Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Introduction to Nanomedicine and Cancer Therapy

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanomedicine, the application of different nanostructures in the field of medicine which is aiming to revolutionize the health of humankind by a new developmental sector of nanopharmaceuticals [1]. The rapid evolution of nanomedicines has the huge probability to give many benefits when correlated to conventional medicines [2]. The major advantage of nanomedicine is to create a multifunctional platform using one nanostructure. Therefore, the various properties of nanostructures/NPs are exploited as tools in all aspect of medicine starting from diagnosis to treatment even at a molecular or cellular level for very rare and irremediable diseases [3]. Some of the applications of nanomedicine are as follows: drug delivery, therapies, in vivo imaging, in vitro diagnostics, biomaterials, active implants, bone substitute materials, dental restoratives, and antibiotic materials [4–6]. In the last two decades, significant progress has been made in the field of nanomedicine and nanobiotechnology, resulting in an enormous number of products. So, by the end of 2020, one-third of research patents and many start-up companies in the nanomedicine sector will engage in the biomedical applications [7]. To be specific, as of 2013, 1265 molecules are registered for clinical trials in which 789 were for nanomedicine applications or products [8]. Figure 1.1 represents the list of some of the important nanomedicine-related search terms in ClinicalTrials.​gov [9]. Therefore this proves the field of nanomedicine is booming at a faster rate. The global nanomedicine market was $1 trillion by 2015 but expected to be 100-fold in just 7 years [10].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Paras N. Prasad. Introduction to Nanomedicine and Nanobioengineering. Wiley (John Wiley & Sons, 2012). Paras N. Prasad. Introduction to Nanomedicine and Nanobioengineering. Wiley (John Wiley & Sons, 2012).
2.
Zurück zum Zitat Bharali, D. J. & Mousa, S. A. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol. Ther. 128, 324–335 (2010).CrossRef Bharali, D. J. & Mousa, S. A. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol. Ther. 128, 324–335 (2010).CrossRef
3.
Zurück zum Zitat Chen, G., Roy, I., Yang, C. & Prasad, P. N. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem. Rev. 116, 2826–2885 (2016).CrossRef Chen, G., Roy, I., Yang, C. & Prasad, P. N. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem. Rev. 116, 2826–2885 (2016).CrossRef
4.
Zurück zum Zitat Huber, F. X. et al. Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim in comparison to Alpha-BSM more bone ingrowth inside the implanted material with Ostim compared to Alpha BSM. BMC Musculoskelet. Disord. 10, 164 (2009).CrossRef Huber, F. X. et al. Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim in comparison to Alpha-BSM more bone ingrowth inside the implanted material with Ostim compared to Alpha BSM. BMC Musculoskelet. Disord. 10, 164 (2009).CrossRef
5.
Zurück zum Zitat Wagner, V., Husing, B., Gaisser, S. & Bock, A. K. Nanomedicine : Drivers for development and possible impacts. Eur. Comm. Jt. Res. Cent. 45–53 (2006). Wagner, V., Husing, B., Gaisser, S. & Bock, A. K. Nanomedicine : Drivers for development and possible impacts. Eur. Comm. Jt. Res. Cent. 45–53 (2006).
6.
Zurück zum Zitat Webster, T. J. Projections for nanomedicine into the next decade: But is it all about pharmaceuticals? Int. J. Nanomedicine 3, (2008). Webster, T. J. Projections for nanomedicine into the next decade: But is it all about pharmaceuticals? Int. J. Nanomedicine 3, (2008).
7.
Zurück zum Zitat Lee Ventola, C. The Nanomedicine Revolution: Part 3: Regulatory and Safety Challenges. Pharm. Ther. 37, 631–639 (2012). Lee Ventola, C. The Nanomedicine Revolution: Part 3: Regulatory and Safety Challenges. Pharm. Ther. 37, 631–639 (2012).
8.
Zurück zum Zitat Etheridge, M. L. et al. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine Nanotechnology, Biol. Med. 9, 1–14 (2013). Etheridge, M. L. et al. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine Nanotechnology, Biol. Med. 9, 1–14 (2013).
12.
Zurück zum Zitat Weissig, V., Pettinger, T. K. & Murdock, N. Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomedicine 9, 4357–4373 (2014).CrossRef Weissig, V., Pettinger, T. K. & Murdock, N. Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomedicine 9, 4357–4373 (2014).CrossRef
13.
Zurück zum Zitat Bawa, R. Nanopharmaceuticals: Nanopharmaceuticals. Eur. J. Nanomedicine 3, (2010). Bawa, R. Nanopharmaceuticals: Nanopharmaceuticals. Eur. J. Nanomedicine 3, (2010).
14.
Zurück zum Zitat Ventola, C. L. The nanomedicine revolution: part 2: current and future clinical applications. P T 37, 582–91 (2012). Ventola, C. L. The nanomedicine revolution: part 2: current and future clinical applications. P T 37, 582–91 (2012).
15.
17.
Zurück zum Zitat Med, I. J. & Res, N. ClinMed. 3, 1–5 (2016). Med, I. J. & Res, N. ClinMed. 3, 1–5 (2016).
