Skip to main content

2017 | Supplement | Buchkapitel

8. Introduction to Numerical Methods

verfasst von : Fabien Gatti, Benjamin Lasorne, Hans-Dieter Meyer, André Nauts

Erschienen in: Applications of Quantum Dynamics in Chemistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present chapter is dedicated to the numerical methods for solving the time-dependent Schrödinger equation for the nuclei.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A large part of this chapter is taken form the MCTDH lecture notes of H.-D. Meyer written by Daniel Pelaez-Ruiz. The authors sincerely thank Dr. Pelaez for letting them use his script.
 
2
The quadrature rule defined through a proper DVR, i.e. defined by Eqs. (8.30) and (8.31), is of Gaussian type, i.e. it yields an exact result for polynomials of degree 2\(n - 1\) or less.
 
3
For the primitive basis set of each coordinate, we use a DVR (see Sect. 8.1.3), more precisely HO DVR for \(R_1\) and a sine DVR for \(R_2\) with \(R_1\) \(\in \) [3.8, 5.6] a.u. and an unrestricted Legendre DVR for \(\theta \). Here, \(N_1\) = 36 for \(r_d\), \(N_2\) = 24 for \(r_v\), and \(N_3\) = 60 for \(\theta \).
 
4
For the primitive basis set of each coordinate, we use a DVR (see Sect. 8.1.3), more precisely a sine DVR for \(R_1\) and \(R_2\) with \(R_1\) \(\in \) [0.6, 6.24] and 48 functions and \(R_2\) \(\in \) [1.0, 9.04] a.u. and 68 functions, and a Legendre DVR for \(\theta \) with 31 functions.
 
5
A two-layers ML-MCTDH is identical to standard MCTDH
 
6
Actually, we are considering the wavefunction of a particular total angular momentum J (that makes the dissociate coordinate R one-dimensional). Hence \(\Psi \) should be replaced with \(\Psi ^J\), but for the sake of simplicity we suppress the total angular momentum label J.
 
7
The initial state is assumed to have no density beyond \(R_c\), i.e. \(\theta (R-R_c) |\Psi (R,{\varvec{q}},t=0)|^2 \equiv 0\).
 
8
Actually \(P_{\gamma \nu }\) commutes with \(F_\gamma \). Thus \(P_{\gamma \nu }\, F_\gamma = F_\gamma \, P_{\gamma \nu } = P_{\gamma \nu }\, F_\gamma \, P_{\gamma \nu }\). The extra projector is added for symmetry reasons only.
 
9
We have also suppressed some J-dependent phase factors in Eqs. (8.297, 8.299). They are irrelevant, because here we consider only the modulus of the S-matrix elements.
 
10
Here the strength parameter \(\eta \) is included in the definition of W, in contrast to Sect. 8.5.
 
11
Of course, mode combination can be used. Then \(h_r^{(\kappa )}\) operates on the \(\kappa \)-th particle in Eq. (8.333) and the integrals become low-dimensional rather than one-dimensional ones.
 
12
Note that the root-mean-square error is given by \({\textit{rmse}}=\sqrt{ \Delta ^2/N_{\text {tot}}}\), where \(N_{\text {tot}}\) is the total number of grid points.
 
