Skip to main content
Erschienen in:
Buchtitelbild

2014 | OriginalPaper | Buchkapitel

1. Introduction to Molecular Similarity and Chemical Space

verfasst von : Gerald M. Maggiora

Erschienen in: Foodinformatics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The size of the chemical universe of small organic molecules is estimated to be around 200 billion, and its true size may be even larger. Because the size of “representative” subsets of that universe can still be substantial, computer-based methods are required to capture, manage, and search the massive amount of available chemical information associated with these molecules. This has given rise to the field of chemical informatics. Three concepts play major roles in this field, two of which, molecular similarity and chemical space (CS), are dealt with in this chapter. Of the two, molecular similarity is the more fundamental since it plays a crucial role in the definition of CS itself. The third concept, activity and property landscapes, while important, will not be considered here. Though the potentially relevant subset of molecules that is applicable in food science applications is considerably smaller than the universe of small organic molecules, it nonetheless is large enough to benefit from concepts of molecular similarity and CS that have proved useful in medicinal chemistry and related fields of chemistry. The present chapter provides a relatively detailed and somewhat didactic description of the two concepts, how they are implemented, and how they can be applied in typical chemical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The term database (DB) will generally be used to describe large collection of compounds whether or not material exists for screening the compounds.
 
2
Interestingly, since FP-based similarity coefficients are ratios of two integers, they represent a limited subset of rational numbers. Hence, they can by their very nature only yield restricted set of values on the unit interval of the real line.
 
3
In that case, the set of features in MQ are a subset of those in MR.
 
4
Strictly speaking, these vectors should be called geometric vectors since they do not, in all cases, satisfy the properties of algebraic vectors (e.g., algebraic vectors satisfy the axioms of a linear vector space, namely, the addition of two vectors or the multiplication of a vector by a scalar should result in another vector that also lies in the space). Nevertheless, the terminology “vector,” which is common in chemical informatics, will be used here to include both classes of vectors.
 
5
An interesting relationship between the FP- and vector-based similarity coefficients occurs when both have binary component values, e.g. m l = (1,0,0,0,1,1,0,1,0,1) and x row(l) = (1,0,0,0,1,1,0,1,0,1). In such cases, but only in such cases, the similarity coefficients based on binary FPs or binary vectors yield exactly the same similarity value for all of the similarity coefficients described above. However, this limitation has not been consistently adhered to and similarity values computed using continuous vectors or weighted FPs based on Eqs. (1.27)–(1.29) yield values that may differ significantly from their corresponding FP-based similarity coefficients.
 
6
The RRF rule works best with rank values since similarities can in certain cases have zero values leading to undefined values for the reciprocals, a situation that can be overcome by the addition of a small positive constant to the denominator of each term.
 
7
It should be noted that similarity cliffs are more general than scaffold hops since all scaffold hops do not result in compounds that are highly dissimilar, as may be the case when the scaffolds associated with scaffold hops are approximate bioisosteres or compounds with dissimilar scaffold nonetheless have similar overall structures.
 
8
Even though the overall percentage of active compounds in large DBs is usually quite small, since most compounds are inactive in a given assay, the fraction of those actives where both compounds of a compound pair are approximately of equal activity can be significant.
 
9
Supervised machine learning methods typically try to model the relationship of a set of predictor (independent) variables to a set of known values (e.g., biological activities and/or solubilities) associated with one or more dependent variables. Unsupervised methods only require information associated with predictor (independent) variables (e.g., physicochemical descriptors).
 
10
Since CSs are inherently discrete, the concept of discontinuity, which applies to continuous systems, is only approximate. Thus, “discontinuities” in these spaces, such as those arising from the presence of activity cliffs, are denoted as quasi-discontinuities.
 
11
In mathematics these are generally called Gram matrices and in statistics are usually called association matrices.
 
12
Note that the coefficient (n − 1)−1 would, if ignored, merely scale the eigenvalues by n − 1; the eigenvectors are unaffected.
 
13
In function notation, the mapping in Eq. (1.54) is given by \(\Phi \left( {{{\bf{x}}_i}} \right) = {{\rm{C}}_k},\,\,i = 1,2,...,n;\,\,\,\,k = 1,2,...,{N_{{\rm{cells}}}}\).
 
14
Note that there are a number of “correction factors,” such as the well-known Laplace correction, that can be applied to the cells of a contingency table to correct for empty cells.
 
15
A similar situation exists in the case of threshold graphs obtained from labeled graphs when the edge values exceed some threshold value. Details of this are described in Sect. 1.3.7 on graph-based CSs.
 
16
Self-similarity is the similarity of the molecule with itself, and thus, its value is always unity. Graphs without self-loops and multiple edges between vertices are also called simple graphs.
 
17
Although it is not addressed here, the vertex degree of directed graphs/networks can be handled by assessing the “in-degree” and “out-degree” of a vertex that corresponds, respectively, to the number of edges directed towards the vertex and the number directed away from the vertex.
 
18
Note that the summations are over all unique pairs of vertices (i.e., molecules) and that the coefficient cancels out of the numerator and denominator of Eq. (1.64).
 
19
Note that this can also be interpreted as the fraction of vertices of degree k.
 
20
This argument is, of course, oversimplified since it depends on the width (standard deviation) of the probability distribution.
 
21
There are, of course, other docking processes that are of importance in biology including protein–protein, ligand–nucleic acid, nucleic acid–nucleic acid docking to name a few. Ligand–protein docking is highlighted in this work because of its importance in drug discovery and its widespread application in that field.
 
22
See Sect. 1.2.3 for related discussion.
 
23
In order to simplify discussion, the terminology “target class specific” will be used in the remainder of this section.
 
