Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Tuan Anh Ho

Erschienen in: Nanoscale Fluid Transport

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanoscale fluid transport is usually referred to the fluid flow through a channel with size along one or more directions below 100mm. At this small length scale, due to high surface area to volume ratio, the fluid-solid interaction at solid/fluid interface is one of the most dominant factors that governs fluid behaviour. Because of this unique feature many interesting transport phenomena occur on this length scale. In this chapter I provide the literature review on the novel fluid transport phenomena such as hydrodynamic slip boundary condition, fast fluid transport in carbon nanotubes and graphene nanopores, and gas transport in shale rocks. I also provide a short overview of the usage of molecular modeling techniques in studying fluid flow in nanochannels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Duan, C., Wang, W., & Xie, Q. (2013). Review article: Fabrication of nanofluidic devices. Biomicrofluidics, 7(2), 026501.CrossRef Duan, C., Wang, W., & Xie, Q. (2013). Review article: Fabrication of nanofluidic devices. Biomicrofluidics, 7(2), 026501.CrossRef
2.
Zurück zum Zitat Sparreboom, W., van den Berg, A., & Eijkel, J. C. T. (2009). Principles and applications of nanofluidic transport. Nature Nanotechnology, 4(11), 713–720.CrossRef Sparreboom, W., van den Berg, A., & Eijkel, J. C. T. (2009). Principles and applications of nanofluidic transport. Nature Nanotechnology, 4(11), 713–720.CrossRef
3.
Zurück zum Zitat Yang, S. C. (2006). Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel. Microfluidics and Nanofluidics, 2(6), 501–511.CrossRef Yang, S. C. (2006). Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel. Microfluidics and Nanofluidics, 2(6), 501–511.CrossRef
4.
Zurück zum Zitat Neto, C., Evans, D. R., Bonaccurso, E., Butt, H. J., & Craig, V. S. J. (2005). Boundary slip in Newtonian liquids: A review of experimental studies. Reports on Progress in Physics, 68(12), 2859–2898.CrossRef Neto, C., Evans, D. R., Bonaccurso, E., Butt, H. J., & Craig, V. S. J. (2005). Boundary slip in Newtonian liquids: A review of experimental studies. Reports on Progress in Physics, 68(12), 2859–2898.CrossRef
5.
Zurück zum Zitat Karnik, R., Castelino, K., Duan, C. H., & Majumdar, A. (2006). Diffusion-limited patterning of molecules in nanofluidic channels. Nano Letters, 6(8), 1735–1740.CrossRef Karnik, R., Castelino, K., Duan, C. H., & Majumdar, A. (2006). Diffusion-limited patterning of molecules in nanofluidic channels. Nano Letters, 6(8), 1735–1740.CrossRef
6.
Zurück zum Zitat Stein, D., Kruithof, M., & Dekker, C. (2004). Surface-charge-governed ion transport in nanofluidic channels. Physical Review Letters, 93(3), 035901.CrossRef Stein, D., Kruithof, M., & Dekker, C. (2004). Surface-charge-governed ion transport in nanofluidic channels. Physical Review Letters, 93(3), 035901.CrossRef
7.
Zurück zum Zitat Chang, H. C., & Yossifon, G. (2009). Understanding electrokinetics at the nanoscale: A perspective. Biomicrofluidics, 3(1), 012001.CrossRef Chang, H. C., & Yossifon, G. (2009). Understanding electrokinetics at the nanoscale: A perspective. Biomicrofluidics, 3(1), 012001.CrossRef
8.
Zurück zum Zitat Berezhkovskii, A., & Hummer, G. (2002). Single-file transport of water molecules through a carbon nanotube. Physical Review Letters, 89(6), 064503.CrossRef Berezhkovskii, A., & Hummer, G. (2002). Single-file transport of water molecules through a carbon nanotube. Physical Review Letters, 89(6), 064503.CrossRef
9.