13
Actually, we loop over the modes and update \(V^{\tiny {\text {ref}}}\) after each new SPP(k).
 
Literatur
1.
Zurück zum Zitat Cohen-Tannoudji C, Diu B, Laloe F (1992) Quantum mechanics. Wiley-VCH Cohen-Tannoudji C, Diu B, Laloe F (1992) Quantum mechanics. Wiley-VCH
2.
Zurück zum Zitat Tannor DJ (2007) Introduction to quantum dynamics: a time-dependent perspective. University Science Books, Sausalito, CA Tannor DJ (2007) Introduction to quantum dynamics: a time-dependent perspective. University Science Books, Sausalito, CA
3.
Zurück zum Zitat Dirac PAM (1930) Note on exchange phenomena in the Thomas atom. Proc Camb Philos Soc 26:376–385CrossRef Dirac PAM (1930) Note on exchange phenomena in the Thomas atom. Proc Camb Philos Soc 26:376–385CrossRef
4.
Zurück zum Zitat Frenkel J (1934) Wave mechanics. Clarendon Press, Oxford Frenkel J (1934) Wave mechanics. Clarendon Press, Oxford
5.
Zurück zum Zitat Beck MH, Jäckle A, Worth GA, Meyer H-D (2000) The multi-configuration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wave packets. Phys Rep 324:1–105CrossRef Beck MH, Jäckle A, Worth GA, Meyer H-D (2000) The multi-configuration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wave packets. Phys Rep 324:1–105CrossRef
6.
Zurück zum Zitat Kosloff D, Kosloff R (1983) A Fourier-method solution for the time-dependent Schrödinger equation as a tool in molecular dynamics. J Comput Phys 52:35CrossRef Kosloff D, Kosloff R (1983) A Fourier-method solution for the time-dependent Schrödinger equation as a tool in molecular dynamics. J Comput Phys 52:35CrossRef
7.
Zurück zum Zitat Kosloff R, Tal-Ezer H (1986) A direct relaxation method for calculating eigenfunctions and eigenvalues of the Schrödinger equation on a grid. Chem Phys Lett 127:223CrossRef Kosloff R, Tal-Ezer H (1986) A direct relaxation method for calculating eigenfunctions and eigenvalues of the Schrödinger equation on a grid. Chem Phys Lett 127:223CrossRef
8.
Zurück zum Zitat Light JC, Hamilton IP, Lill JV (1985) Generalized discrete variable approximation in quantum mechanics. J Chem Phys 82:1400CrossRef Light JC, Hamilton IP, Lill JV (1985) Generalized discrete variable approximation in quantum mechanics. J Chem Phys 82:1400CrossRef
9.
Zurück zum Zitat Lill JV, Parker GA, Light JC (1986) The discrete variable-finite basis approach to quantum scattering. J Chem Phys 85:900 Lill JV, Parker GA, Light JC (1986) The discrete variable-finite basis approach to quantum scattering. J Chem Phys 85:900
10.
Zurück zum Zitat Corey GC, Lemoine D (1992) Pseudospectral method for solving the time-dependent Schrödinger equation in spherical coordinates. J Chem Phys 97:4115CrossRef Corey GC, Lemoine D (1992) Pseudospectral method for solving the time-dependent Schrödinger equation in spherical coordinates. J Chem Phys 97:4115CrossRef
11.
Zurück zum Zitat Bramley MJ, Tromp JW, Carrington T Jr, Corey RC (1994) Efficient calculation of highly excited vibrational energy levels of floppy molecules: the band origins of H\(^+_3\) up to 35 000 cm\(^{-1}\). J Chem Phys 100:6175CrossRef Bramley MJ, Tromp JW, Carrington T Jr, Corey RC (1994) Efficient calculation of highly excited vibrational energy levels of floppy molecules: the band origins of H\(^+_3\) up to 35 000 cm\(^{-1}\). J Chem Phys 100:6175CrossRef
12.
Zurück zum Zitat Lemoine D (1994) The finite basis representation as the primary space in multidimensional pseudospectral schemes. J Chem Phys 101:10526CrossRef Lemoine D (1994) The finite basis representation as the primary space in multidimensional pseudospectral schemes. J Chem Phys 101:10526CrossRef
13.
Zurück zum Zitat Kosloff R (1996) Quantum molecular dynamics on grids. In: Wyatt RE, Zhang JZH (eds) Dynamics of molecules and chemical reactions. Marcel Dekker, New York, pp 185–230 Kosloff R (1996) Quantum molecular dynamics on grids. In: Wyatt RE, Zhang JZH (eds) Dynamics of molecules and chemical reactions. Marcel Dekker, New York, pp 185–230
14.
Zurück zum Zitat Light JC, Carrington T Jr (2000) Discrete variable representations and their utilization. Adv Chem Phys 114:263 Light JC, Carrington T Jr (2000) Discrete variable representations and their utilization. Adv Chem Phys 114:263
15.
Zurück zum Zitat Zare RN (1988) Angular momentum. Wiley, New York Zare RN (1988) Angular momentum. Wiley, New York
16.
Zurück zum Zitat Worth GA, Beck MH, Jäckle A, Meyer HD (2007) The MCTDH Package, Version 8.2, (2000). Meyer HD (2002), Version 8.3, Version 8.4. Current version: 8.4.12 (2016). http://mctdh.uni-hd.de/ Worth GA, Beck MH, Jäckle A, Meyer HD (2007) The MCTDH Package, Version 8.2, (2000). Meyer HD (2002), Version 8.3, Version 8.4. Current version: 8.4.12 (2016). http://​mctdh.​uni-hd.​de/​
17.
Zurück zum Zitat Dawes R, Carrington T Jr (2004) A multidimensional discrete variable representation basis obtained by simultaneous diagonalization. J Chem Phys 121:726 Dawes R, Carrington T Jr (2004) A multidimensional discrete variable representation basis obtained by simultaneous diagonalization. J Chem Phys 121:726
18.