Literatur
1.
Zurück zum Zitat Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GBD-17. J Chem Inf Model 52:2864–2875 Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GBD-17. J Chem Inf Model 52:2864–2875
2.
Zurück zum Zitat Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16:3–50 Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16:3–50
3.
Zurück zum Zitat Virshup AM, Contreras-Garcia J, Wipf P, Yang W, Beratan DN (2013) Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds. J Amer Chem Soc 135:7296–7303 Virshup AM, Contreras-Garcia J, Wipf P, Yang W, Beratan DN (2013) Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds. J Amer Chem Soc 135:7296–7303
4.
Zurück zum Zitat Wassermann AM, Wawer M, Bajorath J (2010) Activity landscape representations for structure-activity relationship analysis. J Med Chem 53:8209–8223 Wassermann AM, Wawer M, Bajorath J (2010) Activity landscape representations for structure-activity relationship analysis. J Med Chem 53:8209–8223
5.
Zurück zum Zitat Iyer P, Wawer M, Bajorath J (2011) Comparison of two- and three-dimensional activity landscape representations for different compound sets. MedChemComm 2:113–118 Iyer P, Wawer M, Bajorath J (2011) Comparison of two- and three-dimensional activity landscape representations for different compound sets. MedChemComm 2:113–118
6.
Zurück zum Zitat Bajorath J (2012) Modeling activity landscapes for drug discovery. Expert Opin Drug Discov 7:463–473 Bajorath J (2012) Modeling activity landscapes for drug discovery. Expert Opin Drug Discov 7:463–473
7.
Zurück zum Zitat Iyer P, Stumpfe D, Vogt M, Bajorath J, Maggiora GM (2013) Activity landscapes, information theory, and structure-activity relationships. Mol Inf 32:421–430 Iyer P, Stumpfe D, Vogt M, Bajorath J, Maggiora GM (2013) Activity landscapes, information theory, and structure-activity relationships. Mol Inf 32:421–430
8.
Zurück zum Zitat Vogt M, Iyer P, Maggiora GM, Bajorath J (2013) Conditional probabilities of activity landscape features for individual compounds. J Chem Inf Model 53:1602–1612 Vogt M, Iyer P, Maggiora GM, Bajorath J (2013) Conditional probabilities of activity landscape features for individual compounds. J Chem Inf Model 53:1602–1612
9.
Zurück zum Zitat Rouvray DH (1990) The evolution of the concept of molecular similarity. In: Johnson MA, Maggiora GM (eds) Concepts and applications of molecular similarity, chapter 2. Wiley, New York Rouvray DH (1990) The evolution of the concept of molecular similarity. In: Johnson MA, Maggiora GM (eds) Concepts and applications of molecular similarity, chapter 2. Wiley, New York
10.
Zurück zum Zitat Medina-Franco JL, Maggiora GM (2014) Molecular similarity analysis. In: Bajorath J (ed) Chemoinformatics in drug discovery: concepts, methods, and tools for drug discovery, chapter 15. Wiley, New York Medina-Franco JL, Maggiora GM (2014) Molecular similarity analysis. In: Bajorath J (ed) Chemoinformatics in drug discovery: concepts, methods, and tools for drug discovery, chapter 15. Wiley, New York
11.
Zurück zum Zitat Mendeleev D (1869) J Russ Phys Chem Soc 1:60 Mendeleev D (1869) J Russ Phys Chem Soc 1:60
12.
13.
Zurück zum Zitat Wilkins CL, Randic M (1980) A graph theoretical approach to structure-property and structure-activity correlation. Theoret Chim Acta 58:45–68 Wilkins CL, Randic M (1980) A graph theoretical approach to structure-property and structure-activity correlation. Theoret Chim Acta 58:45–68
14.
Zurück zum Zitat Johnson M, Basak S, Maggiora G (1988) A characterization of molecular similarity methods for property prediction. Mathl Comput Model 11:630–634 Johnson M, Basak S, Maggiora G (1988) A characterization of molecular similarity methods for property prediction. Mathl Comput Model 11:630–634
15.
Zurück zum Zitat Johnson MA, Maggiora GM (eds) (1990) Concepts and applications of molecular similarity. Wiley, New York Johnson MA, Maggiora GM (eds) (1990) Concepts and applications of molecular similarity. Wiley, New York
16.
Zurück zum Zitat Trinajstic N (1992) Chemical graph theory, 2nd edn. CRC, Baca Raton Trinajstic N (1992) Chemical graph theory, 2nd edn. CRC, Baca Raton
17.
Zurück zum Zitat Brown RD, Martin YC (1996) Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J Chem Inf Comput Sci 36:572–584 Brown RD, Martin YC (1996) Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J Chem Inf Comput Sci 36:572–584
18.
Zurück zum Zitat Brown RD, Martin YC (1997) The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J Chem Inf Comput Sci 37:1–9 Brown RD, Martin YC (1997) The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J Chem Inf Comput Sci 37:1–9
21.
Zurück zum Zitat Chen J, Swamidass SJ, Dou Y, Bruand J, Baldi P (2005) ChemBD: a public database of small molecules and related chemoinformatics resources. Bioinformatics 21:4133–4139 Chen J, Swamidass SJ, Dou Y, Bruand J, Baldi P (2005) ChemBD: a public database of small molecules and related chemoinformatics resources. Bioinformatics 21:4133–4139
25.
Zurück zum Zitat Scior JT, Bernard P, Medina-Franco JL, Maggiora GM (2007) Large compound databases for structure-activity relationships studies in drug discovery. Mini Rev Med Chem 7:851–860 Scior JT, Bernard P, Medina-Franco JL, Maggiora GM (2007) Large compound databases for structure-activity relationships studies in drug discovery. Mini Rev Med Chem 7:851–860
26.
Zurück zum Zitat Leach AR, Gillet VJ (2003) An introduction to chemoinformatics. Kluwer Academic, Dordrecht Leach AR, Gillet VJ (2003) An introduction to chemoinformatics. Kluwer Academic, Dordrecht
27.
Zurück zum Zitat Gasteiger J, Engel T (eds) (2003) Chemoinformatics—a textbook. Wiley-VCH, Weinheim Gasteiger J, Engel T (eds) (2003) Chemoinformatics—a textbook. Wiley-VCH, Weinheim
28.
Zurück zum Zitat Bajorath J (ed) (2004) Chemoinformatics—concepts, methods, and tools for drug discovery. Humana, Totowa Bajorath J (ed) (2004) Chemoinformatics—concepts, methods, and tools for drug discovery. Humana, Totowa
29.
Zurück zum Zitat Bunin BA, Siesel B, Morales G, Bajorath J (2006) Chemoinformatics: theory, practice, and products. Springer, New York Bunin BA, Siesel B, Morales G, Bajorath J (2006) Chemoinformatics: theory, practice, and products. Springer, New York
30.
Zurück zum Zitat Bajorath J (ed) (2011) Chemoinformatics and computational chemical biology. Humana, New York Bajorath J (ed) (2011) Chemoinformatics and computational chemical biology. Humana, New York
31.
Zurück zum Zitat Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–986 Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–986
32.
Zurück zum Zitat Bender A, Glen RC (2004) Molecular similarity: a key technique in molecular informatics. Org Biomol Chem 2:3204–3218 Bender A, Glen RC (2004) Molecular similarity: a key technique in molecular informatics. Org Biomol Chem 2:3204–3218
33.
Zurück zum Zitat Willett P (2009) Similarity methods in chemoinformatics. Annu Rev Inf Sci Technol 43:3–71 Willett P (2009) Similarity methods in chemoinformatics. Annu Rev Inf Sci Technol 43:3–71
34.
Zurück zum Zitat Maggiora GM, Vogt M, Stumpfe D, Bajorath J (2014) Molecular similarity in medicinal chemistry. J Med Chem 57:3186–3204 Maggiora GM, Vogt M, Stumpfe D, Bajorath J (2014) Molecular similarity in medicinal chemistry. J Med Chem 57:3186–3204
35.
Zurück zum Zitat Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861 Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861
36.
Zurück zum Zitat Dobson CM (2004) Chemical space and biology. Nature 432:424–428 Dobson CM (2004) Chemical space and biology. Nature 432:424–428
37.
Zurück zum Zitat Koch MA, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, Odermatt A, Ertl P, Waldman H (2005) Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Nat Acad Sci U S A 102:17272–17277 Koch MA, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, Odermatt A, Ertl P, Waldman H (2005) Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Nat Acad Sci U S A 102:17272–17277
38.
Zurück zum Zitat Reymond J-L, van Deursen R, Blum LC, Ruddigkeit L (2010) Chemical space as a source for new drugs. Med Chem Comm 1:30–38 Reymond J-L, van Deursen R, Blum LC, Ruddigkeit L (2010) Chemical space as a source for new drugs. Med Chem Comm 1:30–38
39.
Zurück zum Zitat Reymond J-L, Awale M (2012) Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 3:649–657 Reymond J-L, Awale M (2012) Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 3:649–657
40.
Zurück zum Zitat Yu MJ (2013) Druggable chemical space and enumerative combinatorics. J Cheminformatics 5:19. doi:10.1186/1758–2964-5–19 Yu MJ (2013) Druggable chemical space and enumerative combinatorics. J Cheminformatics 5:19. doi:10.1186/1758–2964-5–19
41.
Zurück zum Zitat Maggiora GM, Shanmugasundaram V (2011) Molecular similarity measures. In: Bajorath J (ed) Chemoinformatics and computational chemical biology, Chapter 2. Humana, New York Maggiora GM, Shanmugasundaram V (2011) Molecular similarity measures. In: Bajorath J (ed) Chemoinformatics and computational chemical biology, Chapter 2. Humana, New York
42.
Zurück zum Zitat Baldi P, Benz RW, Hirschberg DS, Swamidass SJ (2007) Lossless compression of chemical FPs using integer entropy codes improves storage and retrieval. J Chem Inf Model 47:2098–2109 Baldi P, Benz RW, Hirschberg DS, Swamidass SJ (2007) Lossless compression of chemical FPs using integer entropy codes improves storage and retrieval. J Chem Inf Model 47:2098–2109