18.
Zurück zum Zitat Wicki, A., Witzigmann, D., Balasubramanian, V. & Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 200, 138–157 (2015).CrossRef Wicki, A., Witzigmann, D., Balasubramanian, V. & Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 200, 138–157 (2015).CrossRef
19.
Zurück zum Zitat Koo, H. et al. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res. 44, 1018–1028 (2011).CrossRef Koo, H. et al. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res. 44, 1018–1028 (2011).CrossRef
20.
Zurück zum Zitat Morigi, V. et al. Nanotechnology in Medicine: From Inception to Market Domination. J. Drug Deliv. 2012, 1–7 (2012).CrossRef Morigi, V. et al. Nanotechnology in Medicine: From Inception to Market Domination. J. Drug Deliv. 2012, 1–7 (2012).CrossRef
21.
Zurück zum Zitat Bawa, R. Nanoparticle-based therapeutics in humans: A survey. Nanotechnol. Law Bus. 5, 135–155 (2008). Bawa, R. Nanoparticle-based therapeutics in humans: A survey. Nanotechnol. Law Bus. 5, 135–155 (2008).
22.
Zurück zum Zitat Kalash, R. et al. Differences in irradiated lung gene transcription between fibrosis-prone C57BL/6NHsd and fibrosis-resistant C3H/HeNHsd mice. In Vivo 28, 147–171 (2014). Kalash, R. et al. Differences in irradiated lung gene transcription between fibrosis-prone C57BL/6NHsd and fibrosis-resistant C3H/HeNHsd mice. In Vivo 28, 147–171 (2014).
23.
Zurück zum Zitat Liu, Y., Miyoshi, H. & Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007).CrossRef Liu, Y., Miyoshi, H. & Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007).CrossRef
24.
Zurück zum Zitat Torchilin, V. P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 9, E128–E147 (2007).CrossRef Torchilin, V. P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 9, E128–E147 (2007).CrossRef
25.
Zurück zum Zitat Ali, I. et al. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets 11, 135–146 (2011).CrossRef Ali, I. et al. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets 11, 135–146 (2011).CrossRef
26.
Zurück zum Zitat Heidel, J. D. & Davis, M. E. Clinical developments in nanotechnology for cancer therapy. Pharm. Res. 28, 187–199 (2011). Heidel, J. D. & Davis, M. E. Clinical developments in nanotechnology for cancer therapy. Pharm. Res. 28, 187–199 (2011).
27.
Zurück zum Zitat Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).CrossRef Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).CrossRef
28.
Zurück zum Zitat Heath, J. R., Heath, J. R., Davis, M. E. & Davis, M. E. Nanotechnology and cancer. Annu. Rev. Med. 59, 251–65 (2008).CrossRef Heath, J. R., Heath, J. R., Davis, M. E. & Davis, M. E. Nanotechnology and cancer. Annu. Rev. Med. 59, 251–65 (2008).CrossRef
29.
Zurück zum Zitat Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 624, 25–37 (2010).CrossRef Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 624, 25–37 (2010).CrossRef
30.
Zurück zum Zitat Kobayashi, H., Watanabe, R. & Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; What is the appropriate target? Theranostics 4, 81–89 (2014).CrossRef Kobayashi, H., Watanabe, R. & Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; What is the appropriate target? Theranostics 4, 81–89 (2014).CrossRef
31.
Zurück zum Zitat Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001).CrossRef Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001).CrossRef
32.
Zurück zum Zitat Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 21, 797–802 (2010).CrossRef Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 21, 797–802 (2010).CrossRef
33.
Zurück zum Zitat Brannon-Peppas, L. & Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 64, 206–212 (2012).CrossRef Brannon-Peppas, L. & Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 64, 206–212 (2012).CrossRef
34.
Zurück zum Zitat Northfelt, D. W. et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: Results of a randomized phase III clinical trial. J. Clin. Oncol. 16, 2445–2451 (1998).CrossRef Northfelt, D. W. et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: Results of a randomized phase III clinical trial. J. Clin. Oncol. 16, 2445–2451 (1998).CrossRef
35.
Zurück zum Zitat Schleich, N. et al. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J. Control. Release 194, 82–91 (2014).CrossRef Schleich, N. et al. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J. Control. Release 194, 82–91 (2014).CrossRef
36.
Zurück zum Zitat Jain, K. K. Advances in the field of nanooncology. BMC Med. 8, 83 (2010).CrossRef Jain, K. K. Advances in the field of nanooncology. BMC Med. 8, 83 (2010).CrossRef
37.
Zurück zum Zitat Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).CrossRef Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).CrossRef
38.
Zurück zum Zitat Doane, T. L. & Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–911 (2012).CrossRef Doane, T. L. & Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–911 (2012).CrossRef
39.
Zurück zum Zitat Shenhar, R. & Rotello, V. M. Nanoparticles: Scaffolds and building blocks. Acc. Chem. Res. 36, 549–561 (2003).CrossRef Shenhar, R. & Rotello, V. M. Nanoparticles: Scaffolds and building blocks. Acc. Chem. Res. 36, 549–561 (2003).CrossRef
40.
