Skip to main content
Erschienen in: International Journal of Data Science and Analytics 2/2017

28.12.2016 | Regular Paper

Introduction to the foundations of causal discovery

verfasst von: Frederick Eberhardt

Erschienen in: International Journal of Data Science and Analytics | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article presents an overview of several known approaches to causal discovery. It is organized by relating the different fundamental assumptions that the methods depend on. The goal is to indicate that for a large variety of different settings the assumptions necessary and sufficient for causal discovery are now well understood.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
See a discussion of this example in Scientific American [22].
 
2
In a somewhat counter-intuitive usage of terms, a vertex is also its own ancestor and its own descendent, but not its own parent or child.
 
3
In order to separate out limitations and sources of error in the overall inference it can be helpful to make the following three-way distinction: Statistical inference concerns the inference from data to the generating distribution or properties of the generating distribution, such as parameter values or (in)dependence relations. Causal discovery concerns the inference of identifying as much as possible about the causal structure given the statistical quantities, such as a probability distribution or its features. Causal inference concerns the determination of quantitative causal effects given the causal structure and associated statistical quantities. Of course, these three inference steps are not always completely separable and there are plenty of interesting approaches that combine them.
 
4
This example is taken from [12].
 
5
Especially with regard to the assumption of acyclicity it is worth noting that very subtle issues arise both about what exactly we mean when we allow for causal cycles, and how one may infer something about a system in which there are such feedback loops. The interested reader is encouraged to purse the references on cyclic models mentioned below.
 
6
An explicit statement of the condition is omitted here as it requires a fair bit of notation and no further insight is gained by just stating it. The intrigued reader should refer to the original paper, which is a worthwhile read in any case.
 