Zurück zum Zitat Eijkel, J. C. T., & van den Berg, A. (2005). Nanofluidics: What is it and what can we expect from it? Microfluidics and Nanofluidics, 1(3), 249–267.CrossRef Eijkel, J. C. T., & van den Berg, A. (2005). Nanofluidics: What is it and what can we expect from it? Microfluidics and Nanofluidics, 1(3), 249–267.CrossRef
10.
Zurück zum Zitat Sparreboom, W., van den Berg, A., & Eijkel, J. C. T. (2010). Transport in nanofluidic systems: A review of theory and applications. New Journal of Physics, 12, 015004.CrossRef Sparreboom, W., van den Berg, A., & Eijkel, J. C. T. (2010). Transport in nanofluidic systems: A review of theory and applications. New Journal of Physics, 12, 015004.CrossRef
11.
Zurück zum Zitat Thomas, M., Corry, B., & Hilder, T. A. (2014). What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation? Small (Weinheim an der Bergstrasse, Germany), 10(8), 1453–1465.CrossRef Thomas, M., Corry, B., & Hilder, T. A. (2014). What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation? Small (Weinheim an der Bergstrasse, Germany), 10(8), 1453–1465.CrossRef
12.
Zurück zum Zitat Cottin-Bizonne, C., Cross, B., Steinberger, A., & Charlaix, E. (2005). Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts. Physical Review Letters, 94(5), 056102.CrossRef Cottin-Bizonne, C., Cross, B., Steinberger, A., & Charlaix, E. (2005). Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts. Physical Review Letters, 94(5), 056102.CrossRef
13.
Zurück zum Zitat Ho, T. A., Papavassiliou, D. V., Lee, L. L., & Striolo, A. (2011). Liquid water can slip on a hydrophilic surface. Proceedings of the National Academy of Sciences USA, 108(39), 16170–16175.CrossRef Ho, T. A., Papavassiliou, D. V., Lee, L. L., & Striolo, A. (2011). Liquid water can slip on a hydrophilic surface. Proceedings of the National Academy of Sciences USA, 108(39), 16170–16175.CrossRef
14.
Zurück zum Zitat Huang, D. M., Sendner, C., Horinek, D., Netz, R. R., & Bocquet, L. (2008). Water slippage versus contact angle: A quasiuniversal relationship. Physical Review Letters, 101(22), 226101.CrossRef Huang, D. M., Sendner, C., Horinek, D., Netz, R. R., & Bocquet, L. (2008). Water slippage versus contact angle: A quasiuniversal relationship. Physical Review Letters, 101(22), 226101.CrossRef
15.
Zurück zum Zitat Kannam, S. K., Todd, B. D., Hansen, J. S., & Daivis, P. J. (2011). Slip flow in graphene nanochannels. The Journal of Chemical Physics, 135(14), 144701.CrossRef Kannam, S. K., Todd, B. D., Hansen, J. S., & Daivis, P. J. (2011). Slip flow in graphene nanochannels. The Journal of Chemical Physics, 135(14), 144701.CrossRef
16.
Zurück zum Zitat Kannam, S. K., Todd, B. D., Hansen, J. S., & Daivis, P. J. (2012). Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations. The Journal of Chemical Physics, 136(2), 024705–024713.CrossRef Kannam, S. K., Todd, B. D., Hansen, J. S., & Daivis, P. J. (2012). Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations. The Journal of Chemical Physics, 136(2), 024705–024713.CrossRef
17.
Zurück zum Zitat Maali, A., Cohen-Bouhacina, T., & Kellay, H. (2008). Measurement of the slip length of water flow on graphite surface. Applied Physics Letters, 92(5), 053101.CrossRef Maali, A., Cohen-Bouhacina, T., & Kellay, H. (2008). Measurement of the slip length of water flow on graphite surface. Applied Physics Letters, 92(5), 053101.CrossRef
18.
Zurück zum Zitat Martini, A., Hsu, H.-Y., Patankar, N. A., & Lichter, S. (2008). Slip at high shear rates. Physical Review Letters, 100(20), 206001.CrossRef Martini, A., Hsu, H.-Y., Patankar, N. A., & Lichter, S. (2008). Slip at high shear rates. Physical Review Letters, 100(20), 206001.CrossRef
19.
