Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. Introduction

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents the motivation of the research, the objectives of the work and the structure of the thesis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Maitlis, P. M. (2013). What is Fischer–Tropsch? In Greener fischer-tropsch processes for fuels and feedstocks (pp 1–15). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Maitlis, P. M. (2013). What is Fischer–Tropsch? In Greener fischer-tropsch processes for fuels and feedstocks (pp 1–15). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
2.
Zurück zum Zitat Subramani, V., Sharma, P., Zhang, L., & Liu, K. (2009). Catalytic steam reforming technology for the production of hydrogen and syngas. In Hydrogen and syngas production and purification technologies (pp 14–126). New York: Wiley. Subramani, V., Sharma, P., Zhang, L., & Liu, K. (2009). Catalytic steam reforming technology for the production of hydrogen and syngas. In Hydrogen and syngas production and purification technologies (pp 14–126). New York: Wiley.
3.
Zurück zum Zitat Carvill, B. T., Hufton, J. R., Anand, M., & Sircar, S. (1996). Sorption-enhanced reaction process. AIChE Journal, 42(10), 2765–2772.CrossRef Carvill, B. T., Hufton, J. R., Anand, M., & Sircar, S. (1996). Sorption-enhanced reaction process. AIChE Journal, 42(10), 2765–2772.CrossRef
4.
Zurück zum Zitat Harrison, D. P. (2008). Sorption-enhanced hydrogen production: A review. Industrial and Engineering Chemistry Research, 47(17), 6486–6501.CrossRef Harrison, D. P. (2008). Sorption-enhanced hydrogen production: A review. Industrial and Engineering Chemistry Research, 47(17), 6486–6501.CrossRef
5.
Zurück zum Zitat Stevens, R. W, Jr., Shamsi, A., Carpenter, S., & Siriwardane, R. (2010). Sorption-enhanced water gas shift reaction by sodium-promoted calcium oxides. Fuel, 89(6), 1280–1286.CrossRef Stevens, R. W, Jr., Shamsi, A., Carpenter, S., & Siriwardane, R. (2010). Sorption-enhanced water gas shift reaction by sodium-promoted calcium oxides. Fuel, 89(6), 1280–1286.CrossRef
6.
Zurück zum Zitat Cobden, P. D., van Beurden, P., Reijers, H. T. J., Elzinga, G. D., Kluiters, S. C. A., Dijkstra, J. W., et al. (2007). Sorption-enhanced hydrogen production for pre-combustion CO2 capture: Thermodynamic analysis and experimental results. International Journal of Greenhouse Gas Control, 1(2), 170–179.CrossRef Cobden, P. D., van Beurden, P., Reijers, H. T. J., Elzinga, G. D., Kluiters, S. C. A., Dijkstra, J. W., et al. (2007). Sorption-enhanced hydrogen production for pre-combustion CO2 capture: Thermodynamic analysis and experimental results. International Journal of Greenhouse Gas Control, 1(2), 170–179.CrossRef
7.
Zurück zum Zitat Zennaro, R., Ricci, M., Bua, L., Querci, C., Carnelli, L., & d’Arminio Monforte, A. (2013). Syngas: The Basis of Fischer–Tropsch. In Greener fischer-tropsch processes for fuels and feedstocks (pp 17–51). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Zennaro, R., Ricci, M., Bua, L., Querci, C., Carnelli, L., & d’Arminio Monforte, A. (2013). Syngas: The Basis of Fischer–Tropsch. In Greener fischer-tropsch processes for fuels and feedstocks (pp 17–51). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
8.
Zurück zum Zitat Comas, J., Laborde, M., & Amadeo, N. (2004). Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent. Journal of Power Sources, 138(1–2), 61–67.CrossRef Comas, J., Laborde, M., & Amadeo, N. (2004). Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent. Journal of Power Sources, 138(1–2), 61–67.CrossRef
9.
Zurück zum Zitat Chen, H., Zhang, T., Dou, B., Dupont, V., Williams, P., Ghadiri, M., & Ding, Y. (2009). Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production. International Journal of Hydrogen Energy, 34(17), 7208–7222.CrossRef Chen, H., Zhang, T., Dou, B., Dupont, V., Williams, P., Ghadiri, M., & Ding, Y. (2009). Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production. International Journal of Hydrogen Energy, 34(17), 7208–7222.CrossRef
10.