43.
Zurück zum Zitat MACCS structural keys. Symyx software: San Ramon2005 MACCS structural keys. Symyx software: San Ramon2005
44.
Zurück zum Zitat Barnard JM, Downs GM (1997) Chemical fragment generation and clustering software. J Chem Inf Comput Sci 37:141–142 Barnard JM, Downs GM (1997) Chemical fragment generation and clustering software. J Chem Inf Comput Sci 37:141–142
45.
Zurück zum Zitat Carhart RE, Smith DH, Venkataraghaven R (1985) Atom pairs as molecular features in structure-activity studies. J Chem Inf Comput Sci 25:64–73 Carhart RE, Smith DH, Venkataraghaven R (1985) Atom pairs as molecular features in structure-activity studies. J Chem Inf Comput Sci 25:64–73
46.
Zurück zum Zitat Rogers D, Hahn M (2010) Extended-connectivity FPs. J Chem Inf Model 50:742–754 Rogers D, Hahn M (2010) Extended-connectivity FPs. J Chem Inf Model 50:742–754
49.
Zurück zum Zitat Hu Y, Lounkine E, Bajorath J (2009) Improving the search performance of extended connectivity fingerprints through activity-oriented feature filtering and application of a bit-density-dependent similarity function. ChemMedChem 4:540–548 Hu Y, Lounkine E, Bajorath J (2009) Improving the search performance of extended connectivity fingerprints through activity-oriented feature filtering and application of a bit-density-dependent similarity function. ChemMedChem 4:540–548
50.
Zurück zum Zitat Glen RC, Bender A, Arnby CH, Carlsson L, Boyer S, Smith J (2006) Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs 9:199–204 Glen RC, Bender A, Arnby CH, Carlsson L, Boyer S, Smith J (2006) Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs 9:199–204
51.
Zurück zum Zitat Arif SM, Holiday JD, Willett P (2009) Analysis and use of fragment-occurrence data in similarity-based virtual screening. J Comput Aided Mol Des 23:6655–6668 Arif SM, Holiday JD, Willett P (2009) Analysis and use of fragment-occurrence data in similarity-based virtual screening. J Comput Aided Mol Des 23:6655–6668
52.
Zurück zum Zitat Arif SM, Hert J, Holliday JD, Malim N, Willett P (2009) Enhancing the effectiveness of FP-based virtual screening: Use of turbo similarity searching and of fragment frequencies of occurrence. In: Kadirkamanathan V, Sanguinetti G, Girolami M, Niranjan M, Noirel J (eds) Pattern recognition in bioinformatics—Proceedings 4th IAPR international conference, Springer, Berlin, pp 404–414 Arif SM, Hert J, Holliday JD, Malim N, Willett P (2009) Enhancing the effectiveness of FP-based virtual screening: Use of turbo similarity searching and of fragment frequencies of occurrence. In: Kadirkamanathan V, Sanguinetti G, Girolami M, Niranjan M, Noirel J (eds) Pattern recognition in bioinformatics—Proceedings 4th IAPR international conference, Springer, Berlin, pp 404–414
53.
Zurück zum Zitat Arif SM, Holiday JD, Willett P (2010) Inverse frequency weighting of fragments for similarity-based virtual screening. J Chem Inf Model 50:1340–1349 Arif SM, Holiday JD, Willett P (2010) Inverse frequency weighting of fragments for similarity-based virtual screening. J Chem Inf Model 50:1340–1349
54.
Zurück zum Zitat Willett P, Winterman V (1986) A comparison of some measures for the determination of inter-molecular structural similarity measures of inter-molecular structural similarity. Quant Struct Act Relat 5:18–25 Willett P, Winterman V (1986) A comparison of some measures for the determination of inter-molecular structural similarity measures of inter-molecular structural similarity. Quant Struct Act Relat 5:18–25
55.
Zurück zum Zitat Tversky A (1977) Features of similarity. Psychol Rev 84:327–352 Tversky A (1977) Features of similarity. Psychol Rev 84:327–352
56.
Zurück zum Zitat Maggiora GM, Petke JD, Mestres J (2002) A general analysis of field-based molecular similarity indices. J Math Chem 31:251–270 Maggiora GM, Petke JD, Mestres J (2002) A general analysis of field-based molecular similarity indices. J Math Chem 31:251–270
57.
Zurück zum Zitat Chen X, Brown F (2007) Asymmetry of chemical similarity. ChemMedChem 2:180–182 Chen X, Brown F (2007) Asymmetry of chemical similarity. ChemMedChem 2:180–182
58.
Zurück zum Zitat Wang Y, Eckert H, Bajorath J (2007) Apparent asymmetry in fingerprint similarity searching is a direct consequence of differences in bit densities and molecular size. ChemMedChem 2:1037–1042 Wang Y, Eckert H, Bajorath J (2007) Apparent asymmetry in fingerprint similarity searching is a direct consequence of differences in bit densities and molecular size. ChemMedChem 2:1037–1042
59.
Zurück zum Zitat Lipkus AH (1999) A proof of the triangle inequality for the Tanimoto distance. J Math Chem 26:263–265 Lipkus AH (1999) A proof of the triangle inequality for the Tanimoto distance. J Math Chem 26:263–265
60.
Zurück zum Zitat Hankerson D, Harris GA, Johnson Jr PD (1998) Introduction to information theory and data compression. CRC, Boca Raton Hankerson D, Harris GA, Johnson Jr PD (1998) Introduction to information theory and data compression. CRC, Boca Raton
61.
Zurück zum Zitat Flower DR (1988) On the properties of bit string based measures of chemical similarity. J Chem inf Comput Sci 38:379–386 Flower DR (1988) On the properties of bit string based measures of chemical similarity. J Chem inf Comput Sci 38:379–386
62.
Zurück zum Zitat Lajiness M (1990) Molecular similarity–based methods for selecting compounds for screening. In: Rouvray D (ed) Computational chemical graph theory. Nova Science, pp 299–316 Lajiness M (1990) Molecular similarity–based methods for selecting compounds for screening. In: Rouvray D (ed) Computational chemical graph theory. Nova Science, pp 299–316
63.
Zurück zum Zitat Lajiness MS (1997) Dissimilarity-based compound selection techniques. Perspect Drug Disc Design 7/8:65–84 Lajiness MS (1997) Dissimilarity-based compound selection techniques. Perspect Drug Disc Design 7/8:65–84
64.
Zurück zum Zitat Dixon SL, Koehler RT (1999) The hidden component of size in two-dimensional fragment descriptors: side effects on sampling in bioactive libraries. J Med Chem 42:2887–2900 Dixon SL, Koehler RT (1999) The hidden component of size in two-dimensional fragment descriptors: side effects on sampling in bioactive libraries. J Med Chem 42:2887–2900
65.
Zurück zum Zitat Fligner MA, Verducci JS, Blower PE (2002) A modification of the Jaccard–Tanimoto similarity index for diverse selection of chemical compounds using binary strings. Technometrics 44:110–119 Fligner MA, Verducci JS, Blower PE (2002) A modification of the Jaccard–Tanimoto similarity index for diverse selection of chemical compounds using binary strings. Technometrics 44:110–119
66.
Zurück zum Zitat Godden WJ, Xue L, Bajorath J (2000) Combinatorial preferences affect molecular similarity/diversity calculations using binary fingerprints and Tanimoto coefficients. J Chem Inf Comput Sci 40:163–166 Godden WJ, Xue L, Bajorath J (2000) Combinatorial preferences affect molecular similarity/diversity calculations using binary fingerprints and Tanimoto coefficients. J Chem Inf Comput Sci 40:163–166
67.
Zurück zum Zitat Holliday JD, Salim N, Whittle M, Willett P (2003) Analysis of size dependence of chemical similarity coefficients. J Chem Inf Comput Sci 43:819–828 Holliday JD, Salim N, Whittle M, Willett P (2003) Analysis of size dependence of chemical similarity coefficients. J Chem Inf Comput Sci 43:819–828
68.
Zurück zum Zitat Marshall AG (1978) Biophysical chemistry. Wiley, New York Marshall AG (1978) Biophysical chemistry. Wiley, New York
69.
Zurück zum Zitat Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York
70.
Zurück zum Zitat Devillers J, Balaban AT (eds) (1999) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach Science, New York Devillers J, Balaban AT (eds) (1999) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach Science, New York
71.
Zurück zum Zitat Martin Y (2010) Quantitative drug design–a critical introduction, 2nd edn. CRC, New York Martin Y (2010) Quantitative drug design–a critical introduction, 2nd edn. CRC, New York
72.
Zurück zum Zitat Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics, vol 1, 2nd edn. Wiley-VCH, Weinheim Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics, vol 1, 2nd edn. Wiley-VCH, Weinheim
73.
Zurück zum Zitat Guha R, Willighagen E (2010) A survey of quantitative descriptions of molecular structure. Curr Top Med Chem 12:1946–1956 Guha R, Willighagen E (2010) A survey of quantitative descriptions of molecular structure. Curr Top Med Chem 12:1946–1956
74.
Zurück zum Zitat Labute P (2000) A widely applicable set of descriptors. J Mol Graph Model 18:464–467 Labute P (2000) A widely applicable set of descriptors. J Mol Graph Model 18:464–467
75.
Zurück zum Zitat Labute P (2004) Derivation and application of molecular descriptors based on approximate surface area. In: Bajorath J (ed) Chemoinformatics: concepts, methods, and tools for drug discovery, Chapter 8. Humana, Totowa Labute P (2004) Derivation and application of molecular descriptors based on approximate surface area. In: Bajorath J (ed) Chemoinformatics: concepts, methods, and tools for drug discovery, Chapter 8. Humana, Totowa
76.