Zurück zum Zitat Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2, 3 (2004). Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2, 3 (2004).
41.
Zurück zum Zitat Boal, A. K. & Rotello, V. M. Fabrication and Self-Optimization of Multivalent Receptors on Nanoparticle Scaffolds. J. Am. Chem. Soc. 122, 734–735 (2000).CrossRef Boal, A. K. & Rotello, V. M. Fabrication and Self-Optimization of Multivalent Receptors on Nanoparticle Scaffolds. J. Am. Chem. Soc. 122, 734–735 (2000).CrossRef
42.
Zurück zum Zitat Ghosh, P. S., Han, G., Erdogan, B., Rosado, O. & Rotello, V. M. Binding of nanoparticle receptors to peptide α-helices using amino acid-functionalized nanoparticles. J. Pept. Sci. 14, 134–138 (2008).CrossRef Ghosh, P. S., Han, G., Erdogan, B., Rosado, O. & Rotello, V. M. Binding of nanoparticle receptors to peptide α-helices using amino acid-functionalized nanoparticles. J. Pept. Sci. 14, 134–138 (2008).CrossRef
43.
45.
Zurück zum Zitat Decuzzi, P., Causa, F., Ferrari, M. & Netti, P. A. The effective dispersion of nanovectors within the tumor microvasculature. Ann. Biomed. Eng. 34, 633–41 (2006).CrossRef Decuzzi, P., Causa, F., Ferrari, M. & Netti, P. A. The effective dispersion of nanovectors within the tumor microvasculature. Ann. Biomed. Eng. 34, 633–41 (2006).CrossRef
46.
Zurück zum Zitat Lee, S. Y., Ferrari, M. & Decuzzi, P. Shaping nano/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20, 495101 (2009).CrossRef Lee, S. Y., Ferrari, M. & Decuzzi, P. Shaping nano/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20, 495101 (2009).CrossRef
47.
Zurück zum Zitat Gavze, E. & Shapiro, M. Particles in a shear flow near a solid wall: Effect of nonsphericity on forces and velocities. Int. J. Multiph. Flow 23, 155–182 (1997).MATHCrossRef Gavze, E. & Shapiro, M. Particles in a shear flow near a solid wall: Effect of nonsphericity on forces and velocities. Int. J. Multiph. Flow 23, 155–182 (1997).MATHCrossRef
48.
Zurück zum Zitat Gentile, F. et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J. Biomech. 41, 2312–8 (2008).CrossRef Gentile, F. et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J. Biomech. 41, 2312–8 (2008).CrossRef
49.
Zurück zum Zitat Toy, R., Hayden, E., Shoup, C., Baskaran, H. & Karathanasis, E. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22, 115101 (2011).CrossRef Toy, R., Hayden, E., Shoup, C., Baskaran, H. & Karathanasis, E. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22, 115101 (2011).CrossRef
51.
Zurück zum Zitat Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007). Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).
52.
Zurück zum Zitat Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 103, 4930–4 (2006).CrossRef Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 103, 4930–4 (2006).CrossRef
53.
Zurück zum Zitat Decuzzi, P. & Ferrari, M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27, 5307–5314 (2006).CrossRef Decuzzi, P. & Ferrari, M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27, 5307–5314 (2006).CrossRef
54.
Zurück zum Zitat Sharma, G. et al. Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release 147, 408–12 (2010).CrossRef Sharma, G. et al. Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release 147, 408–12 (2010).CrossRef
55.
Zurück zum Zitat Decuzzi, P., Lee, S., Bhushan, B. & Ferrari, M. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33, 179–90 (2005).CrossRef Decuzzi, P., Lee, S., Bhushan, B. & Ferrari, M. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33, 179–90 (2005).CrossRef
56.
Zurück zum Zitat Park, J. & Butler, J. E. Analysis of the Migration of Rigid Polymers and Nanorods in a Rotating Viscometric Flow. Macromolecules 43, 2535–2543 (2010).CrossRef Park, J. & Butler, J. E. Analysis of the Migration of Rigid Polymers and Nanorods in a Rotating Viscometric Flow. Macromolecules 43, 2535–2543 (2010).CrossRef
57.
Zurück zum Zitat Toy, R., Peiris, P. M., Ghaghada, K. B. & Karathanasis, E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond). 9, 121–34 (2014).CrossRef Toy, R., Peiris, P. M., Ghaghada, K. B. & Karathanasis, E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond). 9, 121–34 (2014).CrossRef
58.
Zurück zum Zitat Doshi, N. et al. Flow and adhesion of drug carriers in blood vessels depend on their shape: A study using model synthetic microvascular networks. J. Control. Release 146, 196–200 (2010).CrossRef Doshi, N. et al. Flow and adhesion of drug carriers in blood vessels depend on their shape: A study using model synthetic microvascular networks. J. Control. Release 146, 196–200 (2010).CrossRef
59.
