair: An infrared study of the reaction of octadecyltrichlorosilane with silica, Langmuir 8, 1120–1126 (1992) C.P. Tripp, M.L. Hair: An infrared study of the reaction of octadecyltrichlorosilane with silica, Langmuir 8, 1120–1126 (1992)
3.105
Zurück zum Zitat S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, E. Garrone: Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates, J. Colloid Interface Sci. 321, 235–241 (2008) S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi, L. Pasquardini, L. Lunelli, L. Vanzetti, C. Pederzolli, B. Onida, E. Garrone: Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates, J. Colloid Interface Sci. 321, 235–241 (2008)
3.106
Zurück zum Zitat R. de la Rica, A. Baldi, E. Mendoza, A. San Paulo, A. Llobera, C. Fernandez-Sanchez: Silane nanopatterns via gas-phase soft lithography, Small 4(8), 1076–1079 (2008) R. de la Rica, A. Baldi, E. Mendoza, A. San Paulo, A. Llobera, C. Fernandez-Sanchez: Silane nanopatterns via gas-phase soft lithography, Small 4(8), 1076–1079 (2008)
3.107
Zurück zum Zitat D.R. Walt: Nanomaterials: Top-to-bottom functional design, Nature 1, 17–18 (2002) D.R. Walt: Nanomaterials: Top-to-bottom functional design, Nature 1, 17–18 (2002)
3.108
Zurück zum Zitat J. Noh, T. Murase, K. Nakajima, H. Lee, M. Hara: Nanoscopic investigation of the self-assembly processes of dialkyl disulfides and dialkyl sulfides on Au(111), J. Phys. Chem. B 104, 7411–7416 (2000) J. Noh, T. Murase, K. Nakajima, H. Lee, M. Hara: Nanoscopic investigation of the self-assembly processes of dialkyl disulfides and dialkyl sulfides on Au(111), J. Phys. Chem. B 104, 7411–7416 (2000)
3.109
Zurück zum Zitat M. Himmelhaus, F. Eisert, M. Buck, M. Grunze: Self-assembly of n-alkanethiol monolayers: A study by IR-visible sum frequency spectroscopy (SFG), J. Phys. Chem. 104, 576–584 (1999) M. Himmelhaus, F. Eisert, M. Buck, M. Grunze: Self-assembly of n-alkanethiol monolayers: A study by IR-visible sum frequency spectroscopy (SFG), J. Phys. Chem. 104, 576–584 (1999)
3.110
Zurück zum Zitat A.K. Boal, F. Ilhan, J.E. DeRouchey, T. Thurn-Albrecht, T.P. Russell, V.M. Rotello: Self-assembly of nanoparticles into structures spherical and network aggregates, Nature 404, 746–748 (2000) A.K. Boal, F. Ilhan, J.E. DeRouchey, T. Thurn-Albrecht, T.P. Russell, V.M. Rotello: Self-assembly of nanoparticles into structures spherical and network aggregates, Nature 404, 746–748 (2000)
3.111
Zurück zum Zitat A. Ulman: An Introduction to Ultrathin Organic Films: From Langmuir–Blodgett to Self-Assembly (Academic, New York 1991) A. Ulman: An Introduction to Ultrathin Organic Films: From Langmuir–Blodgett to Self-Assembly (Academic, New York 1991)
3.112
Zurück zum Zitat E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman: Design and self-assembly of two-dimensional DNA crystals, Nature 394, 539–544 (1998) E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman: Design and self-assembly of two-dimensional DNA crystals, Nature 394, 539–544 (1998)
3.113
Zurück zum Zitat J.H. Reif, T.H. LaBean, N.C. Seeman: Programmable assembly at the molecular scale: Self-assembly of DNA lattices. In: Proc. 2001 IEEE Int. Conf. Robot. Autom., Seoul (2001) pp. 966–971 J.H. Reif, T.H. LaBean, N.C. Seeman: Programmable assembly at the molecular scale: Self-assembly of DNA lattices. In: Proc. 2001 IEEE Int. Conf. Robot. Autom., Seoul (2001) pp. 966–971
3.114
Zurück zum Zitat A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez Jr, P.G. Schultz: Organization of ‘nanocrystal molecules’ using DNA, Nature 382, 609–611 (1996) A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez Jr, P.G. Schultz: Organization of ‘nanocrystal molecules’ using DNA, Nature 382, 609–611 (1996)
3.115
Zurück zum Zitat H. Cao, Z. Yu, J. Wang, J.O. Tegenfeldt, R.H. Austin, E. Chen, W. Wu, S.Y. Chou: Fabrication of 10 nm enclosed nanofluidic channels, Appl. Phys. Lett. 81, 174–176 (2002) H. Cao, Z. Yu, J. Wang, J.O. Tegenfeldt, R.H. Austin, E. Chen, W. Wu, S.Y. Chou: Fabrication of 10 nm enclosed nanofluidic channels, Appl. Phys. Lett. 81, 174–176 (2002)
3.116