Zurück zum Zitat Pearlman RS, Smith KS (2002) Novel software tools for chemical diversity. 3D QSAR in drug design: three-dimensional quantitative structure-activity relationships 2:339–353 Pearlman RS, Smith KS (2002) Novel software tools for chemical diversity. 3D QSAR in drug design: three-dimensional quantitative structure-activity relationships 2:339–353
77.
Zurück zum Zitat Pearlman RS, Smith KM (1999) Metric validation and the receptor-relevant subspace concept. J Chem Inf Comput Sci 39:28–35 Pearlman RS, Smith KM (1999) Metric validation and the receptor-relevant subspace concept. J Chem Inf Comput Sci 39:28–35
78.
Zurück zum Zitat Pearlman RS (1995) Diverse solutions user’s manual. University of Texas, Austin Pearlman RS (1995) Diverse solutions user’s manual. University of Texas, Austin
79.
Zurück zum Zitat Burden F (1989) Molecular identification number for substructure searches. J Chem Inf Comput Sci 29:225–227 Burden F (1989) Molecular identification number for substructure searches. J Chem Inf Comput Sci 29:225–227
80.
Zurück zum Zitat Menard PR, Mason JS, Morize I, Bauerschmidt S (1998) Chemistry space metrics in diversity analysis. J Chem Inf Comput Sci 38:1204–1213 Menard PR, Mason JS, Morize I, Bauerschmidt S (1998) Chemistry space metrics in diversity analysis. J Chem Inf Comput Sci 38:1204–1213
81.
Zurück zum Zitat Schnur D (1999) Design and diversity analysis of large combinatorial libraries using cell-based methods. J Chem Inf Comput Sci 39:36–45 Schnur D (1999) Design and diversity analysis of large combinatorial libraries using cell-based methods. J Chem Inf Comput Sci 39:36–45
82.
Zurück zum Zitat Mason JS, Beno BR (2000) Library design using BCUT chemistry-space descriptors and multiple four-point pharmacophore fingerprints: simultaneous optimization and structure-based diversity. J Mol Graphics Model 18:438–451 Mason JS, Beno BR (2000) Library design using BCUT chemistry-space descriptors and multiple four-point pharmacophore fingerprints: simultaneous optimization and structure-based diversity. J Mol Graphics Model 18:438–451
83.
Zurück zum Zitat Stanton DT (1999) Evaluation and use of BCUT descriptors in QSAR and QSPR studies. J Chem Inf Comput Sci 39:11–20 Stanton DT (1999) Evaluation and use of BCUT descriptors in QSAR and QSPR studies. J Chem Inf Comput Sci 39:11–20
84.
Zurück zum Zitat Pirard B, Pickett SD (2000) Classification of kinase inhibitors using BCUT descriptors. J Chem Inf Comput Sci 40:1431–1440 Pirard B, Pickett SD (2000) Classification of kinase inhibitors using BCUT descriptors. J Chem Inf Comput Sci 40:1431–1440
85.
Zurück zum Zitat González MP, Terán C, Besada TM, González-Moa MJ (2005) BCUT descriptors to predicting affinity toward A3 adenosine receptors. Bioorg Med Chem Lett 15:3491–3495 González MP, Terán C, Besada TM, González-Moa MJ (2005) BCUT descriptors to predicting affinity toward A3 adenosine receptors. Bioorg Med Chem Lett 15:3491–3495
86.
Zurück zum Zitat Shanmugasundaram V, Maggiora GM, Lajiness MS (2005) Hit-directed nearest neighbor searching. J Med Chem 48:240–248 Shanmugasundaram V, Maggiora GM, Lajiness MS (2005) Hit-directed nearest neighbor searching. J Med Chem 48:240–248
87.
Zurück zum Zitat Hodgkin EE, Richards WG (1987) Molecular similarity based on electrostatic potential and electric field. Int J Quantum Chem Quantum boil Symp 14:105–110 Hodgkin EE, Richards WG (1987) Molecular similarity based on electrostatic potential and electric field. Int J Quantum Chem Quantum boil Symp 14:105–110
88.
Zurück zum Zitat Sheridan RP, Kearsely SK (2002) Why do we need so many chemical similarity search methods? Drug Discov Today 7:903–911 Sheridan RP, Kearsely SK (2002) Why do we need so many chemical similarity search methods? Drug Discov Today 7:903–911
89.
Zurück zum Zitat Kearsley SK, Sallamack S, Fluder EM, Andose JD, Mosley RT, Sheridan RP (1996) Chemical similarity using physicochemical property descriptors. J Chem Inf Comput Sci 36:11–127 Kearsley SK, Sallamack S, Fluder EM, Andose JD, Mosley RT, Sheridan RP (1996) Chemical similarity using physicochemical property descriptors. J Chem Inf Comput Sci 36:11–127
90.
Zurück zum Zitat Sheridan RP, Miller MD, Underwood DJ, Kearsley SK (1996) Chemical similarity using geometric atom pair descriptors. J Chem Inf Comput Sci 36:128–136 Sheridan RP, Miller MD, Underwood DJ, Kearsley SK (1996) Chemical similarity using geometric atom pair descriptors. J Chem Inf Comput Sci 36:128–136
91.
Zurück zum Zitat Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2004) Comparison of FP-based for virtual screening using multiple bioactive structures. J Chem Inf Comput Sci 44:1177–1185 Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2004) Comparison of FP-based for virtual screening using multiple bioactive structures. J Chem Inf Comput Sci 44:1177–1185
92.
Zurück zum Zitat Whittle M, Gillet VJ, Willett P, Alex A, Loesel J (2004) Enhancing the effectiveness of virtual screening by fusing nearest neighbor lists: a comparison of similarity coefficients. J Chem Inf Comput Sci 44:1840–1848 Whittle M, Gillet VJ, Willett P, Alex A, Loesel J (2004) Enhancing the effectiveness of virtual screening by fusing nearest neighbor lists: a comparison of similarity coefficients. J Chem Inf Comput Sci 44:1840–1848
93.
Zurück zum Zitat Willett P (2006) Enhancing the effectiveness of ligand-based virtual screening using data fusion. QSAR Combin Sci 25:1143–1152 Willett P (2006) Enhancing the effectiveness of ligand-based virtual screening using data fusion. QSAR Combin Sci 25:1143–1152
94.
Zurück zum Zitat Willett P (2013) Combination of similarity rankings using data fusion. J Chem Inf Model 53:1–10 Willett P (2013) Combination of similarity rankings using data fusion. J Chem Inf Model 53:1–10
95.
Zurück zum Zitat Joshi R, Sanderson AC (1999) Multisensor fusion: a minimal representation framework. World Scientific, Singapore Joshi R, Sanderson AC (1999) Multisensor fusion: a minimal representation framework. World Scientific, Singapore
96.
Zurück zum Zitat Hall DL, McMullen SAH (2004) Mathematical techniques in multisensory data fusion. Artech House, Boston Hall DL, McMullen SAH (2004) Mathematical techniques in multisensory data fusion. Artech House, Boston
97.
Zurück zum Zitat Beliakov G, Pradera A, Tomasa C (2010) Aggregation functions: a guide for practitioners. Springer, Berlin Beliakov G, Pradera A, Tomasa C (2010) Aggregation functions: a guide for practitioners. Springer, Berlin
99.
Zurück zum Zitat Cormack GV, Clark CLA, Buettcher S (2009) Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In: Proceedings of the 32nd international ACM SIGIR conference on research and development in information retrieval, Boston, 19–23 July 2009, pp 758–759 Cormack GV, Clark CLA, Buettcher S (2009) Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In: Proceedings of the 32nd international ACM SIGIR conference on research and development in information retrieval, Boston, 19–23 July 2009, pp 758–759
100.
Zurück zum Zitat Chen B, Meuller C, Willett P (2010) Combination rules for group fusion in similarity based virtual screening. Mol Inf 29:533–541 Chen B, Meuller C, Willett P (2010) Combination rules for group fusion in similarity based virtual screening. Mol Inf 29:533–541
101.
Zurück zum Zitat Critchlow DE (1980) Metric methods for analyzing partially ranked data. Springer, New York Critchlow DE (1980) Metric methods for analyzing partially ranked data. Springer, New York
103.
Zurück zum Zitat Stumpf D, Bajorath J (2011) Similarity searching. WIRES Comput Mol Sci 1:260–282 Stumpf D, Bajorath J (2011) Similarity searching. WIRES Comput Mol Sci 1:260–282
104.
Zurück zum Zitat Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053 Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053
105.
Zurück zum Zitat Gardiner EJ, Gillet VJ, Haranczyk M, Hert J, Holliday JD, Malim N, Patel Y, Willett P (2009) Turbo similarity searching: effect of FP and dataset on virtual-screening performance. Stat Anal Data Mining 2:103–114 Gardiner EJ, Gillet VJ, Haranczyk M, Hert J, Holliday JD, Malim N, Patel Y, Willett P (2009) Turbo similarity searching: effect of FP and dataset on virtual-screening performance. Stat Anal Data Mining 2:103–114
106.
Zurück zum Zitat Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2006) New methods for ligand-based virtual screening:use of data-fusion and machine-learning techniques to enhance the effectiveness of similarity searching. J Chem Inf Model 46:462–470 Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2006) New methods for ligand-based virtual screening:use of data-fusion and machine-learning techniques to enhance the effectiveness of similarity searching. J Chem Inf Model 46:462–470
107.
Zurück zum Zitat Miyamoto S (1990) Fuzzy sets in information retrieval and cluster analysis. Kluwer Academic, Dordrecht Miyamoto S (1990) Fuzzy sets in information retrieval and cluster analysis. Kluwer Academic, Dordrecht
108.
Zurück zum Zitat Edgar SJ, Holliday JD, Willett P (2000) Effectiveness of retrieval in similarity searches of chemical databases: a review of performance measures. J Mol Graph Model 18:343–357 Edgar SJ, Holliday JD, Willett P (2000) Effectiveness of retrieval in similarity searches of chemical databases: a review of performance measures. J Mol Graph Model 18:343–357
109.