Zurück zum Zitat Li J, Carter S, Bowman JM, Dawes R, Xie D, Guo H (2014) High-level, first-principles, full-dimensional quantum calculation of the ro-vibrational spectrum of the simplest criegee intermediate (CH\(_2\)OO). J Phys Chem Lett 5:20364 Li J, Carter S, Bowman JM, Dawes R, Xie D, Guo H (2014) High-level, first-principles, full-dimensional quantum calculation of the ro-vibrational spectrum of the simplest criegee intermediate (CH\(_2\)OO). J Phys Chem Lett 5:20364
19.
Zurück zum Zitat Harris DO, Engerholm GG, Gwinn GW (1965) Calculation of matrix elements for one-dimensional quantum-mechanical problems and the application to anharmonic oscillators. J Chem Phys 43:1515CrossRef Harris DO, Engerholm GG, Gwinn GW (1965) Calculation of matrix elements for one-dimensional quantum-mechanical problems and the application to anharmonic oscillators. J Chem Phys 43:1515CrossRef
20.
Zurück zum Zitat Dickinson AS, Certain PR (1968) Calculation of matrix elements for one-dimensional quantum-mechanical problems. J Chem Phys 49:4209CrossRef Dickinson AS, Certain PR (1968) Calculation of matrix elements for one-dimensional quantum-mechanical problems. J Chem Phys 49:4209CrossRef
21.
Zurück zum Zitat Corey GC, Tromp JW, Lemoine D (1993) Fast pseudospectral algorithm in curvilinear coordinates. In: Cerjan C (ed) Numerical grid methods and their application to Schrödinger’s equation. Kluwer Academic Publishers, The Netherlands, pp 1 Corey GC, Tromp JW, Lemoine D (1993) Fast pseudospectral algorithm in curvilinear coordinates. In: Cerjan C (ed) Numerical grid methods and their application to Schrödinger’s equation. Kluwer Academic Publishers, The Netherlands, pp 1
22.
Zurück zum Zitat Sukiasyan S, Meyer H-D (2001) On the effect of initial rotation on reactivity. A multi-configuration time-dependent Hartree (MCTDH) wave-packet propagation study on the H+D\(_2\) and D+H\(_2\) reactive scattering systems. J Phys Chem A 105:2604 Sukiasyan S, Meyer H-D (2001) On the effect of initial rotation on reactivity. A multi-configuration time-dependent Hartree (MCTDH) wave-packet propagation study on the H+D\(_2\) and D+H\(_2\) reactive scattering systems. J Phys Chem A 105:2604
23.
Zurück zum Zitat Echave J, Clary DC (1992) Potential optimized discrete variable representation Chem Phys Lett 190:225 Echave J, Clary DC (1992) Potential optimized discrete variable representation Chem Phys Lett 190:225
24.
Zurück zum Zitat Bramley MJ, Handy NC (1993) Efficient calculation of rovibrational eigenstates of sequentially bonded four-atom molecules. J Chem Phys 98:1378 Bramley MJ, Handy NC (1993) Efficient calculation of rovibrational eigenstates of sequentially bonded four-atom molecules. J Chem Phys 98:1378
25.
Zurück zum Zitat Tremblay JC, Carrington T Jr (2006) Calculating vibrational energies and wave functions of vinylidene using a contracted basis with a locally reorthogonalized coupled two-term lanczos eigensolver. J Chem Phys 125:094311CrossRef Tremblay JC, Carrington T Jr (2006) Calculating vibrational energies and wave functions of vinylidene using a contracted basis with a locally reorthogonalized coupled two-term lanczos eigensolver. J Chem Phys 125:094311CrossRef
26.
Zurück zum Zitat Bowman JM, Carrington T Jr, Meyer H-D (2008) Variational quantum approaches for computing vibrational energies of polyatomic molecules. Mol Phys 106:2145 Bowman JM, Carrington T Jr, Meyer H-D (2008) Variational quantum approaches for computing vibrational energies of polyatomic molecules. Mol Phys 106:2145
27.
Zurück zum Zitat Wang X, Carrington T Jr (2008) Using a nondirect product discrete variable representation for angular coordinates to compute vibrational levels of polyatomic molecules. J Chem Phys 128(19):194109CrossRef Wang X, Carrington T Jr (2008) Using a nondirect product discrete variable representation for angular coordinates to compute vibrational levels of polyatomic molecules. J Chem Phys 128(19):194109CrossRef
28.
Zurück zum Zitat Wang X, Carrington T Jr (2008) Vibrational energy levels of CH\(_5^+\). J Chem Phys 129:234102CrossRef Wang X, Carrington T Jr (2008) Vibrational energy levels of CH\(_5^+\). J Chem Phys 129:234102CrossRef
29.
Zurück zum Zitat Wang X-G, Carrington T Jr, Dawes R, Jasper AW (2011) The vibration-rotation-tunneling spectrum of the polar and T-shaped-N-in isomers of (NNO)\(_2\). J Mol Spec 268:53 Wang X-G, Carrington T Jr, Dawes R, Jasper AW (2011) The vibration-rotation-tunneling spectrum of the polar and T-shaped-N-in isomers of (NNO)\(_2\). J Mol Spec 268:53
30.
Zurück zum Zitat Wang X-G, Carrington T Jr (2013) Computing rovibrational levels of methane with curvilinear internal vibrational coordinates and an Eckart frame. J Chem Phys 138:104106CrossRef Wang X-G, Carrington T Jr (2013) Computing rovibrational levels of methane with curvilinear internal vibrational coordinates and an Eckart frame. J Chem Phys 138:104106CrossRef
31.