Zurück zum Zitat Murphy, C. J. Peer Reviewed: Optical Sensing with Quantum Dots. Anal. Chem. 74, 520 A-526 A (2002). Murphy, C. J. Peer Reviewed: Optical Sensing with Quantum Dots. Anal. Chem. 74, 520 A-526 A (2002).
60.
Zurück zum Zitat Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2004).CrossRef Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2004).CrossRef
61.
Zurück zum Zitat Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 41, 1578–1586 (2008).CrossRef Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 41, 1578–1586 (2008).CrossRef
62.
Zurück zum Zitat Jana, N. R. et al. Design and development of quantum dots and other nanoparticles based cellular imaging probe. Phys. Chem. Chem. Phys. 13, 385–396 (2011).CrossRef Jana, N. R. et al. Design and development of quantum dots and other nanoparticles based cellular imaging probe. Phys. Chem. Chem. Phys. 13, 385–396 (2011).CrossRef
63.
Zurück zum Zitat Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Applications of gold nanorods for cancer imaging and photothermal therapy. Methods Mol. Biol. 624, 343–57 (2010).CrossRef Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Applications of gold nanorods for cancer imaging and photothermal therapy. Methods Mol. Biol. 624, 343–57 (2010).CrossRef
64.
Zurück zum Zitat Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science (80). 271, (1996). Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science (80). 271, (1996).
65.
Zurück zum Zitat Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–44 (2005).CrossRef Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–44 (2005).CrossRef
66.
Zurück zum Zitat Huang, X., Neretina, S. & El-Sayed, M. A. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 21, 4880–4910 (2009).CrossRef Huang, X., Neretina, S. & El-Sayed, M. A. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 21, 4880–4910 (2009).CrossRef
67.
Zurück zum Zitat Handbook of Nanophase and Nanostructured Materials. (Kluwer Academic Publishers, 2003). doi:10.1007/0-387-23814-X Handbook of Nanophase and Nanostructured Materials. (Kluwer Academic Publishers, 2003). doi:10.1007/0-387-23814-X
68.
Zurück zum Zitat Lue, J. T. A review of characterization and physical property studies of metallic nanoparticles. J. Phys. Chem. Solids 62, 1599–1612 (2001).CrossRef Lue, J. T. A review of characterization and physical property studies of metallic nanoparticles. J. Phys. Chem. Solids 62, 1599–1612 (2001).CrossRef
69.
Zurück zum Zitat Jeong, U., Teng, X., Wang, Y., Yang, H. & Xia, Y. Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19, 33–60 (2007).CrossRef Jeong, U., Teng, X., Wang, Y., Yang, H. & Xia, Y. Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19, 33–60 (2007).CrossRef
70.
Zurück zum Zitat De, M., Ghosh, P. S. & Rotello, V. M. Applications of Nanoparticles in Biology. Adv. Mater. 1003, 4225–4241 (2008).CrossRef De, M., Ghosh, P. S. & Rotello, V. M. Applications of Nanoparticles in Biology. Adv. Mater. 1003, 4225–4241 (2008).CrossRef
71.
Zurück zum Zitat Saha, K., Bajaj, A., Duncan, B. & Rotello, V. M. Beauty is skin deep: A surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules. Small 7, 1903–1918 (2011).CrossRef Saha, K., Bajaj, A., Duncan, B. & Rotello, V. M. Beauty is skin deep: A surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules. Small 7, 1903–1918 (2011).CrossRef
72.
Zurück zum Zitat Hirsch, L. R. et al. Metal nanoshells. Ann. Biomed. Eng. 34, 15–22 (2006).CrossRef Hirsch, L. R. et al. Metal nanoshells. Ann. Biomed. Eng. 34, 15–22 (2006).CrossRef
73.
Zurück zum Zitat Law, W. C. et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5, 1302–1310 (2009).CrossRef Law, W. C. et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5, 1302–1310 (2009).CrossRef
74.
Zurück zum Zitat Pankhurst, Q. A., Thanh, N. T. K., Jones, S. K. & Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 42, 224001 (2009).CrossRef Pankhurst, Q. A., Thanh, N. T. K., Jones, S. K. & Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 42, 224001 (2009).CrossRef
75.
Zurück zum Zitat Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012).CrossRef Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012).CrossRef
76.
Zurück zum Zitat Lauterbur, P. C. C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973). Lauterbur, P. C. C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973).
77.
Zurück zum Zitat Elmaoğlu, M. & Çelik, A. in MRI Handbook 7–23 (Springer US, 2011). Elmaoğlu, M. & Çelik, A. in MRI Handbook 7–23 (Springer US, 2011).
78.
Zurück zum Zitat John P Ridgway, Cardiovascular magnetic resonance physics for clinicians: part I. Journal of Cardiovascular Magnetic Resonance 12, 71 (2010).CrossRef John P Ridgway, Cardiovascular magnetic resonance physics for clinicians: part I. Journal of Cardiovascular Magnetic Resonance 12, 71 (2010).CrossRef
80.
Zurück zum Zitat Elmaoğlu, M. & Çelik, A. in MRI Handbook 25–46 (Springer US, 2011). Elmaoğlu, M. & Çelik, A. in MRI Handbook 25–46 (Springer US, 2011).