Zurück zum Zitat Martini, A., Roxin, A., Snurr, R. Q., Wang, Q., & Lichter, S. (2008). Molecular mechanisms of liquid slip. Journal of Fluid Mechanics, 600(1), 257. Martini, A., Roxin, A., Snurr, R. Q., Wang, Q., & Lichter, S. (2008). Molecular mechanisms of liquid slip. Journal of Fluid Mechanics, 600(1), 257.
20.
Zurück zum Zitat Zhu, Y., & Granick, S. (2001). Rate-dependent slip of Newtonian liquid at smooth surfaces. Physical Review Letters, 87(9), 096105.CrossRef Zhu, Y., & Granick, S. (2001). Rate-dependent slip of Newtonian liquid at smooth surfaces. Physical Review Letters, 87(9), 096105.CrossRef
21.
Zurück zum Zitat Lauga E., Brenner, M., & Stone H. (2007) Handbook of experimental fluid dynamics. New York: Springer. Lauga E., Brenner, M., & Stone H. (2007) Handbook of experimental fluid dynamics. New York: Springer.
22.
Zurück zum Zitat Craig, V. S. J., Neto, C., & Williams, D. R. M. (2001). Shear-dependent boundary slip in an aqueous Newtonian liquid. Physical Review Letters, 87(5), 054504.CrossRef Craig, V. S. J., Neto, C., & Williams, D. R. M. (2001). Shear-dependent boundary slip in an aqueous Newtonian liquid. Physical Review Letters, 87(5), 054504.CrossRef
23.
Zurück zum Zitat Barrat, J. L., & Bocquet, L. (1999). Large slip effect at a nonwetting fluid-solid interface. Physical Review Letters, 82(23), 4671–4674.CrossRef Barrat, J. L., & Bocquet, L. (1999). Large slip effect at a nonwetting fluid-solid interface. Physical Review Letters, 82(23), 4671–4674.CrossRef
24.
Zurück zum Zitat Kannam, S. K., Todd, B. D., Hansen, J. S., & Daivis, P. J. (2013). How fast does water flow in carbon nanotubes? The Journal of Chemical Physics, 138(9), 094701.CrossRef Kannam, S. K., Todd, B. D., Hansen, J. S., & Daivis, P. J. (2013). How fast does water flow in carbon nanotubes? The Journal of Chemical Physics, 138(9), 094701.CrossRef
25.
Zurück zum Zitat Whitby, M., Cagnon, L., Thanou, M., & Quirke, N. (2008). Enhanced fluid flow through nanoscale carbon pipes. Nano Letters, 8(9), 2632–2637.CrossRef Whitby, M., Cagnon, L., Thanou, M., & Quirke, N. (2008). Enhanced fluid flow through nanoscale carbon pipes. Nano Letters, 8(9), 2632–2637.CrossRef
26.
Zurück zum Zitat Majumder, M., Chopra, N., Andrews, R., & Hinds, B. J. (2005). Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature, 438(7070), 44.CrossRef Majumder, M., Chopra, N., Andrews, R., & Hinds, B. J. (2005). Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature, 438(7070), 44.CrossRef
27.
Zurück zum Zitat Holt, J. K., et al. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034–1037.CrossRef Holt, J. K., et al. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034–1037.CrossRef
28.
Zurück zum Zitat Thomas, J. A., McGaughey, A. J. H., & Kuter-Arnebeck, O. (2010). Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation. International Journal of Thermal Sciences, 49(2), 281–289.CrossRef Thomas, J. A., McGaughey, A. J. H., & Kuter-Arnebeck, O. (2010). Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation. International Journal of Thermal Sciences, 49(2), 281–289.CrossRef
29.
Zurück zum Zitat Koumoutsakos, P., Jaffe, R. L., Werder, T., & Walther, J. H. (2003). On the validity of the no-slip condition in nanofluidics. Nanotech, 1, 148–151. Koumoutsakos, P., Jaffe, R. L., Werder, T., & Walther, J. H. (2003). On the validity of the no-slip condition in nanofluidics. Nanotech, 1, 148–151.