Zurück zum Zitat Wang X-G, Carrington T Jr (2014) Rovibrational levels and wavefunctions of Cl\(^-\)H\(_2\)O. J Chem Phys 140:204306CrossRef Wang X-G, Carrington T Jr (2014) Rovibrational levels and wavefunctions of Cl\(^-\)H\(_2\)O. J Chem Phys 140:204306CrossRef
32.
Zurück zum Zitat Bowman J (1978) Self-consistent field energies and wavefunctions for coupled oscillators. J Chem Phys 68:608CrossRef Bowman J (1978) Self-consistent field energies and wavefunctions for coupled oscillators. J Chem Phys 68:608CrossRef
33.
Zurück zum Zitat Bowman J, Christoffel K, Tobin F (1979) Application of SCF-SI theory to vibrational motion in polyatomic molecules. J Phys Chem 83:905CrossRef Bowman J, Christoffel K, Tobin F (1979) Application of SCF-SI theory to vibrational motion in polyatomic molecules. J Phys Chem 83:905CrossRef
34.
Zurück zum Zitat Bowman JM, Carter S, Huang X (2003) MULTIMODE: a code to calculate rovibrational energies of polyatomic molecules. Int Rev Phys Chem 22:533 Bowman JM, Carter S, Huang X (2003) MULTIMODE: a code to calculate rovibrational energies of polyatomic molecules. Int Rev Phys Chem 22:533
35.
Zurück zum Zitat Culot F, Laruelle F, Liévin J (1995) A vibrational CASSCF study of stretch-bend interactions and their influence on infrared intensities in the water molecule. Theory Chem Acc 92:211 Culot F, Laruelle F, Liévin J (1995) A vibrational CASSCF study of stretch-bend interactions and their influence on infrared intensities in the water molecule. Theory Chem Acc 92:211
36.
Zurück zum Zitat Bégué D, Gohaud N, Pouchan C, Cassam-Chenaï P, Liévin J (2007) A comparison of two methods for selecting vibrational configuration interaction spaces on a heptatomic system: ethylene oxide. J Chem Phys 127:164115CrossRef Bégué D, Gohaud N, Pouchan C, Cassam-Chenaï P, Liévin J (2007) A comparison of two methods for selecting vibrational configuration interaction spaces on a heptatomic system: ethylene oxide. J Chem Phys 127:164115CrossRef
37.
Zurück zum Zitat Heislbetz S, Rauhut G (2010) Vibrational multiconfiguration self-consistent field theory: implementation and test calculations. J Chem Phys 132:124102CrossRef Heislbetz S, Rauhut G (2010) Vibrational multiconfiguration self-consistent field theory: implementation and test calculations. J Chem Phys 132:124102CrossRef
38.
Zurück zum Zitat Leforestier C, Bisseling RH, Cerjan C, Feit MD, Friesner R, Guldenberg A, Hammerich A, Jolicard G, Karrlein W, Meyer H-D, Lipkin N, Roncero O, Kosloff R (1991) A comparison of different propagation schemes for the time dependent Schrödinger equation. J Comput Phys 94:59CrossRef Leforestier C, Bisseling RH, Cerjan C, Feit MD, Friesner R, Guldenberg A, Hammerich A, Jolicard G, Karrlein W, Meyer H-D, Lipkin N, Roncero O, Kosloff R (1991) A comparison of different propagation schemes for the time dependent Schrödinger equation. J Comput Phys 94:59CrossRef
39.
Zurück zum Zitat Feit MD, Fleck JA Jr, Steiger A (1982) Solution of the Schrödinger equation by a spectral method. J Comput Phys 47:412 Feit MD, Fleck JA Jr, Steiger A (1982) Solution of the Schrödinger equation by a spectral method. J Comput Phys 47:412
40.
Zurück zum Zitat Feit MD, Fleck JA Jr (1983) Solution of the Schrödinger equation by a spectral method II: vibrational energy levels of triatomic molecules. J Chem Phys 78:301CrossRef Feit MD, Fleck JA Jr (1983) Solution of the Schrödinger equation by a spectral method II: vibrational energy levels of triatomic molecules. J Chem Phys 78:301CrossRef
41.
Zurück zum Zitat Park TJ, Light JC (1986) Unitary quantum time evolution by iterative Lanczos reduction. J Chem Phys 85:5870CrossRef Park TJ, Light JC (1986) Unitary quantum time evolution by iterative Lanczos reduction. J Chem Phys 85:5870CrossRef
42.
Zurück zum Zitat Arnoldi WE (1951) The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q Appl Math 9:17CrossRef Arnoldi WE (1951) The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q Appl Math 9:17CrossRef
43.
Zurück zum Zitat Saad Y (1980) Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices. Linear Algebra Appl 34:269CrossRef Saad Y (1980) Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices. Linear Algebra Appl 34:269CrossRef
44.
Zurück zum Zitat Friesner RA, Tuckerman LS, Dornblaser BC, Russo TV (1989) J Sci Comput 4:327CrossRef Friesner RA, Tuckerman LS, Dornblaser BC, Russo TV (1989) J Sci Comput 4:327CrossRef
45.
Zurück zum Zitat Manthe U, Köppel H, Cederbaum LS (1991) Dissociation and predissociation on coupled electronic potential energy surfaces: a three-dimensional wave packet dynamical study. J Chem Phys 95:1708CrossRef Manthe U, Köppel H, Cederbaum LS (1991) Dissociation and predissociation on coupled electronic potential energy surfaces: a three-dimensional wave packet dynamical study. J Chem Phys 95:1708CrossRef
46.
Zurück zum Zitat Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs
47.
Zurück zum Zitat Beck MH, Meyer H-D (1997) An efficient and robust integration scheme for the equations of motion of the multiconfiguration time-dependent Hartree (MCTDH) method. Z Phys D 42:113–129CrossRef Beck MH, Meyer H-D (1997) An efficient and robust integration scheme for the equations of motion of the multiconfiguration time-dependent Hartree (MCTDH) method. Z Phys D 42:113–129CrossRef