Zurück zum Zitat Willett P (2004) Evaluation of molecular similarity and molecular diversity methods using biological data. In: Bajorath J (ed) Chemoinformatics-Concepts, methods and tools for drug discovery, Chapter 2. Humana, Towata Willett P (2004) Evaluation of molecular similarity and molecular diversity methods using biological data. In: Bajorath J (ed) Chemoinformatics-Concepts, methods and tools for drug discovery, Chapter 2. Humana, Towata
110.
Zurück zum Zitat Truchon J-F, Bayly CI (2007) Evaluating virtual screening: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47:488–508 Truchon J-F, Bayly CI (2007) Evaluating virtual screening: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47:488–508
111.
Zurück zum Zitat Maggiora GM (2006) On outliers and activity cliffs—why QSAR often disappoints (Editorial). J Chem Inf Model 46:1535 Maggiora GM (2006) On outliers and activity cliffs—why QSAR often disappoints (Editorial). J Chem Inf Model 46:1535
112.
Zurück zum Zitat Guha R, Van Drie J (2008) Structure-activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Model 48:646–658 Guha R, Van Drie J (2008) Structure-activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Model 48:646–658
113.
Zurück zum Zitat Stumpfe D, Bajorath J (2012) Exploring activity cliffs in medicinal chemistry. J Med Chem 55:2932–2942 Stumpfe D, Bajorath J (2012) Exploring activity cliffs in medicinal chemistry. J Med Chem 55:2932–2942
114.
Zurück zum Zitat Stahura FL, Bajorath J (2002) Bio- and chemo-informatics beyond data management: crucial challenges and future opportunities. Drug Discov Today 7:S41–S47 Stahura FL, Bajorath J (2002) Bio- and chemo-informatics beyond data management: crucial challenges and future opportunities. Drug Discov Today 7:S41–S47
115.
Zurück zum Zitat Hu Y, Maggiora GM, Bajorath J (2013) Activity cliffs in PubChem confirmatory bioassays taking inactive compounds into account. J Comput Aided Mol Des 27:115–124 Hu Y, Maggiora GM, Bajorath J (2013) Activity cliffs in PubChem confirmatory bioassays taking inactive compounds into account. J Comput Aided Mol Des 27:115–124
116.
Zurück zum Zitat Lajiness MS, Maggiora GM, Shanmugasundaram V (2004) An assessment of the consistency of medicinal chemists in reviewing compound lists. J Med Chem 47:4891–4896 Lajiness MS, Maggiora GM, Shanmugasundaram V (2004) An assessment of the consistency of medicinal chemists in reviewing compound lists. J Med Chem 47:4891–4896
117.
Zurück zum Zitat Takaoka Y, Endo Y, Yamanobe S, Kakinuma H, Okubo T, Shimazaki Y, Ota T, Sumiya S, Yoshikawa K (2003) Development of a method for evaluating drug-likeness and ease of synthesis using a data set in which compounds are assigned scores based on chemists’ intuition. J Chem Inf Comput Sci 43(4)1269–1275 Takaoka Y, Endo Y, Yamanobe S, Kakinuma H, Okubo T, Shimazaki Y, Ota T, Sumiya S, Yoshikawa K (2003) Development of a method for evaluating drug-likeness and ease of synthesis using a data set in which compounds are assigned scores based on chemists’ intuition. J Chem Inf Comput Sci 43(4)1269–1275
118.
Zurück zum Zitat Kutchukian PS, Vasilyeva NY, Xu J, Lindvall MK, Dillon MP, Glick M, Coley JD, Brooijmans N (2012) Inside the mind of a medicinal chemist: the role of human bias in compound prioritization during drug discovery. PLoS ONE 7:e48476 Kutchukian PS, Vasilyeva NY, Xu J, Lindvall MK, Dillon MP, Glick M, Coley JD, Brooijmans N (2012) Inside the mind of a medicinal chemist: the role of human bias in compound prioritization during drug discovery. PLoS ONE 7:e48476
119.
Zurück zum Zitat Hawkins DM, Young SS, Rusinko A III (1997) Analysis of a large structure-activity data set using recursive partitioning. Mol Inf 16:296–302 Hawkins DM, Young SS, Rusinko A III (1997) Analysis of a large structure-activity data set using recursive partitioning. Mol Inf 16:296–302
120.
Zurück zum Zitat Chen X, Rusinko A III, Young S (1998) Recursive partitioning analysis of a large scale structure-activity data set using three-dimensional descriptors. J Chem Inf Comput Sci 38:1054–1062 Chen X, Rusinko A III, Young S (1998) Recursive partitioning analysis of a large scale structure-activity data set using three-dimensional descriptors. J Chem Inf Comput Sci 38:1054–1062
121.
Zurück zum Zitat Rusinko A III, Farmen MW, Lambert CG, Brown PL, Young SS (1999) Analysis of a large structure/biological activity data set using recursive partitioning. J Chem Inf Comput Sci 39:1017–1026 Rusinko A III, Farmen MW, Lambert CG, Brown PL, Young SS (1999) Analysis of a large structure/biological activity data set using recursive partitioning. J Chem Inf Comput Sci 39:1017–1026
122.
Zurück zum Zitat Wasserman S, Faust K (1997) Social network analysis. Cambridge University , New York Wasserman S, Faust K (1997) Social network analysis. Cambridge University , New York
123.
Zurück zum Zitat Paolini GV, Shapland RHB, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nature Biotech 24:805–815 Paolini GV, Shapland RHB, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nature Biotech 24:805–815
124.
Zurück zum Zitat Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690 Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690
125.
Zurück zum Zitat Kesier MJ, Roth BL, Armruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206 Kesier MJ, Roth BL, Armruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206
126.
Zurück zum Zitat Yildirim MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M (2007) Drug-target network. Nat Biotechnol 25:1119–1126 Yildirim MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M (2007) Drug-target network. Nat Biotechnol 25:1119–1126
127.
Zurück zum Zitat Watts DJ (2003) Six Degrees—the science of a connected age. WW Norton, New York Watts DJ (2003) Six Degrees—the science of a connected age. WW Norton, New York
128.
Zurück zum Zitat Barbási A-L (2003) Linked: how everything is connected to everything else, and what it means for business, science, and everyday life. Penguin, New York Barbási A-L (2003) Linked: how everything is connected to everything else, and what it means for business, science, and everyday life. Penguin, New York
129.
Zurück zum Zitat Newman MEJ (2010) Networks an introduction. Oxford University, New York Newman MEJ (2010) Networks an introduction. Oxford University, New York
130.
Zurück zum Zitat Robinson I, Webber J, Eifrém E (2013) Graph databases. O’Reilly Media, Sebastopol, CA 95472 Robinson I, Webber J, Eifrém E (2013) Graph databases. O’Reilly Media, Sebastopol, CA 95472
131.
Zurück zum Zitat Peltason L, Bajorath J (2007) SAR Index: quantifying the nature of structure-activity relationships. J Med Chem 50:5571–5578 Peltason L, Bajorath J (2007) SAR Index: quantifying the nature of structure-activity relationships. J Med Chem 50:5571–5578
132.
Zurück zum Zitat Namasivayam V, Iyer P, Bajorath J (2012) Exploring SAR continuity in the vicinity of activity cliffs. Chem Biol Drug Des 79:22–29 Namasivayam V, Iyer P, Bajorath J (2012) Exploring SAR continuity in the vicinity of activity cliffs. Chem Biol Drug Des 79:22–29
134.
Zurück zum Zitat Medina-Franco JL (2013) Activity cliffs: facts or artifacts? Chem Biol Drug Des 81:553–556 Medina-Franco JL (2013) Activity cliffs: facts or artifacts? Chem Biol Drug Des 81:553–556
135.
Zurück zum Zitat Hu Y, Bajorath J (2010) Molecular scaffolds with high propensity to form multi-target activity cliffs. J Chem Inf Model 50:500–510 Hu Y, Bajorath J (2010) Molecular scaffolds with high propensity to form multi-target activity cliffs. J Chem Inf Model 50:500–510
136.
Zurück zum Zitat Wassermann AM, Bajorath J (2010) Chemical substitutions that introduce activity cliffs across different compound classes and biological targets. J Chem Inf Model 50:1248–1256 Wassermann AM, Bajorath J (2010) Chemical substitutions that introduce activity cliffs across different compound classes and biological targets. J Chem Inf Model 50:1248–1256
137.
Zurück zum Zitat Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activities? J Med Chem 45:4350–4358 Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activities? J Med Chem 45:4350–4358
139.
Zurück zum Zitat Brown RD, Martin YC (1998) An evaluation of structural descriptors and clustering methods for use in diversity selection. SAR QSAR Environ Res 8:23–39 Brown RD, Martin YC (1998) An evaluation of structural descriptors and clustering methods for use in diversity selection. SAR QSAR Environ Res 8:23–39
140.
Zurück zum Zitat Patterson DE, Cramer RD, Ferguson AM, Clark RD, Weinberger LE (1996) Neighborhood behavior: a useful concept for validation of “molecular diversity” descriptors. J Med Chem 39:3049–3059 Patterson DE, Cramer RD, Ferguson AM, Clark RD, Weinberger LE (1996) Neighborhood behavior: a useful concept for validation of “molecular diversity” descriptors. J Med Chem 39:3049–3059
141.
Zurück zum Zitat Steffen A, Kogej T, Tyrchan C, Engkvist O (2009) Comparison of molecular FP methods on the basis of biological profile data. J Chem Inf Model 49:338–347 Steffen A, Kogej T, Tyrchan C, Engkvist O (2009) Comparison of molecular FP methods on the basis of biological profile data. J Chem Inf Model 49:338–347
143.
Zurück zum Zitat Hecht-Nielsen R (1990) Neurocomputing. Addison-Wesley, Reading Hecht-Nielsen R (1990) Neurocomputing. Addison-Wesley, Reading
144.
Zurück zum Zitat Rupp M, Proschak E, Schneider G (2007) Kernel approach to molecular similarity based on iterative graph similarity. J Chem Inf Model 47:2280–2286 Rupp M, Proschak E, Schneider G (2007) Kernel approach to molecular similarity based on iterative graph similarity. J Chem Inf Model 47:2280–2286