30.
Zurück zum Zitat Hummer, G., Rasaiah, J. C., & Noworyta, J. P. (2001). Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 414(6860), 188–190.CrossRef Hummer, G., Rasaiah, J. C., & Noworyta, J. P. (2001). Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 414(6860), 188–190.CrossRef
31.
Zurück zum Zitat Suk, M. E., & Aluru, N. R. (2010). Water transport through ultrathin graphene. The Journal of Physical Chemistry Letters, 1(10), 1590–1594.CrossRef Suk, M. E., & Aluru, N. R. (2010). Water transport through ultrathin graphene. The Journal of Physical Chemistry Letters, 1(10), 1590–1594.CrossRef
32.
Zurück zum Zitat Fornasiero, F., et al. (2008). Ion exclusion by sub-2-nm carbon nanotube pores. Proceedings of the National Academy of Sciences USA, 105(45), 17250–17255.CrossRef Fornasiero, F., et al. (2008). Ion exclusion by sub-2-nm carbon nanotube pores. Proceedings of the National Academy of Sciences USA, 105(45), 17250–17255.CrossRef
33.
Zurück zum Zitat Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination. The Journal of Physical Chemistry B, 112(5), 1427–1434.CrossRef Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination. The Journal of Physical Chemistry B, 112(5), 1427–1434.CrossRef
34.
Zurück zum Zitat Cohen-Tanugi, D., & Grossman, J. C. (2012). Water desalination across nanoporous graphene. Nano Letters, 12(7), 3602–3608.CrossRef Cohen-Tanugi, D., & Grossman, J. C. (2012). Water desalination across nanoporous graphene. Nano Letters, 12(7), 3602–3608.CrossRef
35.
Zurück zum Zitat Sint, K., Wang, B., & Král, P. (2008). Selective ion passage through functionalized graphene nanopores. Journal of the American Chemical Society, 130(49), 16448–16449.CrossRef Sint, K., Wang, B., & Král, P. (2008). Selective ion passage through functionalized graphene nanopores. Journal of the American Chemical Society, 130(49), 16448–16449.CrossRef
36.
Zurück zum Zitat He, Z., Zhou, J., Lu, X., & Corry, B. (2013). Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano, 7(11), 10148–10157.CrossRef He, Z., Zhou, J., Lu, X., & Corry, B. (2013). Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano, 7(11), 10148–10157.CrossRef
37.
Zurück zum Zitat Hilder, T. A., Yang, R., Gordon, D., Rendell, A. P., & Chung, S.-H. (2012). Silicon carbide nanotube as a chloride-selective channel. The Journal of Physical Chemistry C, 116(7), 4465–4470.CrossRef Hilder, T. A., Yang, R., Gordon, D., Rendell, A. P., & Chung, S.-H. (2012). Silicon carbide nanotube as a chloride-selective channel. The Journal of Physical Chemistry C, 116(7), 4465–4470.CrossRef
38.
Zurück zum Zitat Song, C., & Corry, B. (2009). Intrinsic ion selectivity of narrow hydrophobic pores. The Journal of Physical Chemistry B, 113(21), 7642–7649.CrossRef Song, C., & Corry, B. (2009). Intrinsic ion selectivity of narrow hydrophobic pores. The Journal of Physical Chemistry B, 113(21), 7642–7649.CrossRef
39.
Zurück zum Zitat Joly, L., Ybert, C., Trizac, E., & Bocquet, L. (2004). Hydrodynamics within the electric double layer on slipping surfaces. Physical Review Letters, 93(25), 257805.CrossRef Joly, L., Ybert, C., Trizac, E., & Bocquet, L. (2004). Hydrodynamics within the electric double layer on slipping surfaces. Physical Review Letters, 93(25), 257805.CrossRef
40.
Zurück zum Zitat Cipolla, C. L., Lolon, E., & Mayerhofer, M. J. (2009). Reservoir modeling and production evaluation in shale-gas reservoirs. International Petroleum Technology Conference. Cipolla, C. L., Lolon, E., & Mayerhofer, M. J. (2009). Reservoir modeling and production evaluation in shale-gas reservoirs. International Petroleum Technology Conference.