48.
Zurück zum Zitat Gerber RB, Ratner MA, Buch V (1982) Simplified time-dependent self-consistent field approximation for intramolecular dynamics. Chem Phys Lett 91:173CrossRef Gerber RB, Ratner MA, Buch V (1982) Simplified time-dependent self-consistent field approximation for intramolecular dynamics. Chem Phys Lett 91:173CrossRef
49.
Zurück zum Zitat Bisseling RH, Kosloff R, Gerber RB, Ratner MA, Gibson L, Cerjan C (1987) Exact time-dependent quantum mechanical dissociation dynamics of I\(_2\)He: comparison of exact time-dependent quantum calculation with the quantum time-dependent self-consistent field (TDSCF) approximation. J Chem Phys 87:2760CrossRef Bisseling RH, Kosloff R, Gerber RB, Ratner MA, Gibson L, Cerjan C (1987) Exact time-dependent quantum mechanical dissociation dynamics of I\(_2\)He: comparison of exact time-dependent quantum calculation with the quantum time-dependent self-consistent field (TDSCF) approximation. J Chem Phys 87:2760CrossRef
50.
Zurück zum Zitat Meyer H-D, Gatti F, Worth GA (eds) (2009) Multidimensional quantum dynamics: MCTDH theory and applications. Wiley-VCH, Weinheim Meyer H-D, Gatti F, Worth GA (eds) (2009) Multidimensional quantum dynamics: MCTDH theory and applications. Wiley-VCH, Weinheim
51.
Zurück zum Zitat Kotler Z, Nitzan A, Kosloff R (1988) Multiconfiguration time-dependent self-consistent field approximation for curve crossing in presence of a bath. A fast Fourier transform study. Chem Phys Lett 153:483CrossRef Kotler Z, Nitzan A, Kosloff R (1988) Multiconfiguration time-dependent self-consistent field approximation for curve crossing in presence of a bath. A fast Fourier transform study. Chem Phys Lett 153:483CrossRef
52.
Zurück zum Zitat Makri N, Miller WH (1987) Time-dependent self-consistent (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: single and multiconfiguration treatments. J Chem Phys 87:5781CrossRef Makri N, Miller WH (1987) Time-dependent self-consistent (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: single and multiconfiguration treatments. J Chem Phys 87:5781CrossRef
53.
Zurück zum Zitat Meyer H-D, Manthe U, Cederbaum LS (1990) The multi-configurational time-dependent Hartree approach. Chem Phys Lett 165:73 Meyer H-D, Manthe U, Cederbaum LS (1990) The multi-configurational time-dependent Hartree approach. Chem Phys Lett 165:73
54.
Zurück zum Zitat Manthe U, Meyer H-D, Cederbaum LS (1992) Wave-packet dynamics within the multiconfiguration Hartree framework: general aspects and application to NOCl. J Chem Phys 97:3199 Manthe U, Meyer H-D, Cederbaum LS (1992) Wave-packet dynamics within the multiconfiguration Hartree framework: general aspects and application to NOCl. J Chem Phys 97:3199
55.
Zurück zum Zitat Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover, Mineola, NY Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover, Mineola, NY
56.
Zurück zum Zitat Jensen F (1999) Introduction to computational chemistry. Wiley, Chichester Jensen F (1999) Introduction to computational chemistry. Wiley, Chichester
57.
Zurück zum Zitat Atkins PW (1983) Molecular quantum mechanics, 2nd edn. OUP, Oxford, UK Atkins PW (1983) Molecular quantum mechanics, 2nd edn. OUP, Oxford, UK
58.
Zurück zum Zitat Zanghellini J, Kitzler M, Fabian C, Brabec T, Scrinzi A (2003) An MCTDHF approach to multi-electron dynamics in laser fields. Laser Phys 13:1064 Zanghellini J, Kitzler M, Fabian C, Brabec T, Scrinzi A (2003) An MCTDHF approach to multi-electron dynamics in laser fields. Laser Phys 13:1064
59.
Zurück zum Zitat Alon OE, Streltsov AI, Cederbaum LS (2008) Multiconfigurational time-dependent Hartree method for bosons: many-body dynamics of bosonic systems. Phys Rev A 77:033613CrossRef Alon OE, Streltsov AI, Cederbaum LS (2008) Multiconfigurational time-dependent Hartree method for bosons: many-body dynamics of bosonic systems. Phys Rev A 77:033613CrossRef
60.
Zurück zum Zitat Hammerich AD, Kosloff R, Ratner MA (1990) Quantum mechanical reactive scattering by a multiconfigurational time-dependent self-consistent field (MCTDSCF) approach. Chem Phys Lett 171:97CrossRef Hammerich AD, Kosloff R, Ratner MA (1990) Quantum mechanical reactive scattering by a multiconfigurational time-dependent self-consistent field (MCTDSCF) approach. Chem Phys Lett 171:97CrossRef
61.
Zurück zum Zitat Jäckle A, Meyer H-D (1998) Calculation of H+H\(_2\) and H+D\(_2\) reaction probabilities within the multiconfiguration time-dependent Hartree approach employing an adiabatic correction scheme. J Chem Phys 109:2614CrossRef Jäckle A, Meyer H-D (1998) Calculation of H+H\(_2\) and H+D\(_2\) reaction probabilities within the multiconfiguration time-dependent Hartree approach employing an adiabatic correction scheme. J Chem Phys 109:2614CrossRef
62.