145.
Zurück zum Zitat Joliffe IT (2002) Principle component analysis, 2nd edn. Springer, New York Joliffe IT (2002) Principle component analysis, 2nd edn. Springer, New York
146.
Zurück zum Zitat Borg I, Groenen P (1997) Modern multi-dimensional scaling. Springer, New York Borg I, Groenen P (1997) Modern multi-dimensional scaling. Springer, New York
147.
Zurück zum Zitat Domine D, Devillers J, Chastrette M, Karcher W (1993) Non-linear mapping for structure-activity and structure-property modeling. J Chemometr 7:227–242 Domine D, Devillers J, Chastrette M, Karcher W (1993) Non-linear mapping for structure-activity and structure-property modeling. J Chemometr 7:227–242
148.
Zurück zum Zitat Malinowski ER (1991) Factor analysis in chemistry, 2nd edn. Wiley, New York Malinowski ER (1991) Factor analysis in chemistry, 2nd edn. Wiley, New York
149.
Zurück zum Zitat Raghavendra AS, Maggiora GM (2007) Molecular basis sets—a general similarity-based approach for representing CSs. J Chem Inf Model 47:1328–1340 Raghavendra AS, Maggiora GM (2007) Molecular basis sets—a general similarity-based approach for representing CSs. J Chem Inf Model 47:1328–1340
150.
Zurück zum Zitat Kruskal J (1977) The relationship between multidimensional scaling and clustering. In: Van Ryzin J (ed) Classification and clustering. Academic, New York, pp 17–44 Kruskal J (1977) The relationship between multidimensional scaling and clustering. In: Van Ryzin J (ed) Classification and clustering. Academic, New York, pp 17–44
151.
Zurück zum Zitat Diamantaras KI, Kung SY (1996) Principal component neural networks: theory and applications. Wiley, New York Diamantaras KI, Kung SY (1996) Principal component neural networks: theory and applications. Wiley, New York
153.
Zurück zum Zitat Mason JS, Good AC, Martin EJ (2001) 3-D pharmacophores in drug discovery. Curr Pharm Des 7:567–597 Mason JS, Good AC, Martin EJ (2001) 3-D pharmacophores in drug discovery. Curr Pharm Des 7:567–597
154.
Zurück zum Zitat Agrafiotis DK, Xu H (2003) A geodesic framework for analyzing molecular similarities. J Chem Inf Model 43:475–484 Agrafiotis DK, Xu H (2003) A geodesic framework for analyzing molecular similarities. J Chem Inf Model 43:475–484
155.
Zurück zum Zitat Agrafiotis DK, Xu H (2002) A self-organizing principle for learning non-linear manifolds. Proc Nat Acad Sci U S A 99:15869–15872 Agrafiotis DK, Xu H (2002) A self-organizing principle for learning non-linear manifolds. Proc Nat Acad Sci U S A 99:15869–15872
156.
Zurück zum Zitat Agrafiotis DK (2003) Stochastic proximity embedding. J Comput Chem 24:1215–1221 Agrafiotis DK (2003) Stochastic proximity embedding. J Comput Chem 24:1215–1221
157.
Zurück zum Zitat Xue L, Stahura FL, Bajorath J (2004) Cell-based partitioning. In: Chemoinformatics: concepts, methods, and tools for drug discovery, Chapter 9. Humana , Totowa Xue L, Stahura FL, Bajorath J (2004) Cell-based partitioning. In: Chemoinformatics: concepts, methods, and tools for drug discovery, Chapter 9. Humana , Totowa
158.
Zurück zum Zitat Wickens TD (2009) Multiway contingency tables analysis for the social sciences. Psychology, New York Wickens TD (2009) Multiway contingency tables analysis for the social sciences. Psychology, New York
159.
Zurück zum Zitat Bayley MJ, Willett P (1999) Binning schemes for partition-based compound selection. J Mol Graphics Model 17:10–18 Bayley MJ, Willett P (1999) Binning schemes for partition-based compound selection. J Mol Graphics Model 17:10–18
160.
Zurück zum Zitat Rush JA (1999) Cell-based methods for sampling in high-dimensional spaces. In: Truhlar DG, Howe WJ, Hopfinger AJ, Blaney J, Dammkoehler RA (eds) Rational drug design. Springer, New York, pp 73–79 Rush JA (1999) Cell-based methods for sampling in high-dimensional spaces. In: Truhlar DG, Howe WJ, Hopfinger AJ, Blaney J, Dammkoehler RA (eds) Rational drug design. Springer, New York, pp 73–79
161.
Zurück zum Zitat Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Englewood Cliffs Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Englewood Cliffs
162.
Zurück zum Zitat Maggiora GM, Shanmugasundaram V, Lajiness MS, Doman TN, Schultz MW (2004) A practical strategy for directed compound acquisition. In: Oprea TI (ed) Chemoinformatics in drug discovery. Wiley-VCH, Weinheim Maggiora GM, Shanmugasundaram V, Lajiness MS, Doman TN, Schultz MW (2004) A practical strategy for directed compound acquisition. In: Oprea TI (ed) Chemoinformatics in drug discovery. Wiley-VCH, Weinheim
163.
Zurück zum Zitat Hassan M, Bielawski JP, Hempel JC, Waldman M (1996) Optimization and visualization of molecular diversity of combinatorial libraries. Mol Divers 2:64–74 Hassan M, Bielawski JP, Hempel JC, Waldman M (1996) Optimization and visualization of molecular diversity of combinatorial libraries. Mol Divers 2:64–74
164.
Zurück zum Zitat Sotriffer C, Manhold R, Kubinyi H, Folkers G (2011) Virutal screening—principles, challenges, and practical guidelines. Wiley, New York Sotriffer C, Manhold R, Kubinyi H, Folkers G (2011) Virutal screening—principles, challenges, and practical guidelines. Wiley, New York
165.
Zurück zum Zitat Bork P, Jensen LJ, von Mering C, Ramani AK, Lee I, Marcotte EM (2004) Protein interaction networks from yeast to human. Curr Opin Struct Biol 14:292–299 Bork P, Jensen LJ, von Mering C, Ramani AK, Lee I, Marcotte EM (2004) Protein interaction networks from yeast to human. Curr Opin Struct Biol 14:292–299
166.
Zurück zum Zitat Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008) Prediction of drug-target networks from the integration of chemical and genomic spaces. Bioinformatics 24:1232–1240 Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008) Prediction of drug-target networks from the integration of chemical and genomic spaces. Bioinformatics 24:1232–1240
167.
Zurück zum Zitat Zhao S, Li S (2010) Network-based relating pharmacological and genomic spaces for drug target identification. PLoS ONE 5(7):e11764. doi:10.1371/journal.pone.0011764 Zhao S, Li S (2010) Network-based relating pharmacological and genomic spaces for drug target identification. PLoS ONE 5(7):e11764. doi:10.1371/journal.pone.0011764
168.
Zurück zum Zitat Tanaka N, Ohno K, Niimi T, Moritomo A, Mori K, Orita M (2009) Small-world phenomena in chemical library networks: application to fragment-based drug discovery. J Chem Inf Model 49:2677–2686 Tanaka N, Ohno K, Niimi T, Moritomo A, Mori K, Orita M (2009) Small-world phenomena in chemical library networks: application to fragment-based drug discovery. J Chem Inf Model 49:2677–2686
169.
Zurück zum Zitat Krein MP, Sukumar N (2011) Exploration of the topology of chemical spaces with network measures. J Phys Chem A 115:12905–12918 Krein MP, Sukumar N (2011) Exploration of the topology of chemical spaces with network measures. J Phys Chem A 115:12905–12918
170.
Zurück zum Zitat Wawer M, Peltason L, Weskamp N, Teckentrup A, Bajorath J (2008) Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices. J Med Chem 51:6075–6084 Wawer M, Peltason L, Weskamp N, Teckentrup A, Bajorath J (2008) Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices. J Med Chem 51:6075–6084
171.
Zurück zum Zitat Ripphausen P, Nisius B, Wawer M, Bajorath J (2011) Rationalizing the role of SAR tolerance for ligand-based virtual screening. J Chem Inf Model 51:837–842 Ripphausen P, Nisius B, Wawer M, Bajorath J (2011) Rationalizing the role of SAR tolerance for ligand-based virtual screening. J Chem Inf Model 51:837–842
172.
Zurück zum Zitat Stumpfe D, Dimova D, Bajorath J (2014) Composition and topology of chemical spaces with network measures. J Chem Inf Model 54:451–461 Stumpfe D, Dimova D, Bajorath J (2014) Composition and topology of chemical spaces with network measures. J Chem Inf Model 54:451–461
173.
Zurück zum Zitat Benz RW, Swamidass SJ, Baldi P (2008) Discovery of power-laws in chemical space. J Chem Inf Model 48:1138–1151 Benz RW, Swamidass SJ, Baldi P (2008) Discovery of power-laws in chemical space. J Chem Inf Model 48:1138–1151
174.
Zurück zum Zitat Oprea TI, Gottfries J (2001) Chemography: the art of navigating in chemical space. J Comb Chem 3:157–166 Oprea TI, Gottfries J (2001) Chemography: the art of navigating in chemical space. J Comb Chem 3:157–166
175.
Zurück zum Zitat Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97 Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97
176.
Zurück zum Zitat Harary F (1969) Graph theory. Addison-Wesley, Reading Harary F (1969) Graph theory. Addison-Wesley, Reading
177.
Zurück zum Zitat Bolla M (2013) Spectral clustering and biclustering—learning large graphs and contingency tables. Wiley, New York Bolla M (2013) Spectral clustering and biclustering—learning large graphs and contingency tables. Wiley, New York
178.
Zurück zum Zitat Kolaczyk ED (2009) Statistical analysis of network data—methods and models. Springer, New York Kolaczyk ED (2009) Statistical analysis of network data—methods and models. Springer, New York
179.
Zurück zum Zitat Liu B (2011) Web data mining: exploring hyperlinks, contents, and usage data. Springer, Heidelberg Liu B (2011) Web data mining: exploring hyperlinks, contents, and usage data. Springer, Heidelberg
180.