81.
Zurück zum Zitat Zhang, Y., Lin, J. D., Vijayaragavan, V., Bhakoo, K. K. & Tan, T. T. Y. Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. Chem. Commun. 48, 10322–10324 (2012).CrossRef Zhang, Y., Lin, J. D., Vijayaragavan, V., Bhakoo, K. K. & Tan, T. T. Y. Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. Chem. Commun. 48, 10322–10324 (2012).CrossRef
82.
Zurück zum Zitat Cheng, K. et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009).CrossRef Cheng, K. et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009).CrossRef
83.
Zurück zum Zitat Klasson, A. et al. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol. Imaging 3, 106–111 (2008).CrossRef Klasson, A. et al. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol. Imaging 3, 106–111 (2008).CrossRef
84.
Zurück zum Zitat Wang, Y. X. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 1, 35–40 (2011). Wang, Y. X. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 1, 35–40 (2011).
85.
Zurück zum Zitat Law, W. C. et al. Optically and magnetically doped organically modified silica nanoparticles as efficient magnetically guided biomarkers for two-photon imaging of live cancer cells. J. Phys. Chem. C 112, 7972–7977 (2008).CrossRef Law, W. C. et al. Optically and magnetically doped organically modified silica nanoparticles as efficient magnetically guided biomarkers for two-photon imaging of live cancer cells. J. Phys. Chem. C 112, 7972–7977 (2008).CrossRef
86.
Zurück zum Zitat Erogbogbo, F. et al. Biocompatible magnetofluorescent probes: Luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. ACS Nano 4, 5131–5138 (2010).CrossRef Erogbogbo, F. et al. Biocompatible magnetofluorescent probes: Luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. ACS Nano 4, 5131–5138 (2010).CrossRef
87.
Zurück zum Zitat Lai, C. W. et al. Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: A facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small 4, 218–224 (2008).CrossRef Lai, C. W. et al. Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: A facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small 4, 218–224 (2008).CrossRef
88.
89.
Zurück zum Zitat Ma, Y. et al. Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv. Funct. Mater. 23, 815–822 (2013).CrossRef Ma, Y. et al. Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv. Funct. Mater. 23, 815–822 (2013).CrossRef
90.
Zurück zum Zitat Alric, C. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 130, 5908–5915 (2008).CrossRef Alric, C. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 130, 5908–5915 (2008).CrossRef
91.
Zurück zum Zitat Kalender, W. A. X-ray computed tomography. Phys. Med. Biol. 51, R29–R43 (2006).CrossRef Kalender, W. A. X-ray computed tomography. Phys. Med. Biol. 51, R29–R43 (2006).CrossRef
92.
Zurück zum Zitat Popovtzer, R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int. J. Nanomedicine 6, 2859 (2011).CrossRef Popovtzer, R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int. J. Nanomedicine 6, 2859 (2011).CrossRef
93.
Zurück zum Zitat Hainfeld, J. F., Slatkin, D. N., Focella, T. M. & Smilowitz, H. M. Gold nanoparticles: A new X-ray contrast agent. Br. J. Radiol. 79, 248–253 (2006).CrossRef Hainfeld, J. F., Slatkin, D. N., Focella, T. M. & Smilowitz, H. M. Gold nanoparticles: A new X-ray contrast agent. Br. J. Radiol. 79, 248–253 (2006).CrossRef
94.
Zurück zum Zitat Xu, C. et al. Au–Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes. Angew. Chemie Int. Ed. 47, 173–176 (2008).CrossRef Xu, C. et al. Au–Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes. Angew. Chemie Int. Ed. 47, 173–176 (2008).CrossRef
95.
Zurück zum Zitat Zhou, B. et al. Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Appl. Mater. Interfaces 6, 17190–17199 (2014).CrossRef Zhou, B. et al. Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Appl. Mater. Interfaces 6, 17190–17199 (2014).CrossRef
96.
Zurück zum Zitat Liu, Y. et al. Hybrid BaYbF5 nanoparticles: novel binary contrast agent for high-resolution in vivo X-ray computed tomography angiography. Adv. Healthc. mater. 1, 461–6 (2012).CrossRef Liu, Y. et al. Hybrid BaYbF5 nanoparticles: novel binary contrast agent for high-resolution in vivo X-ray computed tomography angiography. Adv. Healthc. mater. 1, 461–6 (2012).CrossRef
97.
Zurück zum Zitat Ingvaldsen, J. E. & Gulla, J. A. Context-aware user-driven news recommendation. CEUR Workshop Proceedings 1542, (John Wiley & Sons, Inc., 2015). Ingvaldsen, J. E. & Gulla, J. A. Context-aware user-driven news recommendation. CEUR Workshop Proceedings 1542, (John Wiley & Sons, Inc., 2015).
98.
Zurück zum Zitat Orringer, D. a et al. Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy. Clin. Pharmacol. Ther. 85, 531–534 (2009).CrossRef Orringer, D. a et al. Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy. Clin. Pharmacol. Ther. 85, 531–534 (2009).CrossRef
99.