Zurück zum Zitat Launay JM, Dourneuf ML (1989) Hyperspherical close-coupling calculation of integral cross sections for the reaction H+H\(_2\rightarrow \) H\(_2\)+H. Chem Phys Lett 163:178CrossRef Launay JM, Dourneuf ML (1989) Hyperspherical close-coupling calculation of integral cross sections for the reaction H+H\(_2\rightarrow \) H\(_2\)+H. Chem Phys Lett 163:178CrossRef
63.
Zurück zum Zitat Pack RT, Parker G (1987) Quantum reactive scattering in three dimensions using hyperspherical (aph) coordinates. theory. J Chem Phys 87:3888CrossRef Pack RT, Parker G (1987) Quantum reactive scattering in three dimensions using hyperspherical (aph) coordinates. theory. J Chem Phys 87:3888CrossRef
64.
Zurück zum Zitat Pack RT, Parker G (1989) Quantum reactive scattering in three dimensions using hyperspherical (aph) coordinates. III. Small \(\theta \) behavior and corrigenda. J Chem Phys 90:3511CrossRef Pack RT, Parker G (1989) Quantum reactive scattering in three dimensions using hyperspherical (aph) coordinates. III. Small \(\theta \) behavior and corrigenda. J Chem Phys 90:3511CrossRef
65.
Zurück zum Zitat Wang H, Thoss M (2003) Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J Chem Phys 119:1289 Wang H, Thoss M (2003) Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J Chem Phys 119:1289
66.
Zurück zum Zitat Wang H, Thoss M (2006) Quantum-mechanical evaluation of the Boltzmann operator in correlation functions for large molecular systems: a multilayer multiconfiguration time-dependent Hartree approach. J Chem Phys 124:034114CrossRef Wang H, Thoss M (2006) Quantum-mechanical evaluation of the Boltzmann operator in correlation functions for large molecular systems: a multilayer multiconfiguration time-dependent Hartree approach. J Chem Phys 124:034114CrossRef
67.
Zurück zum Zitat Wang H, Skinner DE, Thoss M (2006) Calculation of reactive flux correlation functions for systems in a condensed phase environment: a multilayer multi-configuration time-dependent hartree approach. J Chem Phys 125:174502CrossRef Wang H, Skinner DE, Thoss M (2006) Calculation of reactive flux correlation functions for systems in a condensed phase environment: a multilayer multi-configuration time-dependent hartree approach. J Chem Phys 125:174502CrossRef
68.
Zurück zum Zitat Wang H, Thoss M (2007) Quantum dynamical simulation of electron-transfer reactions in an anharmonic environment. J Phys Chem A 111:10369CrossRef Wang H, Thoss M (2007) Quantum dynamical simulation of electron-transfer reactions in an anharmonic environment. J Phys Chem A 111:10369CrossRef
69.
Zurück zum Zitat Manthe U (2008) A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. J Chem Phys 128:164116CrossRef Manthe U (2008) A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. J Chem Phys 128:164116CrossRef
70.
Zurück zum Zitat Wang H, Thoss M (2009) Numerically exact quantum dynamics for indistinguishable particles: The multilayer multiconfiguration time-dependent Hartree theory in second quantization representation. J Chem Phys 131(2):024114CrossRef Wang H, Thoss M (2009) Numerically exact quantum dynamics for indistinguishable particles: The multilayer multiconfiguration time-dependent Hartree theory in second quantization representation. J Chem Phys 131(2):024114CrossRef
71.
Zurück zum Zitat Vendrell O, Meyer H-D (2011) Multilayer multiconfiguration time-dependent Hartree method: Implementation and applications to a Henon-Heiles Hamiltonian and to pyrazine. J Chem Phys 134:044135CrossRef Vendrell O, Meyer H-D (2011) Multilayer multiconfiguration time-dependent Hartree method: Implementation and applications to a Henon-Heiles Hamiltonian and to pyrazine. J Chem Phys 134:044135CrossRef
72.
Zurück zum Zitat Wang H (2015) Multilayer multiconfiguration time-dependent Hartree theory. J Phys Chem A 119:7951CrossRef Wang H (2015) Multilayer multiconfiguration time-dependent Hartree theory. J Phys Chem A 119:7951CrossRef
73.
Zurück zum Zitat Westermann T, Brodbeck R, Rozhenko AB, Schoeller W, Manthe U (2011) Photodissociation of methyl iodide embedded in a host-guest complex: a full dimensional (189D) quantum dynamics study of CH\(_3\)I@resorc[4]arene. J Chem Phys 135:184102CrossRef Westermann T, Brodbeck R, Rozhenko AB, Schoeller W, Manthe U (2011) Photodissociation of methyl iodide embedded in a host-guest complex: a full dimensional (189D) quantum dynamics study of CH\(_3\)I@resorc[4]arene. J Chem Phys 135:184102CrossRef
74.
Zurück zum Zitat Wang H, Shao J (2012) Dynamics of a two-level system coupled to a bath of spins. J Chem Phys 137:22A504CrossRef Wang H, Shao J (2012) Dynamics of a two-level system coupled to a bath of spins. J Chem Phys 137:22A504CrossRef
75.
Zurück zum Zitat Manthe U (2006) On the integration of the multi-configurational time-dependent Hartree (MCTDH) equations of motion. Chem Phys 329:168 Manthe U (2006) On the integration of the multi-configurational time-dependent Hartree (MCTDH) equations of motion. Chem Phys 329:168
76.
Zurück zum Zitat Meyer H-D, Worth GA (2003) Quantum molecular dynamics: propagating wavepackets and density operators using the multiconfiguration time-dependent Hartree (MCTDH) method. Theory Chem Acc 109:251 Meyer H-D, Worth GA (2003) Quantum molecular dynamics: propagating wavepackets and density operators using the multiconfiguration time-dependent Hartree (MCTDH) method. Theory Chem Acc 109:251