Zurück zum Zitat van Steen M (2010) Graph theory and complex networks—an introduction. Maarten van Steen van Steen M (2010) Graph theory and complex networks—an introduction. Maarten van Steen
181.
Zurück zum Zitat Amaral LAN, Scala A, Barthélémy M, Stanley HE (2000) Classes of small-world networks. Proc Nat Acad Sci U S A 97:11149–11152 Amaral LAN, Scala A, Barthélémy M, Stanley HE (2000) Classes of small-world networks. Proc Nat Acad Sci U S A 97:11149–11152
182.
Zurück zum Zitat Barabási A, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512 Barabási A, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512
183.
Zurück zum Zitat Devore JL, Berk KN (2011) Modern mathematical statistics with applications. Springer, New York Devore JL, Berk KN (2011) Modern mathematical statistics with applications. Springer, New York
184.
Zurück zum Zitat Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compoundsfor virtual screening. J Chem Inf Model 45:177–182 Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compoundsfor virtual screening. J Chem Inf Model 45:177–182
185.
Zurück zum Zitat Rajan K (ed) (2013) Informatics for materials science and engineering: data-driven discovery for accelerated experimentation and applications. Elsevier, New York Rajan K (ed) (2013) Informatics for materials science and engineering: data-driven discovery for accelerated experimentation and applications. Elsevier, New York
186.
Zurück zum Zitat Hudson BD, Hyde RM, Rahr E, Wood J, Osman J (1996) Parameter based methods for compound selection from chemical databases. Quant Struct-Act Relat 15:285–289 Hudson BD, Hyde RM, Rahr E, Wood J, Osman J (1996) Parameter based methods for compound selection from chemical databases. Quant Struct-Act Relat 15:285–289
187.
Zurück zum Zitat Holliday JD, Willett P (1996) Definitions of “dissimilarity” for dissimilarity-based compound selection. J Biomolec Screen 1:145–151 Holliday JD, Willett P (1996) Definitions of “dissimilarity” for dissimilarity-based compound selection. J Biomolec Screen 1:145–151
188.
Zurück zum Zitat Menard PR, Lewis RA, Mason JS (1998) Rational screening set design and compound selection: cascaded clustering. J Chem Inf Comput Sci 38:497–505 Menard PR, Lewis RA, Mason JS (1998) Rational screening set design and compound selection: cascaded clustering. J Chem Inf Comput Sci 38:497–505
189.
Zurück zum Zitat Young SS, Lam RLH, Welch WJ (2002) Initial compound selection for sequential screening. Curr Opin Drug Discov Devel 5:422–427 Young SS, Lam RLH, Welch WJ (2002) Initial compound selection for sequential screening. Curr Opin Drug Discov Devel 5:422–427
190.
Zurück zum Zitat Waldman M, Li H, Hassan M (2000) Novel algorithms for the optimization of molecular diversity of combinatorial libraries. J Mol Graph Model 18:412–426 Waldman M, Li H, Hassan M (2000) Novel algorithms for the optimization of molecular diversity of combinatorial libraries. J Mol Graph Model 18:412–426
191.
Zurück zum Zitat Agrafiotis DK (1998) Diversity in chemical libraries. In Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) The Encyclopedia of Computational Chemistry, pp 742–761, John Wiley & Sons, Chichester Agrafiotis DK (1998) Diversity in chemical libraries. In Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) The Encyclopedia of Computational Chemistry, pp 742–761, John Wiley & Sons, Chichester
192.
Zurück zum Zitat Shanmugasundaram V, Maggiora G (2011) Application of Shannon-like diversity measures to cell-based chemistry spaces. J Math Chem 49:342–355 Shanmugasundaram V, Maggiora G (2011) Application of Shannon-like diversity measures to cell-based chemistry spaces. J Math Chem 49:342–355
193.
Zurück zum Zitat Willett P (2000) Chemoinformatics—similarity and diversity in chemical libraries. Curr Opin Biotechnol 11:85–88 Willett P (2000) Chemoinformatics—similarity and diversity in chemical libraries. Curr Opin Biotechnol 11:85–88
194.
Zurück zum Zitat Willett P (2004) Evaluation of molecular similarity and molecular diversity methods using biological activity data. In: Bajorath J (ed) Chemoinformatics: concepts, methods, and tools for drug discovery, Chapter 2. Springer, New York Willett P (2004) Evaluation of molecular similarity and molecular diversity methods using biological activity data. In: Bajorath J (ed) Chemoinformatics: concepts, methods, and tools for drug discovery, Chapter 2. Springer, New York
195.
Zurück zum Zitat Martin Y (ed) (2001) Diverse viewpoints on computational aspects of molecular diversity. J Comb Chem 3:231–250 Martin Y (ed) (2001) Diverse viewpoints on computational aspects of molecular diversity. J Comb Chem 3:231–250
196.
Zurück zum Zitat Matter H (1997) Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional molecular descriptors. J Med Chem 40:1219–1229 Matter H (1997) Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional molecular descriptors. J Med Chem 40:1219–1229
197.
Zurück zum Zitat Dunbar JB (2000) Compound acquisition strategies. Pac Symp Biocomput 5:552–562 Dunbar JB (2000) Compound acquisition strategies. Pac Symp Biocomput 5:552–562
198.
Zurück zum Zitat Olah MM, Bologa CG, Oprea TI (2004) Strategies for compound selection. Curr Drug Discov Technol 1:211–220 Olah MM, Bologa CG, Oprea TI (2004) Strategies for compound selection. Curr Drug Discov Technol 1:211–220
199.
Zurück zum Zitat Ma C, Lazo JS, Xie X-Q (2011) Compound acquisition and prioritization algorithm for constructing structurally diverse compound libraries. ACS Comb Sci 13:223–231 Ma C, Lazo JS, Xie X-Q (2011) Compound acquisition and prioritization algorithm for constructing structurally diverse compound libraries. ACS Comb Sci 13:223–231
200.
Zurück zum Zitat Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimates solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimates solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26
201.
Zurück zum Zitat Petit J, Meurice N, Kaiser C, Maggiora G (2012) Softening the rule of five—where to draw the line? Bioorg Med Chem 20:5343–5351 Petit J, Meurice N, Kaiser C, Maggiora G (2012) Softening the rule of five—where to draw the line? Bioorg Med Chem 20:5343–5351
202.
Zurück zum Zitat Bickerton GR, Pailini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4:90–98 Bickerton GR, Pailini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4:90–98
203.
Zurück zum Zitat Klebe G (ed) (2000) Virtual screening: an alternative or complement to high throughput screening? Kluwer Academic, Dordrecht Klebe G (ed) (2000) Virtual screening: an alternative or complement to high throughput screening? Kluwer Academic, Dordrecht
204.
Zurück zum Zitat Varnek A, Tropsha A (eds) (2008) Chemoinformatics approaches to virtual screening. RSC Publishing, Cambridge Varnek A, Tropsha A (eds) (2008) Chemoinformatics approaches to virtual screening. RSC Publishing, Cambridge
205.
Zurück zum Zitat Böhm H-J, Schneider G, Kubinyi H, Manhold R, Timmerman H (eds) (2008) Virtual screening for bioactive molecules. Wiley, New York Böhm H-J, Schneider G, Kubinyi H, Manhold R, Timmerman H (eds) (2008) Virtual screening for bioactive molecules. Wiley, New York
206.
Zurück zum Zitat Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1:882–894 Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1:882–894
207.
Zurück zum Zitat Glen RC, Adams SE (2006) Similarity metrics and descriptor spaces—which combinations to choose? QSAR Combin Sci 25:1133–1142 Glen RC, Adams SE (2006) Similarity metrics and descriptor spaces—which combinations to choose? QSAR Combin Sci 25:1133–1142
208.
Zurück zum Zitat Eckert H, Bajorath J (2007) Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today 12:225–233 Eckert H, Bajorath J (2007) Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today 12:225–233
209.
Zurück zum Zitat Rester U (2008) From virtual reality—virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel 11:559–568 Rester U (2008) From virtual reality—virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel 11:559–568
210.
Zurück zum Zitat Bajorath J (2009) Methods for ligand-based virtual screening. Frontiers Med Chem 4:1–22 Bajorath J (2009) Methods for ligand-based virtual screening. Frontiers Med Chem 4:1–22
211.
Zurück zum Zitat Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discov 9:273–276 Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discov 9:273–276
212.
Zurück zum Zitat Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216 Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216
213.
Zurück zum Zitat Stumpfe D, Bajorath J (2011) Similarity searching. WIREs Comput Mol Sci 1:260–282 Stumpfe D, Bajorath J (2011) Similarity searching. WIREs Comput Mol Sci 1:260–282
214.
Zurück zum Zitat Scior T, Bender A, Tresadern G, Medina-Franco JL, Mayorga KM, Langer T, Cuanalo-Contreras K, Agrafiotis DK (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52:867–881 Scior T, Bender A, Tresadern G, Medina-Franco JL, Mayorga KM, Langer T, Cuanalo-Contreras K, Agrafiotis DK (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model 52:867–881
215.
Zurück zum Zitat Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20:2839–2860 Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20:2839–2860
216.