Literatur
1.
Zurück zum Zitat Chalupka, K., Perona, P., Eberhardt, F.: Visual causal feature learning. In: Proceedings of UAI (2015) Chalupka, K., Perona, P., Eberhardt, F.: Visual causal feature learning. In: Proceedings of UAI (2015)
2.
Zurück zum Zitat Chalupka, K., Perona, P., Eberhardt, F.: Multi-level cause-effect systems. In: Proceedings of AISTATS (2016) Chalupka, K., Perona, P., Eberhardt, F.: Multi-level cause-effect systems. In: Proceedings of AISTATS (2016)
3.
Zurück zum Zitat Dash, D.: Restructuring dynamic causal systems in equilibrium. In: Proceedings of AISTATS (2005) Dash, D.: Restructuring dynamic causal systems in equilibrium. In: Proceedings of AISTATS (2005)
4.
Zurück zum Zitat Dash, D., Druzdzel, M.: Caveats for causal reasoning with equilibrium models. In: European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pp. 192–203. Springer, Berlin (2001) Dash, D., Druzdzel, M.: Caveats for causal reasoning with equilibrium models. In: European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pp. 192–203. Springer, Berlin (2001)
5.
6.
Zurück zum Zitat Fisher, R.: The design of experiments. Hafner (1935) Fisher, R.: The design of experiments. Hafner (1935)
8.
Zurück zum Zitat Geiger, D., Pearl, J.: On the logic of causal models. In: Proceedings of UAI (1988) Geiger, D., Pearl, J.: On the logic of causal models. In: Proceedings of UAI (1988)
9.
Zurück zum Zitat Gillispie, S., Perlman, M.: The size distribution for Markov equivalence classes of acyclic digraph models. Artif. Intell. 141(1), 137–155 (2002)MathSciNetCrossRef Gillispie, S., Perlman, M.: The size distribution for Markov equivalence classes of acyclic digraph models. Artif. Intell. 141(1), 137–155 (2002)MathSciNetCrossRef
10.
Zurück zum Zitat Glymour, C.: Markov properties and quantum experiments. In: Demopoulos, W., Pitowsky, I. (eds.) Physical Theory and Its Interpretation: Essays in Honor of Jeffrey Bub. Springer, Berlin (2006) Glymour, C.: Markov properties and quantum experiments. In: Demopoulos, W., Pitowsky, I. (eds.) Physical Theory and Its Interpretation: Essays in Honor of Jeffrey Bub. Springer, Berlin (2006)
11.
Zurück zum Zitat He, Y., Jia, J., Yu, B.: Counting and exploring sizes of Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res. 16, 2589–2609 (2015)MathSciNetMATH He, Y., Jia, J., Yu, B.: Counting and exploring sizes of Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res. 16, 2589–2609 (2015)MathSciNetMATH
12.
Zurück zum Zitat Hitchcock, C.: Causation. In: Psillos, S., Curd, M. (eds.) The Routledge Companion to Philosophy of Science. Routledge, London (2008) Hitchcock, C.: Causation. In: Psillos, S., Curd, M. (eds.) The Routledge Companion to Philosophy of Science. Routledge, London (2008)
14.
Zurück zum Zitat Hoyer, P., Janzing, D., Mooij, J., Peters, J., Schölkopf, B.: Nonlinear causal discovery with additive noise models. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 21, Curran Associates Inc., pp. 689–696 (2008) Hoyer, P., Janzing, D., Mooij, J., Peters, J., Schölkopf, B.: Nonlinear causal discovery with additive noise models. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 21, Curran Associates Inc., pp. 689–696 (2008)
15.
Zurück zum Zitat Hoyer, P., Shimizu, S., Kerminen, A., Palviainen, M.: Estimation of causal effects using linear non-Gaussian causal models with hidden variables. Int. J. Approx. Reason. 49, 362–378 (2008)MathSciNetCrossRef Hoyer, P., Shimizu, S., Kerminen, A., Palviainen, M.: Estimation of causal effects using linear non-Gaussian causal models with hidden variables. Int. J. Approx. Reason. 49, 362–378 (2008)MathSciNetCrossRef
16.
Zurück zum Zitat Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: conflict resolution with answer set programming. In: Proceedings of UAI (2014) Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: conflict resolution with answer set programming. In: Proceedings of UAI (2014)
17.
Zurück zum Zitat Hyttinen, A., Eberhardt, F., Järvisalo, M.: Do-calculus when the true graph is unknown. In: Proceedings of UAI (2015) Hyttinen, A., Eberhardt, F., Järvisalo, M.: Do-calculus when the true graph is unknown. In: Proceedings of UAI (2015)
18.
Zurück zum Zitat Hyttinen, A., Hoyer, P., Eberhardt, F., Järvisalo, M.: Discovering cyclic causal models with latent variables: a general SAT-based procedure. In: Proceedings of UAI, pp. 301–310. AUAI Press (2013) Hyttinen, A., Hoyer, P., Eberhardt, F., Järvisalo, M.: Discovering cyclic causal models with latent variables: a general SAT-based procedure. In: Proceedings of UAI, pp. 301–310. AUAI Press (2013)
19.