Zurück zum Zitat Orringer, D. A. et al. The brain tumor window model: A combined cranial window and implanted glioma model for evaluating iIntraoperative contrast agents. Neurosurgery 66, 736–743 (2010).CrossRef Orringer, D. A. et al. The brain tumor window model: A combined cranial window and implanted glioma model for evaluating iIntraoperative contrast agents. Neurosurgery 66, 736–743 (2010).CrossRef
100.
Zurück zum Zitat Pezacki, J. P. et al. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 7, 137–145 (2011).CrossRef Pezacki, J. P. et al. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 7, 137–145 (2011).CrossRef
101.
Zurück zum Zitat Koole, R. et al. Magnetic quantum dots for multimodal imaging. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 1, 475–491 (2009). Koole, R. et al. Magnetic quantum dots for multimodal imaging. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 1, 475–491 (2009).
102.
Zurück zum Zitat Michalet, X. & Pinaud, F. F. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science (80). 307, 538–545 (2005). Michalet, X. & Pinaud, F. F. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science (80). 307, 538–545 (2005).
103.
Zurück zum Zitat Swami, A. et al. in Drug Delivery 9–30 (Springer US, 2012). doi:https://doi.org/10.1007/978-1-4614-2305-8 Swami, A. et al. in Drug Delivery 9–30 (Springer US, 2012). doi:https://​doi.​org/​10.​1007/​978-1-4614-2305-8
104.
Zurück zum Zitat Pridgen, E. M., Langer, R. & Farokhzad, O. C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond). 2, 669–680 (2007).CrossRef Pridgen, E. M., Langer, R. & Farokhzad, O. C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond). 2, 669–680 (2007).CrossRef
105.
Zurück zum Zitat Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm. 71, 431–444 (2009).CrossRef Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm. 71, 431–444 (2009).CrossRef
106.
Zurück zum Zitat Medeiros, S. F., Santos, A. M., Fessi, H. & Elaissari, A. Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 403, 139–161 (2011).CrossRef Medeiros, S. F., Santos, A. M., Fessi, H. & Elaissari, A. Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 403, 139–161 (2011).CrossRef
107.
Zurück zum Zitat Katz, J. S. & Burdick, J. A. Light-responsive biomaterials: Development and applications. Macromol. Biosci. 10, 339–348 (2010).CrossRef Katz, J. S. & Burdick, J. A. Light-responsive biomaterials: Development and applications. Macromol. Biosci. 10, 339–348 (2010).CrossRef
108.
Zurück zum Zitat De Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 3, 133–149 (2008).CrossRef De Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 3, 133–149 (2008).CrossRef
109.
Zurück zum Zitat Probst, C. E., Zrazhevskiy, P., Bagalkot, V. & Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 65, 703–718 (2013).CrossRef Probst, C. E., Zrazhevskiy, P., Bagalkot, V. & Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 65, 703–718 (2013).CrossRef
110.
Zurück zum Zitat Cheng, Z. et al. Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. Biomaterials 35, 6359–6368 (2014).CrossRef Cheng, Z. et al. Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. Biomaterials 35, 6359–6368 (2014).CrossRef
111.
Zurück zum Zitat Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100, 13549–54 (2003).CrossRef Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100, 13549–54 (2003).CrossRef
113.
Zurück zum Zitat Van Loo, G. et al. The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death Differ. 9, 1031–42 (2002).CrossRef Van Loo, G. et al. The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death Differ. 9, 1031–42 (2002).CrossRef
114.
Zurück zum Zitat Kumar, C. S. S. R. & Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011).CrossRef Kumar, C. S. S. R. & Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011).CrossRef
115.
Zurück zum Zitat Goldstein, L. S., Dewhirst, M. W., Repacholi, M. & Kheifets, L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int. J. Hyperth. 19, 373–384 (2003).CrossRef Goldstein, L. S., Dewhirst, M. W., Repacholi, M. & Kheifets, L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int. J. Hyperth. 19, 373–384 (2003).CrossRef
116.
Zurück zum Zitat Raaphorst, G. P., Freeman, M. L. & Dewey, W. C. Radiosensitivity and Recovery from Radiation Damage in Cultured CHO Cells Exposed to Hyperthermia at 42.5 or 45.5°C. Radiat. Res. 79, 390 (1979).CrossRef Raaphorst, G. P., Freeman, M. L. & Dewey, W. C. Radiosensitivity and Recovery from Radiation Damage in Cultured CHO Cells Exposed to Hyperthermia at 42.5 or 45.5°C. Radiat. Res. 79, 390 (1979).CrossRef
117.
Zurück zum Zitat Habash, R. W. Y., Bansal, R., Krewski, D. & Alhafid, H. T. Thermal therapy, Part 2: Hyperthermia techniques. Crit. Rev. Biomed. Eng. 34, 491–542 (2006).CrossRef Habash, R. W. Y., Bansal, R., Krewski, D. & Alhafid, H. T. Thermal therapy, Part 2: Hyperthermia techniques. Crit. Rev. Biomed. Eng. 34, 491–542 (2006).CrossRef
118.