Zurück zum Zitat Parker CN, Bajorath J (2006) Towards unified compound screening strategies: a critical evaluation of error sources in experimental and virtual high-throughput screening. QSAR Combin Sci 25:1153–1161 Parker CN, Bajorath J (2006) Towards unified compound screening strategies: a critical evaluation of error sources in experimental and virtual high-throughput screening. QSAR Combin Sci 25:1153–1161
217.
Zurück zum Zitat Yuriev E, Agostino M, Ramsland PA (2010) Challenges and advances in computational docking: 2009 in review. J Mol Recognit 24:149–164 Yuriev E, Agostino M, Ramsland PA (2010) Challenges and advances in computational docking: 2009 in review. J Mol Recognit 24:149–164
218.
Zurück zum Zitat Huang S-Y, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016–3034 Huang S-Y, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016–3034
219.
Zurück zum Zitat Waszkowycz B, Clark DE, Gancia E (2011) Outstanding challenges in protein-ligand docking and structure-based virtual screening. WIREs Comput Mol Sci 1:229–259 Waszkowycz B, Clark DE, Gancia E (2011) Outstanding challenges in protein-ligand docking and structure-based virtual screening. WIREs Comput Mol Sci 1:229–259
220.
Zurück zum Zitat Mestres J, Rohrer DC, Maggiora GM (1997) A molecular field-based similarity approach to pharmacophoric pattern recognition. J Mol Graphics Model 15:114–121 Mestres J, Rohrer DC, Maggiora GM (1997) A molecular field-based similarity approach to pharmacophoric pattern recognition. J Mol Graphics Model 15:114–121
221.
Zurück zum Zitat Putta S, Lemmen l, Beroza P, Greene J (2002) A novel shape-feature based approach to virtual library screening. J Chem Inf Comput Sci 42:1230–1240 Putta S, Lemmen l, Beroza P, Greene J (2002) A novel shape-feature based approach to virtual library screening. J Chem Inf Comput Sci 42:1230–1240
222.
Zurück zum Zitat Koes DR, Camacho CJ (2011) Pharmer: efficient and exact pharmacophore search. J Chem Inf Model 51:1307–1314 Koes DR, Camacho CJ (2011) Pharmer: efficient and exact pharmacophore search. J Chem Inf Model 51:1307–1314
223.
Zurück zum Zitat Langer T (2010) Pharmacophores in drug research. Mol Inf 29:470–475 Langer T (2010) Pharmacophores in drug research. Mol Inf 29:470–475
224.
Zurück zum Zitat Mestres J, Rohrer DC, Maggiora GM (1997) MIMIC: a molecular-field matching program: exploiting applicability of molecular similarity approaches. J Comp Chem 18:934–954 Mestres J, Rohrer DC, Maggiora GM (1997) MIMIC: a molecular-field matching program: exploiting applicability of molecular similarity approaches. J Comp Chem 18:934–954
225.
Zurück zum Zitat Ballester PJ, Richards WG (2007) Ultrafast shape recognition for similarity search in molecular databases. Proc Roy Soc A 463:1307–1321 Ballester PJ, Richards WG (2007) Ultrafast shape recognition for similarity search in molecular databases. Proc Roy Soc A 463:1307–1321
226.
Zurück zum Zitat Hawkins P, Skillman A, Nicholls A (2007) A comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82 Hawkins P, Skillman A, Nicholls A (2007) A comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82
227.
Zurück zum Zitat McGaughey GB, Sheridan RP, Baylly CI et al (2007) Comparison of topological shape and docking methods in virtual screening. J Chem Inf Model 47:1504–1519 McGaughey GB, Sheridan RP, Baylly CI et al (2007) Comparison of topological shape and docking methods in virtual screening. J Chem Inf Model 47:1504–1519
228.
Zurück zum Zitat Ebalunode JO, Zheng W (2009) Unconventional 2D shape similarity method affords comparable enrichment as a 3D shape method in virtual screening experiments. J Chem Inf Model 49:1313–1320 Ebalunode JO, Zheng W (2009) Unconventional 2D shape similarity method affords comparable enrichment as a 3D shape method in virtual screening experiments. J Chem Inf Model 49:1313–1320
229.
Zurück zum Zitat Yongye AB, Bender A, Martinez-Mayorga (2010) Dynamic clustering threshold reduces conformer ensemble size while maintaining a biologically relevant ensemble. J Comput Aided Mol Des 24:675–686 Yongye AB, Bender A, Martinez-Mayorga (2010) Dynamic clustering threshold reduces conformer ensemble size while maintaining a biologically relevant ensemble. J Comput Aided Mol Des 24:675–686
230.
Zurück zum Zitat Stanton DT, Morris TW, Siddhartha R, Parker C (1999) Application of nearest-neighbor and cluster analyses in pharmaceutical lead discovery. J Chem Inf Comput Sci 39:21–27 Stanton DT, Morris TW, Siddhartha R, Parker C (1999) Application of nearest-neighbor and cluster analyses in pharmaceutical lead discovery. J Chem Inf Comput Sci 39:21–27
231.
Zurück zum Zitat Muchmore SW, Debe DA, Metz JT, Brown SP, Martin YC, Hajduk PJ (2008) Application of belief theory to similarity data fusion for use in analog searching and lead hopping. J Chem Inf Model 48:941–948 Muchmore SW, Debe DA, Metz JT, Brown SP, Martin YC, Hajduk PJ (2008) Application of belief theory to similarity data fusion for use in analog searching and lead hopping. J Chem Inf Model 48:941–948
232.
Zurück zum Zitat Swann SL, Brown SP, Muchmore SW, Patel H, Merta P, Locklear J, Hajduk PJ (2011) A unified, probabilistic framework for structure- and ligand-based virtual screening. J Med Chem 54:1223–1232 Swann SL, Brown SP, Muchmore SW, Patel H, Merta P, Locklear J, Hajduk PJ (2011) A unified, probabilistic framework for structure- and ligand-based virtual screening. J Med Chem 54:1223–1232
233.
Zurück zum Zitat Sharma R, Lawrenson AS, Fisher NE et al (2012) Compound selection methods for a high-throughput screening program against a novel malarial target, PfNDH2: increasing hit rate via virtual screening methods. J Med Chem 55:3144–3154 Sharma R, Lawrenson AS, Fisher NE et al (2012) Compound selection methods for a high-throughput screening program against a novel malarial target, PfNDH2: increasing hit rate via virtual screening methods. J Med Chem 55:3144–3154
234.
Zurück zum Zitat Williams C (2006) Reverse fingerprinting, similarity searching by group fusion and fingerprint bit importance. Mol Divers 10:311–332 Williams C (2006) Reverse fingerprinting, similarity searching by group fusion and fingerprint bit importance. Mol Divers 10:311–332
235.
Zurück zum Zitat Xue L, Stahura FL, Godden JW, Bajorath J (2001) Fingerprint scaling increases the probability if identifying molecules with similar activity in virtual screening callculations. J Chem Inf Comput Sci 41:746–753 Xue L, Stahura FL, Godden JW, Bajorath J (2001) Fingerprint scaling increases the probability if identifying molecules with similar activity in virtual screening callculations. J Chem Inf Comput Sci 41:746–753
236.
Zurück zum Zitat Xue L, Godden JW, Stahura FL, Bajorath J (2003) Profile scaling increases the similarity search performance of molecular fingerprints containing numerical descriptors and structural keys. J Chem Inf Comput Sci 43:1218–1225 Xue L, Godden JW, Stahura FL, Bajorath J (2003) Profile scaling increases the similarity search performance of molecular fingerprints containing numerical descriptors and structural keys. J Chem Inf Comput Sci 43:1218–1225
237.
Zurück zum Zitat Schuffenhauer A, Floersheim P, Acklin P, Jacoby E (2003) Similarity metrics for ligands reflecting the similarity of the target proteins. J Chem Inf Comput Sci 43:391–405 Schuffenhauer A, Floersheim P, Acklin P, Jacoby E (2003) Similarity metrics for ligands reflecting the similarity of the target proteins. J Chem Inf Comput Sci 43:391–405
238.
Zurück zum Zitat Kogej T, Engkvist Blomberg N, Muresan S (2006) Multifingerprint based similarity searches for targeted class compound selection. J Chem Inf Model 46:1201–1213 Kogej T, Engkvist Blomberg N, Muresan S (2006) Multifingerprint based similarity searches for targeted class compound selection. J Chem Inf Model 46:1201–1213
239.
Zurück zum Zitat Batista J, Bajorath J (2008) Distribution of randomly generated activity class characteristic substructures in diverse active and database molecules. Mol Divers 12:77–83 Batista J, Bajorath J (2008) Distribution of randomly generated activity class characteristic substructures in diverse active and database molecules. Mol Divers 12:77–83
240.
Zurück zum Zitat Lounkine E, Auer J, Bajorath J (2008) Formal concept analysis for the identification of molecular fragment combinations specific for active and highly potent compounds. J Med Chem 51:5342–5348 Lounkine E, Auer J, Bajorath J (2008) Formal concept analysis for the identification of molecular fragment combinations specific for active and highly potent compounds. J Med Chem 51:5342–5348
241.
Zurück zum Zitat Lounkine E, Hu Y, Batista J, Bajorath J (2009) Relevance of feature combinations for similarity searching using general or activity class-directed molecular fingerprints. J Chem Inf Model 49:561–570 Lounkine E, Hu Y, Batista J, Bajorath J (2009) Relevance of feature combinations for similarity searching using general or activity class-directed molecular fingerprints. J Chem Inf Model 49:561–570
242.
Zurück zum Zitat Wassermann AM, Nisius B, Vogt M, Bajorath J (2010) Identification of descriptors capturing compound class-specific features by mutual information analysis. J Chem Inf Model 50:1935–1940 Wassermann AM, Nisius B, Vogt M, Bajorath J (2010) Identification of descriptors capturing compound class-specific features by mutual information analysis. J Chem Inf Model 50:1935–1940
Metadaten
Titel
Introduction to Molecular Similarity and Chemical Space
verfasst von
Gerald M. Maggiora
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-10226-9_1