Zurück zum Zitat Hyttinen, A., Plis, S., Järvisalo, M., Eberhardt, F., Danks, D.: Causal discovery from subsampled time series data by constraint optimization. In: Proceedings of PGM (2016) Hyttinen, A., Plis, S., Järvisalo, M., Eberhardt, F., Danks, D.: Causal discovery from subsampled time series data by constraint optimization. In: Proceedings of PGM (2016)
20.
Zurück zum Zitat Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, vol. 46. Wiley, London (2004) Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, vol. 46. Wiley, London (2004)
21.
Zurück zum Zitat Jantzen, B.: Projection, symmetry, and natural kinds. Synthese 192(11), 3617–3646 (2015)CrossRef Jantzen, B.: Projection, symmetry, and natural kinds. Synthese 192(11), 3617–3646 (2015)CrossRef
22.
Zurück zum Zitat Klatsky, A.: Drink to your health? Scientific American 288(2), 75–81 (2003)CrossRef Klatsky, A.: Drink to your health? Scientific American 288(2), 75–81 (2003)CrossRef
23.
Zurück zum Zitat Lacerda, G., Spirtes, P., Ramsey, J., Hoyer, P.O.: Discovering cyclic causal models by independent components analysis. In: Proceedings of UAI, pp. 366–374 (2008) Lacerda, G., Spirtes, P., Ramsey, J., Hoyer, P.O.: Discovering cyclic causal models by independent components analysis. In: Proceedings of UAI, pp. 366–374 (2008)
25.
Zurück zum Zitat Maier, M., Marazopoulou, K., Arbour, D., Jensen, D.: A sound and complete algorithm for learning causal models from relational data. Proceedings of UAI (2013) Maier, M., Marazopoulou, K., Arbour, D., Jensen, D.: A sound and complete algorithm for learning causal models from relational data. Proceedings of UAI (2013)
26.
Zurück zum Zitat Meek, C.: Strong completeness and faithfulness in Bayesian networks. In: Proceedings of UAI, pp. 411–418. Morgan Kaufmann Publishers Inc. (1995) Meek, C.: Strong completeness and faithfulness in Bayesian networks. In: Proceedings of UAI, pp. 411–418. Morgan Kaufmann Publishers Inc. (1995)
27.
Zurück zum Zitat Mooij, J., Janzing, D., Peters, J., Schölkopf, B.: Regression by dependence minimization and its application to causal inference in additive noise models. In: Proceedings of ICML, pp. 745–752 (2009) Mooij, J., Janzing, D., Peters, J., Schölkopf, B.: Regression by dependence minimization and its application to causal inference in additive noise models. In: Proceedings of ICML, pp. 745–752 (2009)
28.
Zurück zum Zitat Nyberg, E., Korb, K.: Informative interventions. In: Williamson, J., (ed.) Causality and Probability in the Sciences. College Publications (2006) Nyberg, E., Korb, K.: Informative interventions. In: Williamson, J., (ed.) Causality and Probability in the Sciences. College Publications (2006)
29.
Zurück zum Zitat Park, G., Raskutti, G.: Learning large-scale poisson dag models based on overdispersion scoring. In: Advances in Neural Information Processing Systems, pp. 631–639 (2015) Park, G., Raskutti, G.: Learning large-scale poisson dag models based on overdispersion scoring. In: Advances in Neural Information Processing Systems, pp. 631–639 (2015)
30.
Zurück zum Zitat Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, Los Altos (1988)MATH Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, Los Altos (1988)MATH
31.
Zurück zum Zitat Pearl, J.: Causality. Oxford University Press, Oxford (2000)MATH Pearl, J.: Causality. Oxford University Press, Oxford (2000)MATH
32.
Zurück zum Zitat Pearl, J., Verma, T.: Equivalence and synthesis of causal models. In: Proceedings of Sixth Conference on Uncertainty in Artijicial Intelligence, pp. 220–227 (1991) Pearl, J., Verma, T.: Equivalence and synthesis of causal models. In: Proceedings of Sixth Conference on Uncertainty in Artijicial Intelligence, pp. 220–227 (1991)
33.
Zurück zum Zitat Peters, J., Janzing, D., Schölkopf, B.: Identifying cause and effect on discrete data using additive noise models. In: Proceedings of AISTATS, pp. 597–604 (2010) Peters, J., Janzing, D., Schölkopf, B.: Identifying cause and effect on discrete data using additive noise models. In: Proceedings of AISTATS, pp. 597–604 (2010)
34.
Zurück zum Zitat Peters, J., Janzing, D., Schölkopf, B.: Causal inference on discrete data using additive noise models. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2436–2450 (2011)CrossRef Peters, J., Janzing, D., Schölkopf, B.: Causal inference on discrete data using additive noise models. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2436–2450 (2011)CrossRef
35.
Zurück zum Zitat Peters, J., Mooij, J., Janzing, D., Schölkopf, B.: Identifiability of causal graphs using functional models. In: Proceedings of UAI, pp. 589–598. AUAI Press (2011) Peters, J., Mooij, J., Janzing, D., Schölkopf, B.: Identifiability of causal graphs using functional models. In: Proceedings of UAI, pp. 589–598. AUAI Press (2011)