41.
Zurück zum Zitat King, G. E. Hydraulic fracturing 101: What every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor, and engineer should know about hydraulic fracturing risk. King, G. E. Hydraulic fracturing 101: What every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor, and engineer should know about hydraulic fracturing risk.
42.
Zurück zum Zitat Boyer, C., Kieschnick, J., Suarez-Rivera, R., Lewis, R., & Water, G. (2006). Producing gas from its source. Oilfield Review 18(3), 36–49 Boyer, C., Kieschnick, J., Suarez-Rivera, R., Lewis, R., & Water, G. (2006). Producing gas from its source. Oilfield Review 18(3), 36–49
43.
Zurück zum Zitat King, G. E. (2010). Thirty years of gas shale fracturing: What have we learned? SPE-133456-MS. King, G. E. (2010). Thirty years of gas shale fracturing: What have we learned? SPE-133456-MS.
44.
Zurück zum Zitat Passey, Q. R., Bohacs, K., Esch, W. L., Klimentidis, R., & Sinha, S. (2010). From oil-prone source rock to gas-producing shale reservoir—geologic and petrophysical characterization of unconventional shale gas reservoirs. SPE-133456-MS. Passey, Q. R., Bohacs, K., Esch, W. L., Klimentidis, R., & Sinha, S. (2010). From oil-prone source rock to gas-producing shale reservoir—geologic and petrophysical characterization of unconventional shale gas reservoirs. SPE-133456-MS.
45.
Zurück zum Zitat Wang, F. P., & Reed, R. M. (2009). Pore networks and fluid flow in gas shales. SPE-133456-MS. Wang, F. P., & Reed, R. M. (2009). Pore networks and fluid flow in gas shales. SPE-133456-MS.
47.
Zurück zum Zitat Gasparik, M., et al. (2014). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, 34–51.CrossRef Gasparik, M., et al. (2014). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, 34–51.CrossRef
48.
Zurück zum Zitat Heller, R., & Zoback, M. (2014). Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. Journal of Unconventional Oil and Gas Resources, 8, 14–24.CrossRef Heller, R., & Zoback, M. (2014). Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. Journal of Unconventional Oil and Gas Resources, 8, 14–24.CrossRef
49.
Zurück zum Zitat Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38(5), 719–833.CrossRef Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38(5), 719–833.CrossRef
50.
Zurück zum Zitat Javadpour, F., Fisher, D., & Unsworth., M. Nanoscale gas flow in shale gas sediments. Journal of Canadian Petroleum Technology, 46(10). Javadpour, F., Fisher, D., & Unsworth., M. Nanoscale gas flow in shale gas sediments. Journal of Canadian Petroleum Technology, 46(10).
51.
Zurück zum Zitat Ziarani, A. S., & Aguilera, R. (2011). Knudsen’s permeability correction for tight porous media. Transport in Porous Media, 91(1), 239–260.CrossRef Ziarani, A. S., & Aguilera, R. (2011). Knudsen’s permeability correction for tight porous media. Transport in Porous Media, 91(1), 239–260.CrossRef
52.
Zurück zum Zitat Jin, Z., & Firoozabadi, A. (2015). Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations. The Journal of Chemical Physics, 143(10), 104315.CrossRef Jin, Z., & Firoozabadi, A. (2015). Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations. The Journal of Chemical Physics, 143(10), 104315.CrossRef
53.
Zurück zum Zitat Zhang, P., Hu, L., Meegoda, J. N., & Gao, S. (2015). Micro/nano-pore network analysis of gas flow in shale matrix. Scientific Reports, 5, 13501.CrossRef Zhang, P., Hu, L., Meegoda, J. N., & Gao, S. (2015). Micro/nano-pore network analysis of gas flow in shale matrix. Scientific Reports, 5, 13501.CrossRef
54.