Zurück zum Zitat Nielsen, P. E. H., Hansen, J. B., & Schiødt, N. C. (2009). Process for the preparation of a hydrogen-rich stream. US 7,527,781 B2. Nielsen, P. E. H., Hansen, J. B., & Schiødt, N. C. (2009). Process for the preparation of a hydrogen-rich stream. US 7,527,781 B2.
11.
Zurück zum Zitat Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.CrossRef Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.CrossRef
12.
Zurück zum Zitat Walspurger, S., Boels, L., Cobden, P. D., Elzinga, G. D., Haije, W. G., & van den Brink, R. W. (2008). The crucial role of the K+–aluminium oxide interaction in K+-promoted alumina- and hydrotalcite-based materials for CO2 sorption at high temperatures. ChemSusChem, 1(7), 643–650.CrossRef Walspurger, S., Boels, L., Cobden, P. D., Elzinga, G. D., Haije, W. G., & van den Brink, R. W. (2008). The crucial role of the K+–aluminium oxide interaction in K+-promoted alumina- and hydrotalcite-based materials for CO2 sorption at high temperatures. ChemSusChem, 1(7), 643–650.CrossRef
13.
Zurück zum Zitat van Selow, E. R., Cobden, P. D., Verbraeken, P. A., Hufton, J. R., & van den Brink, R. W. (2009). Carbon capture by sorption-enhanced water–Gas shift reaction process using hydrotalcite-based material. Industrial and Engineering Chemistry Research, 48(9), 4184–4193.CrossRef van Selow, E. R., Cobden, P. D., Verbraeken, P. A., Hufton, J. R., & van den Brink, R. W. (2009). Carbon capture by sorption-enhanced water–Gas shift reaction process using hydrotalcite-based material. Industrial and Engineering Chemistry Research, 48(9), 4184–4193.CrossRef
14.
Zurück zum Zitat Wu, Y. J., Li, P., Yu, J. G., Cunha, A. F., & Rodrigues, A. E. (2013). K-promoted hydrotalcites for CO2 capture in sorption enhanced reactions. Chemical Engineering and Technology, 36(4), 567–574.CrossRef Wu, Y. J., Li, P., Yu, J. G., Cunha, A. F., & Rodrigues, A. E. (2013). K-promoted hydrotalcites for CO2 capture in sorption enhanced reactions. Chemical Engineering and Technology, 36(4), 567–574.CrossRef
15.
Zurück zum Zitat Reijers, H. T. J., Valster-Schiermeier, S. E. A., Cobden, P. D., & van den Brink, R. W. (2005). Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane. Industrial and Engineering Chemistry Research, 45(8), 2522–2530.CrossRef Reijers, H. T. J., Valster-Schiermeier, S. E. A., Cobden, P. D., & van den Brink, R. W. (2005). Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane. Industrial and Engineering Chemistry Research, 45(8), 2522–2530.CrossRef
16.
Zurück zum Zitat Oliveira, E. L. G., Grande, C. A., & Rodrigues, A. E. (2008). CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Separation and Purification Technology, 62(1), 137–147.CrossRef Oliveira, E. L. G., Grande, C. A., & Rodrigues, A. E. (2008). CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Separation and Purification Technology, 62(1), 137–147.CrossRef
17.
Zurück zum Zitat Othman, M. R., Rasid, N. M., & Fernando, W. J. N. (2006). Mg–Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chemical Engineering Science, 61(5), 1555–1560.CrossRef Othman, M. R., Rasid, N. M., & Fernando, W. J. N. (2006). Mg–Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chemical Engineering Science, 61(5), 1555–1560.CrossRef
18.
Zurück zum Zitat Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.CrossRef Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.CrossRef
19.
Zurück zum Zitat Aschenbrenner, O., McGuire, P., Alsamaq, S., Wang, J., Supasitmongkol, S., Al-Duri, B., et al. (2011). Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions. Chemical Engineering Research and Design, 89(9), 1711–1721.CrossRef Aschenbrenner, O., McGuire, P., Alsamaq, S., Wang, J., Supasitmongkol, S., Al-Duri, B., et al. (2011). Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions. Chemical Engineering Research and Design, 89(9), 1711–1721.CrossRef
Metadaten
Titel
Introduction
verfasst von
Diana Iruretagoyena Ferrer
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-41276-4_1