77.
Zurück zum Zitat Meyer H-D, Le Quéré F, Léonard C, Gatti F (2006) Calculation and selective population of vibrational levels with the multiconfiguration time-dependent Hartree (MCTDH) algorithm. Chem Phys 329:179 Meyer H-D, Le Quéré F, Léonard C, Gatti F (2006) Calculation and selective population of vibrational levels with the multiconfiguration time-dependent Hartree (MCTDH) algorithm. Chem Phys 329:179
78.
Zurück zum Zitat Joubert Doriol L, Gatti F, Iung C, Meyer HD (2008) Computation of vibrational energy levels and eigenstates of fluoroform using the multiconfiguration time-dependent Hartree method. J Chem Phys 129:224109CrossRef Joubert Doriol L, Gatti F, Iung C, Meyer HD (2008) Computation of vibrational energy levels and eigenstates of fluoroform using the multiconfiguration time-dependent Hartree method. J Chem Phys 129:224109CrossRef
79.
Zurück zum Zitat Vendrell O, Gatti F, Lauvergnat D, Meyer H-D (2007) Full dimensional (15D) quantum-dynamical simulation of the protonated water dimer I: Hamiltonian setup and analysis of the ground vibrational state. J Chem Phys 127:184302CrossRef Vendrell O, Gatti F, Lauvergnat D, Meyer H-D (2007) Full dimensional (15D) quantum-dynamical simulation of the protonated water dimer I: Hamiltonian setup and analysis of the ground vibrational state. J Chem Phys 127:184302CrossRef
80.
Zurück zum Zitat Vendrell O, Brill M, Gatti F, Lauvergnat D, Meyer H-D (2009) Full dimensional (15D) quantum-dynamical simulation of the protonated water dimer III: mixed Jacobi-valence parametrization and benchmark results for the zero-point energy, vibrationally excited states and infrared spectrum. J Chem Phys 130:234305CrossRef Vendrell O, Brill M, Gatti F, Lauvergnat D, Meyer H-D (2009) Full dimensional (15D) quantum-dynamical simulation of the protonated water dimer III: mixed Jacobi-valence parametrization and benchmark results for the zero-point energy, vibrationally excited states and infrared spectrum. J Chem Phys 130:234305CrossRef
81.
Zurück zum Zitat Davidson E (1975) The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J Comput Phys 17:87CrossRef Davidson E (1975) The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J Comput Phys 17:87CrossRef
82.
Zurück zum Zitat Olsen J, Jørgenson P, Simons J (1990) Passing the one-billion limit in full configuration-interaction (FCI) calculations. Chem Phys Lett 169:493CrossRef Olsen J, Jørgenson P, Simons J (1990) Passing the one-billion limit in full configuration-interaction (FCI) calculations. Chem Phys Lett 169:493CrossRef
83.
Zurück zum Zitat Riss UV, Meyer H-D (1993) Calculation of resonance energies and widths using the complex absorbing potential method. J Phys B 26:4503CrossRef Riss UV, Meyer H-D (1993) Calculation of resonance energies and widths using the complex absorbing potential method. J Phys B 26:4503CrossRef
84.
Zurück zum Zitat Jolicard G, Austin E (1985) Optical potential stabilisation method for predicting resonance level. Chem Phys Lett 121:106CrossRef Jolicard G, Austin E (1985) Optical potential stabilisation method for predicting resonance level. Chem Phys Lett 121:106CrossRef
85.
Zurück zum Zitat Jolicard G, Austin E (1986) Optical potential method of caculating resonance energies and widths. Chem Phys 103:295CrossRef Jolicard G, Austin E (1986) Optical potential method of caculating resonance energies and widths. Chem Phys 103:295CrossRef
86.
Zurück zum Zitat Jolicard G, Leforestier C, Austin E (1988) Resonance states using the optical potential model. Study of Feshbach resonances and broad shape resonances. J Chem Phys 88:1026CrossRef Jolicard G, Leforestier C, Austin E (1988) Resonance states using the optical potential model. Study of Feshbach resonances and broad shape resonances. J Chem Phys 88:1026CrossRef
87.
Zurück zum Zitat Kosloff R, Kosloff D (1986) Absorbing boundaries for wave propagation problems. J Comput Phys 63:363CrossRef Kosloff R, Kosloff D (1986) Absorbing boundaries for wave propagation problems. J Comput Phys 63:363CrossRef
88.
Zurück zum Zitat Neuhauser D, Baer M (1989) The time-dependent Schrödinger equation: application of absorbing boundary conditions. J Chem Phys 90:4351CrossRef Neuhauser D, Baer M (1989) The time-dependent Schrödinger equation: application of absorbing boundary conditions. J Chem Phys 90:4351CrossRef
89.
Zurück zum Zitat Riss UV, Meyer H-D (1995) Reflection-free complex absorbing potentials. J Chem Phys 28:1475 Riss UV, Meyer H-D (1995) Reflection-free complex absorbing potentials. J Chem Phys 28:1475
90.
Zurück zum Zitat Riss UV, Meyer H-D (1996) Investigation on the reflection and transmission properties of complex absorbing potentials. J Chem Phys 105:1409CrossRef Riss UV, Meyer H-D (1996) Investigation on the reflection and transmission properties of complex absorbing potentials. J Chem Phys 105:1409CrossRef
91.