Zurück zum Zitat Cabuy, E. Hyperthermia in cancer treatment Hyperthermia in Cancer Treatment. Neoplasma 41, 269–276 (2016). Cabuy, E. Hyperthermia in cancer treatment Hyperthermia in Cancer Treatment. Neoplasma 41, 269–276 (2016).
119.
Zurück zum Zitat GILCHRIST, R. K. et al. Selective inductive heating of lymph nodes. 146, 596–606 (1957). GILCHRIST, R. K. et al. Selective inductive heating of lymph nodes. 146, 596–606 (1957).
120.
Zurück zum Zitat McCarthy, J. R. & Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008).CrossRef McCarthy, J. R. & Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008).CrossRef
121.
Zurück zum Zitat Dutz, S. & Hergt, R. Magnetic particle hyperthermia-A promising tumour therapy? Nanotechnology 25, 452001 (2014).CrossRef Dutz, S. & Hergt, R. Magnetic particle hyperthermia-A promising tumour therapy? Nanotechnology 25, 452001 (2014).CrossRef
122.
Zurück zum Zitat Bornstein, B. A. et al. Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma. Int. J. Radiat. Oncol. 25, 79–85 (1993).CrossRef Bornstein, B. A. et al. Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma. Int. J. Radiat. Oncol. 25, 79–85 (1993).CrossRef
123.
Zurück zum Zitat Jordan, A. et al. Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. Int. J. Hyperth. 9, 51–68 (1993).CrossRef Jordan, A. et al. Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. Int. J. Hyperth. 9, 51–68 (1993).CrossRef
124.
Zurück zum Zitat Jeyadevan, B. Present status and prospects of magnetite nanoparticles-based hyperthermia. J. Ceram. Soc. Japan 118, 391–401 (2010).CrossRef Jeyadevan, B. Present status and prospects of magnetite nanoparticles-based hyperthermia. J. Ceram. Soc. Japan 118, 391–401 (2010).CrossRef
125.
Zurück zum Zitat Suto, M. et al. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1493–1496 (2009).CrossRef Suto, M. et al. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1493–1496 (2009).CrossRef
126.
Zurück zum Zitat Kötitz, R., Weitschies, W., Trahms, L. & Semmler, W. Investigation of Brownian and Néel relaxation in magnetic fluids. J. Magn. Magn. Mater. 201, 102–104 (1999). Kötitz, R., Weitschies, W., Trahms, L. & Semmler, W. Investigation of Brownian and Néel relaxation in magnetic fluids. J. Magn. Magn. Mater. 201, 102–104 (1999).
127.
Zurück zum Zitat Rosensweig, R. E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002).CrossRef Rosensweig, R. E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002).CrossRef
128.
Zurück zum Zitat Hergt, R. et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998).CrossRef Hergt, R. et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998).CrossRef
129.
Zurück zum Zitat Jean-Paul Fortin, et al. Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia. J. Am. Chem. Soc., 129 (9), 2628–2635 (2007).CrossRef Jean-Paul Fortin, et al. Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia. J. Am. Chem. Soc., 129 (9), 2628–2635 (2007).CrossRef
130.
Zurück zum Zitat Fortin, J. P., Gazeau, F. & Wilhelm, C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 37, 223–228 (2008).CrossRef Fortin, J. P., Gazeau, F. & Wilhelm, C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 37, 223–228 (2008).CrossRef
131.
Zurück zum Zitat Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).CrossRef Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).CrossRef
132.
Zurück zum Zitat Schütt, W. et al. Applications of Magnetic Targeting in Diagnosis and Therapy-Possibilities and Limitations: A Mini-Review. Hybridoma 16, 109–117 (1997).CrossRef Schütt, W. et al. Applications of Magnetic Targeting in Diagnosis and Therapy-Possibilities and Limitations: A Mini-Review. Hybridoma 16, 109–117 (1997).CrossRef
133.
Zurück zum Zitat Derfus, A. M. et al. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 19, 3932–3936 (2007).CrossRef Derfus, A. M. et al. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 19, 3932–3936 (2007).CrossRef
134.
Zurück zum Zitat Kost, J., Wolfrum, J. & Langer, R. Magnetically enhanced insulin release in diabetic rats. J. Biomed. Mater. Res. 21, 1367–1373 (1987).CrossRef Kost, J., Wolfrum, J. & Langer, R. Magnetically enhanced insulin release in diabetic rats. J. Biomed. Mater. Res. 21, 1367–1373 (1987).CrossRef
135.
Zurück zum Zitat Zonghuan Lu, et al. Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Au Nanoparticles. Langmuir, 21 (5), 2042–2050 (2005).CrossRef Zonghuan Lu, et al. Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Au Nanoparticles. Langmuir, 21 (5), 2042–2050 (2005).CrossRef
136.
Zurück zum Zitat Chu, K. F. & Dupuy, D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14, 199–208 (2014).CrossRef Chu, K. F. & Dupuy, D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14, 199–208 (2014).CrossRef
137.