Zurück zum Zitat Klinkenberg, L. J. (1941). The permeability of porous media to liquids and gases. American Petroleum Institute. Drilling and Production Practice, New York. Klinkenberg, L. J. (1941). The permeability of porous media to liquids and gases. American Petroleum Institute. Drilling and Production Practice, New York.
55.
Zurück zum Zitat Firouzi, M., Alnoaimi, K., Kovscek, A., & Wilcox, J. (2014). Klinkenberg effect on predicting and measuring helium permeability in gas shales. International Journal of Coal Geology, 123, 62–68.CrossRef Firouzi, M., Alnoaimi, K., Kovscek, A., & Wilcox, J. (2014). Klinkenberg effect on predicting and measuring helium permeability in gas shales. International Journal of Coal Geology, 123, 62–68.CrossRef
56.
Zurück zum Zitat Bhatia, S. K., Bonilla, M. R., & Nicholson, D. (2011). Molecular transport in nanopores: A theoretical perspective. Physical Chemistry Chemical Physics: PCCP, 13(34), 15350–15383.CrossRef Bhatia, S. K., Bonilla, M. R., & Nicholson, D. (2011). Molecular transport in nanopores: A theoretical perspective. Physical Chemistry Chemical Physics: PCCP, 13(34), 15350–15383.CrossRef
57.
Zurück zum Zitat Collell, J., et al. (2015). Transport of multicomponent hydrocarbon mixtures in shale organic matter by molecular simulations. The Journal of Physical Chemistry C, 119(39), 22587–22595.CrossRef Collell, J., et al. (2015). Transport of multicomponent hydrocarbon mixtures in shale organic matter by molecular simulations. The Journal of Physical Chemistry C, 119(39), 22587–22595.CrossRef
58.
Zurück zum Zitat Wang, S., Javadpour, F., & Feng, Q. (2016). Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel, 171, 74–86.CrossRef Wang, S., Javadpour, F., & Feng, Q. (2016). Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel, 171, 74–86.CrossRef
59.
Zurück zum Zitat He, S., Jiang, Y., Conrad, J. C., & Qin, G. (2015). Molecular simulation of natural gas transport and storage in shale rocks with heterogeneous nano-pore structures. Journal of Petroleum Science and Engineering, 133, 401–409.CrossRef He, S., Jiang, Y., Conrad, J. C., & Qin, G. (2015). Molecular simulation of natural gas transport and storage in shale rocks with heterogeneous nano-pore structures. Journal of Petroleum Science and Engineering, 133, 401–409.CrossRef
60.
Zurück zum Zitat Ungerer, P., Collell, J., & Yiannourakou, M. (2015). Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity. Energy & Fuels, 29(1), 91–105.CrossRef Ungerer, P., Collell, J., & Yiannourakou, M. (2015). Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity. Energy & Fuels, 29(1), 91–105.CrossRef
61.
Zurück zum Zitat Kelemen, S. R., et al. (2007). Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energy & Fuels, 21(3), 1548–1561.CrossRef Kelemen, S. R., et al. (2007). Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energy & Fuels, 21(3), 1548–1561.CrossRef
62.
Zurück zum Zitat Bousige, C., et al. (2016). Realistic molecular model of kerogen’s nanostructure. Nature Materials, 15, 576–582.CrossRef Bousige, C., et al. (2016). Realistic molecular model of kerogen’s nanostructure. Nature Materials, 15, 576–582.CrossRef
63.
Zurück zum Zitat Falk, K., Coasne, B., Pellenq, R., Ulm, F.-J., & Bocquet, L. (2015). Subcontinuum mass transport of condensed hydrocarbons in nanoporous media. Nature Communications, 6, 6949.CrossRef Falk, K., Coasne, B., Pellenq, R., Ulm, F.-J., & Bocquet, L. (2015). Subcontinuum mass transport of condensed hydrocarbons in nanoporous media. Nature Communications, 6, 6949.CrossRef
64.