36.
Zurück zum Zitat Richardson, T.: Feedback models: Interpretation and discovery. Ph.D. thesis, Carnegie Mellon University (1996) Richardson, T.: Feedback models: Interpretation and discovery. Ph.D. thesis, Carnegie Mellon University (1996)
37.
Zurück zum Zitat Schulte, O., Khosravi, H., Kirkpatrick, A., Gao, T., Zhu, Y.: Modelling relational statistics with Bayes nets. Mach. Learn. 94(1), 105–125 (2014)MathSciNetCrossRef Schulte, O., Khosravi, H., Kirkpatrick, A., Gao, T., Zhu, Y.: Modelling relational statistics with Bayes nets. Mach. Learn. 94(1), 105–125 (2014)MathSciNetCrossRef
39.
Zurück zum Zitat Shimizu, S., Hoyer, P., Hyvärinen, A., Kerminen, A.: A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030 (2006)MathSciNetMATH Shimizu, S., Hoyer, P., Hyvärinen, A., Kerminen, A.: A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030 (2006)MathSciNetMATH
40.
Zurück zum Zitat Sokol, A., Hansen, N.: Causal interpretation of stochastic differential equations. Electron. J. Probab. 19(100), 1–24 (2014)MathSciNetMATH Sokol, A., Hansen, N.: Causal interpretation of stochastic differential equations. Electron. J. Probab. 19(100), 1–24 (2014)MathSciNetMATH
41.
Zurück zum Zitat Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search, 2nd edn. MIT Press, Cambridge (2000)MATH Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search, 2nd edn. MIT Press, Cambridge (2000)MATH
43.
Zurück zum Zitat Stekhoven, D., Moraes, I., Sveinbjörnsson, G., Hennig, L., Maathuis, M., Bühlmann, P.: Causal stability ranking. Bioinformatics 28(21), 2819–2823 (2012)CrossRef Stekhoven, D., Moraes, I., Sveinbjörnsson, G., Hennig, L., Maathuis, M., Bühlmann, P.: Causal stability ranking. Bioinformatics 28(21), 2819–2823 (2012)CrossRef
44.
Zurück zum Zitat Tillman, R., Eberhardt, F.: Learning causal structure from multiple datasets with similar variable sets. Behaviormetrika 41(1), 41–64 (2014)CrossRef Tillman, R., Eberhardt, F.: Learning causal structure from multiple datasets with similar variable sets. Behaviormetrika 41(1), 41–64 (2014)CrossRef
45.
Zurück zum Zitat Triantafillou, S., Tsamardinos, I.: Constraint-based causal discovery from multiple interventions over overlapping variable sets. J. Mach. Learn. Res. 16, 2147–2205 (2015)MathSciNetMATH Triantafillou, S., Tsamardinos, I.: Constraint-based causal discovery from multiple interventions over overlapping variable sets. J. Mach. Learn. Res. 16, 2147–2205 (2015)MathSciNetMATH
46.
Zurück zum Zitat Triantafillou, S., Tsamardinos, I., Tollis, I.G.: Learning causal structure from overlapping variable sets. In: Proceedings of AISTATS, pp. 860–867. JMLR (2010) Triantafillou, S., Tsamardinos, I., Tollis, I.G.: Learning causal structure from overlapping variable sets. In: Proceedings of AISTATS, pp. 860–867. JMLR (2010)
47.
Zurück zum Zitat Uhler, C., Raskutti, G., Bühlmann, P., Yu, B.: Geometry of the faithfulness assumption in causal inference. Ann. Stat. 41(2), 436–463 (2013)MathSciNetCrossRef Uhler, C., Raskutti, G., Bühlmann, P., Yu, B.: Geometry of the faithfulness assumption in causal inference. Ann. Stat. 41(2), 436–463 (2013)MathSciNetCrossRef
48.
Zurück zum Zitat Voortman, M., Dash, D., Druzdzel, M.: Learning why things change: the difference-based causality learner. arXiv preprint arXiv:1203.3525 (2012) Voortman, M., Dash, D., Druzdzel, M.: Learning why things change: the difference-based causality learner. arXiv preprint arXiv:​1203.​3525 (2012)
50.
Zurück zum Zitat Zhang, K., Chan, L.W.: Extensions of ICA for causality discovery in the Hong Kong stock market. In: International Conference on Neural Information Processing, pp. 400–409. Springer, Berlin (2006)CrossRef Zhang, K., Chan, L.W.: Extensions of ICA for causality discovery in the Hong Kong stock market. In: International Conference on Neural Information Processing, pp. 400–409. Springer, Berlin (2006)CrossRef
51.
Zurück zum Zitat Zhang, K., Hyvärinen, A.: On the identifiability of the post-nonlinear causal model. In: Proceedings of UAI, pp. 647–655. AUAI Press (2009) Zhang, K., Hyvärinen, A.: On the identifiability of the post-nonlinear causal model. In: Proceedings of UAI, pp. 647–655. AUAI Press (2009)
Metadaten
Titel
Introduction to the foundations of causal discovery
verfasst von
Frederick Eberhardt
Publikationsdatum
28.12.2016
Verlag
Springer International Publishing
Erschienen in
International Journal of Data Science and Analytics / Ausgabe 2/2017
Print ISSN: 2364-415X
Elektronische ISSN: 2364-4168
DOI
https://doi.org/10.1007/s41060-016-0038-6

Weitere Artikel der Ausgabe 2/2017

International Journal of Data Science and Analytics 2/2017 Zur Ausgabe