Zurück zum Zitat Pereira, P. L. Actual role of radiofrequency ablation of liver metastases. Eur. Radiol. 17, 2062–70 (2007).CrossRef Pereira, P. L. Actual role of radiofrequency ablation of liver metastases. Eur. Radiol. 17, 2062–70 (2007).CrossRef
138.
Zurück zum Zitat Nikfarjam, M., Muralidharan, V. & Christophi, C. Mechanisms of Focal Heat Destruction of Liver Tumors. J. Surg. Res. 127, 208–223 (2005).CrossRef Nikfarjam, M., Muralidharan, V. & Christophi, C. Mechanisms of Focal Heat Destruction of Liver Tumors. J. Surg. Res. 127, 208–223 (2005).CrossRef
139.
Zurück zum Zitat Ahmed, M., Brace, C. L., Lee, F. T. & Goldberg, S. N. Principles of and advances in percutaneous ablation. Radiology 258, 351–69 (2011).CrossRef Ahmed, M., Brace, C. L., Lee, F. T. & Goldberg, S. N. Principles of and advances in percutaneous ablation. Radiology 258, 351–69 (2011).CrossRef
140.
Zurück zum Zitat Den Brok, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br. J. Cancer 95, 896–905 (2006).CrossRef Den Brok, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br. J. Cancer 95, 896–905 (2006).CrossRef
141.
Zurück zum Zitat Lubner, M. G., Brace, C. L., Hinshaw, J. L. & Lee, F. T. Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 21, S192-203 (2010).CrossRef Lubner, M. G., Brace, C. L., Hinshaw, J. L. & Lee, F. T. Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 21, S192-203 (2010).CrossRef
142.
Zurück zum Zitat Wright, A. S., Lee, F. T. & Mahvi, D. M. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann. Surg. Oncol. 10, 275–83 (2003).CrossRef Wright, A. S., Lee, F. T. & Mahvi, D. M. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann. Surg. Oncol. 10, 275–83 (2003).CrossRef
143.
Zurück zum Zitat Yeh, Y. C., Creran, B. & Rotello, V. M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4, 1871–80 (2012).CrossRef Yeh, Y. C., Creran, B. & Rotello, V. M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4, 1871–80 (2012).CrossRef
144.
Zurück zum Zitat Wang, C. et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc. 131, 8824–8832 (2009).CrossRef Wang, C. et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc. 131, 8824–8832 (2009).CrossRef
145.
Zurück zum Zitat Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P. & Williams, M. E. Synthesis of Fe oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 4, 719–723 (2004).CrossRef Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P. & Williams, M. E. Synthesis of Fe oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 4, 719–723 (2004).CrossRef
146.
Zurück zum Zitat Xu, C., Wang, B. & Sun, S. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 131, 4216–4217 (2009).CrossRef Xu, C., Wang, B. & Sun, S. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 131, 4216–4217 (2009).CrossRef
147.
Zurück zum Zitat Kim, D., Kim, J. W., Jeong, Y. Y. & Jon, S. Antibiofouling Polymer Coated Gold@Iron Oxide Nanoparticle (GION) as a Dual Contrast Agent for CT and MRI. Bull. Korean Chem. Soc. 30, 1855–1857 (2009).CrossRef Kim, D., Kim, J. W., Jeong, Y. Y. & Jon, S. Antibiofouling Polymer Coated Gold@Iron Oxide Nanoparticle (GION) as a Dual Contrast Agent for CT and MRI. Bull. Korean Chem. Soc. 30, 1855–1857 (2009).CrossRef
148.
Zurück zum Zitat Lim, J. K., Majetich, S. A. & Tilton, R. D. Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media. Langmuir 25, 13384–13393 (2009).CrossRef Lim, J. K., Majetich, S. A. & Tilton, R. D. Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media. Langmuir 25, 13384–13393 (2009).CrossRef
149.
Zurück zum Zitat Wang, L. et al. Monodispersed core-shell Fe3O4@Au nanoparticles. J. Phys. Chem. B 109, 21593–21601 (2005).CrossRef Wang, L. et al. Monodispersed core-shell Fe3O4@Au nanoparticles. J. Phys. Chem. B 109, 21593–21601 (2005).CrossRef
150.
Zurück zum Zitat Lim, J. & Majetich, S. A. Composite magnetic-plasmonic nanoparticles for biomedicine: Manipulation and imaging. Nano Today 8, 98–113 (2013).CrossRef Lim, J. & Majetich, S. A. Composite magnetic-plasmonic nanoparticles for biomedicine: Manipulation and imaging. Nano Today 8, 98–113 (2013).CrossRef
151.
Zurück zum Zitat Jin, X. et al. Facile deposition of continuous gold shells on Tween-20 modified Fe3O4 superparticles. J. Mater. Chem. B 1, 1921–1925 (2013).CrossRef Jin, X. et al. Facile deposition of continuous gold shells on Tween-20 modified Fe3O4 superparticles. J. Mater. Chem. B 1, 1921–1925 (2013).CrossRef
Metadaten
Titel
Introduction to Nanomedicine and Cancer Therapy
verfasst von
Ravichandran Manisekaran
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67609-8_1

Neuer Inhalt