Zurück zum Zitat Ho, T. A., Criscenti, L. J., & Wang, Y. (2016). Nanostructural control of methane release in kerogen and its implications to wellbore production decline. Scientific Reports, 6, 28053.CrossRef Ho, T. A., Criscenti, L. J., & Wang, Y. (2016). Nanostructural control of methane release in kerogen and its implications to wellbore production decline. Scientific Reports, 6, 28053.CrossRef
65.
Zurück zum Zitat Castrillon, S. R. V., Giovambattista, N., Aksay, I. A., & Debenedetti, P. G. (2009). Effect of surface polarity on the structure and dynamics of water in nanoscale confinement. The Journal of Physical Chemistry B, 113(5), 1438–1446.CrossRef Castrillon, S. R. V., Giovambattista, N., Aksay, I. A., & Debenedetti, P. G. (2009). Effect of surface polarity on the structure and dynamics of water in nanoscale confinement. The Journal of Physical Chemistry B, 113(5), 1438–1446.CrossRef
66.
Zurück zum Zitat Gordillo, M. C., & Marti, J. (2008). Structure of water adsorbed on a single graphene sheet. Physical Review B, 78(7), 075432.CrossRef Gordillo, M. C., & Marti, J. (2008). Structure of water adsorbed on a single graphene sheet. Physical Review B, 78(7), 075432.CrossRef
67.
Zurück zum Zitat Argyris, D., Tummala, N. R., Striolo, A., & Cole, D. R. (2008). Molecular structure and dynamics in thin water films at the silica and graphite surfaces. Journal of Physical Chemistry C, 112(35), 13587–13599.CrossRef Argyris, D., Tummala, N. R., Striolo, A., & Cole, D. R. (2008). Molecular structure and dynamics in thin water films at the silica and graphite surfaces. Journal of Physical Chemistry C, 112(35), 13587–13599.CrossRef
68.
Zurück zum Zitat Argyris, D., Cole, D. R., & Striolo, A. (2009). Hydration structure on crystalline silica substrates. Langmuir, 25(14), 8025–8035.CrossRef Argyris, D., Cole, D. R., & Striolo, A. (2009). Hydration structure on crystalline silica substrates. Langmuir, 25(14), 8025–8035.CrossRef
69.
Zurück zum Zitat Wang, J. W., Kalinichev, A. G., & Kirkpatrick, R. J. (2009). Asymmetric hydrogen bonding and orientational ordering of water at hydrophobic and hydrophilic surfaces: A comparison of water/vapor, water/talc, and water/mica interfaces. Journal of Physical Chemistry C, 113(25), 11077–11085.CrossRef Wang, J. W., Kalinichev, A. G., & Kirkpatrick, R. J. (2009). Asymmetric hydrogen bonding and orientational ordering of water at hydrophobic and hydrophilic surfaces: A comparison of water/vapor, water/talc, and water/mica interfaces. Journal of Physical Chemistry C, 113(25), 11077–11085.CrossRef
70.
Zurück zum Zitat Van der Spoel, D., et al. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718.CrossRef Van der Spoel, D., et al. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718.CrossRef
71.
Zurück zum Zitat Plimpton, S. (1995). Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117(1), 1–19.CrossRef Plimpton, S. (1995). Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117(1), 1–19.CrossRef
72.
Zurück zum Zitat Frenkel, D., & Smit, B. (2002). Understanding molecular simulation from algorithms to applications. New York: Academic Press. Frenkel, D., & Smit, B. (2002). Understanding molecular simulation from algorithms to applications. New York: Academic Press.
73.
Zurück zum Zitat Greathouse, J. A., Kinnibrugh, T. L., & Allendorf, M. D. (2009). Adsorption and separation of noble gases by IRMOF-1: Grand canonical Monte Carlo simulations. Industrial and Engineering Chemistry Research, 48(7), 3425–3431.CrossRef Greathouse, J. A., Kinnibrugh, T. L., & Allendorf, M. D. (2009). Adsorption and separation of noble gases by IRMOF-1: Grand canonical Monte Carlo simulations. Industrial and Engineering Chemistry Research, 48(7), 3425–3431.CrossRef
Metadaten
Titel
Introduction
verfasst von
Tuan Anh Ho
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-47003-0_1