Zurück zum Zitat Jäckle A, Meyer H-D (1996) Time-dependent calculation of reactive flux employing complex absorbing potentials: general aspects and application within MCTDH. J Chem Phys 105:6778CrossRef Jäckle A, Meyer H-D (1996) Time-dependent calculation of reactive flux employing complex absorbing potentials: general aspects and application within MCTDH. J Chem Phys 105:6778CrossRef
92.
Zurück zum Zitat Scheit S, Meyer H-D, Moiseyev N, Cederbaum LS (2006) On the unphysical impact of complex absorbing potentials on the Hamiltonian and its remedy. J Chem Phys 124:034102CrossRef Scheit S, Meyer H-D, Moiseyev N, Cederbaum LS (2006) On the unphysical impact of complex absorbing potentials on the Hamiltonian and its remedy. J Chem Phys 124:034102CrossRef
93.
Zurück zum Zitat Taylor JR (1972) Scattering theory: the quantum theory of nonrelativistic collisions. Wiley, New York Taylor JR (1972) Scattering theory: the quantum theory of nonrelativistic collisions. Wiley, New York
94.
Zurück zum Zitat Gatti F, Otto F, Sukiasyan S, Meyer H-D (2005) Rotational excitation cross sections of para-H\(_2\) + para-H\(_2\) collisions. A full-dimensional wave packet propagation study using an exact form of the kinetic energy. J Chem Phys 123:174311CrossRef Gatti F, Otto F, Sukiasyan S, Meyer H-D (2005) Rotational excitation cross sections of para-H\(_2\) + para-H\(_2\) collisions. A full-dimensional wave packet propagation study using an exact form of the kinetic energy. J Chem Phys 123:174311CrossRef
95.
Zurück zum Zitat Panda AN, Otto F, Gatti F, Meyer H-D (2007) Rovibrational energy transfer in ortho-H\(_2\) + para-H\(_2\) collisions. J Chem Phys 127:114310CrossRef Panda AN, Otto F, Gatti F, Meyer H-D (2007) Rovibrational energy transfer in ortho-H\(_2\) + para-H\(_2\) collisions. J Chem Phys 127:114310CrossRef
96.
Zurück zum Zitat Otto F, Gatti F, Meyer H-D (2008) Rotational excitations in para-H\(_2\) + para-H\(_2\) collisions: full- and reduced-dimensional quantum wave packet studies comparing different potential energy surfaces. J Chem Phys 128:064305CrossRef Otto F, Gatti F, Meyer H-D (2008) Rotational excitations in para-H\(_2\) + para-H\(_2\) collisions: full- and reduced-dimensional quantum wave packet studies comparing different potential energy surfaces. J Chem Phys 128:064305CrossRef
97.
Zurück zum Zitat Otto F, Gatti F, Meyer H-D (2009) Erratum: "Rotational excitations in para-H\(_2\) + para-H\(_2\) collisions: full- and reduced-dimensional quantum wave packet studies comparing different potential energy surfaces". J Chem Phys 131:049901CrossRef Otto F, Gatti F, Meyer H-D (2009) Erratum: "Rotational excitations in para-H\(_2\) + para-H\(_2\) collisions: full- and reduced-dimensional quantum wave packet studies comparing different potential energy surfaces". J Chem Phys 131:049901CrossRef
98.
Zurück zum Zitat Otto F, Gatti F, Meyer H-D (2012) Rovibrational energy transfer in collisions of H\(_2\) with D\(_2\). A full-dimensional wave packet propagation study. Mol Phys 110:619CrossRef Otto F, Gatti F, Meyer H-D (2012) Rovibrational energy transfer in collisions of H\(_2\) with D\(_2\). A full-dimensional wave packet propagation study. Mol Phys 110:619CrossRef
99.
Zurück zum Zitat Tannor DJ, Weeks DE (1993) Wave packet correlation function formulation of scattering theory: the quantum analog of classical \(S\)-matrix theory. J Chem Phys 98:3884CrossRef Tannor DJ, Weeks DE (1993) Wave packet correlation function formulation of scattering theory: the quantum analog of classical \(S\)-matrix theory. J Chem Phys 98:3884CrossRef
100.
Zurück zum Zitat Weeks DE, Tannor DJ (1993) A time-dependent formulation of the scattering matrix using Møller operators. Chem Phys Lett 207:301CrossRef Weeks DE, Tannor DJ (1993) A time-dependent formulation of the scattering matrix using Møller operators. Chem Phys Lett 207:301CrossRef
101.
Zurück zum Zitat Weeks DE, Tannor DJ (1994) A time-dependent formulation of the scattering matrix for the collinear reaction H+H\(_2\,(\nu )\rightarrow \) H\(_2\,(\nu ^{\prime })\)+H. Chem Phys Lett 224:451CrossRef Weeks DE, Tannor DJ (1994) A time-dependent formulation of the scattering matrix for the collinear reaction H+H\(_2\,(\nu )\rightarrow \) H\(_2\,(\nu ^{\prime })\)+H. Chem Phys Lett 224:451CrossRef
102.
Zurück zum Zitat Schmidt E (1906) Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math Ann 63:433CrossRef Schmidt E (1906) Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math Ann 63:433CrossRef
103.
Zurück zum Zitat Peláez D, Meyer H-D (2013) The multigrid POTFIT (MGPF) method: grid representations of potentials for quantum dynamics of large systems. J Chem Phys 138:014108CrossRef Peláez D, Meyer H-D (2013) The multigrid POTFIT (MGPF) method: grid representations of potentials for quantum dynamics of large systems. J Chem Phys 138:014108CrossRef
Metadaten
Titel
Introduction to Numerical Methods
verfasst von
Fabien Gatti
Benjamin Lasorne
Hans-Dieter Meyer
André Nauts
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-53923-2_8