Zurück zum Zitat H. Masuda, H. Yamada, M. Satoh, H. Asoh: Highly ordered nanochannel-array architecture in anodic alumina, Appl. Phys. Lett. 71, 2770–2772 (1997) H. Masuda, H. Yamada, M. Satoh, H. Asoh: Highly ordered nanochannel-array architecture in anodic alumina, Appl. Phys. Lett. 71, 2770–2772 (1997)
3.117
Zurück zum Zitat R.L. Fleischer: Nuclear Tracks in Solids: Principles and Applications (Univ. of California Press, Berkeley 1976) R.L. Fleischer: Nuclear Tracks in Solids: Principles and Applications (Univ. of California Press, Berkeley 1976)
3.118
Zurück zum Zitat R.E. Packard, J.P. Pekola, P.B. Price, R.N.R. Spohr, K.H. Westmacott, Y.Q. Zhu: Manufacture observation and test of membranes with locatable single pores, Rev. Sci. Instrum. 57, 1654–1660 (1986) R.E. Packard, J.P. Pekola, P.B. Price, R.N.R. Spohr, K.H. Westmacott, Y.Q. Zhu: Manufacture observation and test of membranes with locatable single pores, Rev. Sci. Instrum. 57, 1654–1660 (1986)
3.119
Zurück zum Zitat L. Sun, P.C. Searson, C.L. Chien: Electrochemical deposition of nickel nanowire arrays in single-crystal mica films, Appl. Phys. Lett. 74, 2803–2805 (1999) L. Sun, P.C. Searson, C.L. Chien: Electrochemical deposition of nickel nanowire arrays in single-crystal mica films, Appl. Phys. Lett. 74, 2803–2805 (1999)
3.120
Zurück zum Zitat E.C. Walter, M.P. Zach, F. Favier, B.J. Murray, K. Inazu, J.C. Hemminger, R.M. Penner: Metal nanowire arrays by electrodeposition, ChemPhysChem 4(2), 131–138 (2003) E.C. Walter, M.P. Zach, F. Favier, B.J. Murray, K. Inazu, J.C. Hemminger, R.M. Penner: Metal nanowire arrays by electrodeposition, ChemPhysChem 4(2), 131–138 (2003)
3.121
Zurück zum Zitat M.Z. Atashbar, D. Banerji, S. Singamaneni, V. Bliznyuk: Deposition of parallel arrays of palladium nanowires and electrical characterization using microelectrode contacts, Nanotechnology 15(3), 374–378 (2004) M.Z. Atashbar, D. Banerji, S. Singamaneni, V. Bliznyuk: Deposition of parallel arrays of palladium nanowires and electrical characterization using microelectrode contacts, Nanotechnology 15(3), 374–378 (2004)
3.122
Zurück zum Zitat Y. Du, W.L. Cai, C.M. Mo, J. Chen, L.D. Zhang, X.G. Zhu: Preparation and photoluminescence of alumina membranes with ordered pore arrays, Appl. Phys. Lett. 74, 2951–2953 (1999) Y. Du, W.L. Cai, C.M. Mo, J. Chen, L.D. Zhang, X.G. Zhu: Preparation and photoluminescence of alumina membranes with ordered pore arrays, Appl. Phys. Lett. 74, 2951–2953 (1999)
3.123
Zurück zum Zitat M. Guowen, C. Anyuan, C. Ju-Yin, A. Vijayaraghavan, J.J. Yung, M. Shima, P.M. Ajayan: Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template, J. Appl. Phys. 97, 64303–1–64303–5 (2005) M. Guowen, C. Anyuan, C. Ju-Yin, A. Vijayaraghavan, J.J. Yung, M. Shima, P.M. Ajayan: Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template, J. Appl. Phys. 97, 64303–1–64303–5 (2005)
3.124
Zurück zum Zitat S. Yang, H. Zhu, D. Yu, Z. Jin, S. Tang, Y. Du: Preparation and magnetic property of Fe nanowire array, J. Magn. Magn. Mater. 222, 97–100 (2000) S. Yang, H. Zhu, D. Yu, Z. Jin, S. Tang, Y. Du: Preparation and magnetic property of Fe nanowire array, J. Magn. Magn. Mater. 222, 97–100 (2000)
3.125
Zurück zum Zitat M. Sun, G. Zangari, R.M. Metzger: Cobalt island arrays with in-plane anisotropy electrodeposited in highly ordered alumina, IEEE Trans. Magn. 36, 3005–3008 (2000) M. Sun, G. Zangari, R.M. Metzger: Cobalt island arrays with in-plane anisotropy electrodeposited in highly ordered alumina, IEEE Trans. Magn. 36, 3005–3008 (2000)
3.126
Zurück zum Zitat P.V. Braun, P. Wiltzius: Electrochemically grown photonic crystals, Nature 402, 603–604 (1999) P.V. Braun, P. Wiltzius: Electrochemically grown photonic crystals, Nature 402, 603–604 (1999)
3.127
Zurück zum Zitat S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan: Submicrometer metallic barcodes, Science 294, 137–141 (2001) S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan: Submicrometer metallic barcodes, Science 294, 137–141 (2001)
Metadaten
Titel
Introduction to Micro-/Nanofabrication
verfasst von
Gemma Rius
Antoni Baldi
Babak Ziaie
Massood Z. Atashbar
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54357-3_3

Neuer Inhalt