Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Kai Hu, Krishnendu Chakrabarty, Tsung-Yi Ho

Erschienen in: Computer-Aided Design of Microfluidic Very Large Scale Integration (mVLSI) Biochips

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter gives an overview of microfluidics and microfluidic biochips. We discuss two main microfluidic biochip platforms: digital (droplet-based) microfluidic biochips (DMF) and continuous (flow-based) microfluidic biochips. We focus on flow-based biochips in this chapter as well as in the rest of the book. Flow-based microfluidics refers to a technology that utilizes microchannels and microvalves to manipulate fluid and suspended objects in a controlled manner at the nanoliter scale. Basic components and typical application areas for these devices are reviewed, and the motivation behind the work presented in this book is introduced. At the end of the chapter, we outline the structure of the book and an overview of the topics covered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.B. Fair, Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3(3), 245–281 (2007)CrossRef R.B. Fair, Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3(3), 245–281 (2007)CrossRef
2.
Zurück zum Zitat H. Becker, Microfluidics: a technology coming of age. Med. Device Technol. 19(3), 21–24 (2007) H. Becker, Microfluidics: a technology coming of age. Med. Device Technol. 19(3), 21–24 (2007)
3.
Zurück zum Zitat O. Levenspiel, Chemical reaction engineering. Ind. Eng. Chem. Res. 38(11), 4140–4143 (1999)CrossRef O. Levenspiel, Chemical reaction engineering. Ind. Eng. Chem. Res. 38(11), 4140–4143 (1999)CrossRef
4.
Zurück zum Zitat B.M. Paegel, C.A. Emrich, G.J. Wedemayer, J.R. Scherer, R.A. Mathies, High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proc. Natl. Acad. Sci. 99(2), 574–579 (2002)CrossRef B.M. Paegel, C.A. Emrich, G.J. Wedemayer, J.R. Scherer, R.A. Mathies, High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proc. Natl. Acad. Sci. 99(2), 574–579 (2002)CrossRef
5.
Zurück zum Zitat G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)CrossRef G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)CrossRef
6.
Zurück zum Zitat S. Chakraborty, Microfluidics and Microfabrication (Springer, 2010) S. Chakraborty, Microfluidics and Microfabrication (Springer, 2010)
7.
Zurück zum Zitat A. Van Den Berg, P. Bergveld, Micro total analysis systems, in Proceedings of the \(\mu \) TAS, vol. 94, 1994, pp. 21–22 A. Van Den Berg, P. Bergveld, Micro total analysis systems, in Proceedings of the  \(\mu \)  TAS, vol. 94, 1994, pp. 21–22
12.
Zurück zum Zitat Y. Luo, K. Chakrabarty, T.-Y. Ho, Hardware/Software Co-Design and Optimization for Cyberphysical Integration in Digital Microfluidic Biochips (Springer, 2015) Y. Luo, K. Chakrabarty, T.-Y. Ho, Hardware/Software Co-Design and Optimization for Cyberphysical Integration in Digital Microfluidic Biochips (Springer, 2015)
13.
Zurück zum Zitat F. Su, S. Ozev, K. Chakrabarty, Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays, in Proceedings of the IEEE International Test Conference, 2004, pp. 883–892 F. Su, S. Ozev, K. Chakrabarty, Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays, in Proceedings of the IEEE International Test Conference, 2004, pp. 883–892
14.
Zurück zum Zitat F.K. Balagaddé, L. You, C.L. Hansen, F.H. Arnold, S.R. Quake, Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309(5731), 137–140 (2005)CrossRef F.K. Balagaddé, L. You, C.L. Hansen, F.H. Arnold, S.R. Quake, Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309(5731), 137–140 (2005)CrossRef
15.
Zurück zum Zitat D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39(3), 1153–1182 (2010)CrossRef D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39(3), 1153–1182 (2010)CrossRef
16.
Zurück zum Zitat M.G. Pollack, R.B. Fair, A.D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77(11), 1725–1726 (2000)CrossRef M.G. Pollack, R.B. Fair, A.D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77(11), 1725–1726 (2000)CrossRef
17.
Zurück zum Zitat R.B. Fair, A. Khlystov, T.D. Tailor, V. Ivanov, R.D. Evans, P.B. Griffin, V. Srinivasan, V.K. Pamula, M.G. Pollack, J. Zhou, Chemical and biological applications of digital-microfluidic devices. IEEE Des. Test Comput. 24(1), 10–24 (2007)CrossRef R.B. Fair, A. Khlystov, T.D. Tailor, V. Ivanov, R.D. Evans, P.B. Griffin, V. Srinivasan, V.K. Pamula, M.G. Pollack, J. Zhou, Chemical and biological applications of digital-microfluidic devices. IEEE Des. Test Comput. 24(1), 10–24 (2007)CrossRef
18.
Zurück zum Zitat M. Pollack, A. Shenderov, R. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)CrossRef M. Pollack, A. Shenderov, R. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)CrossRef
20.
Zurück zum Zitat F. Su, K. Chakrabarty, R.B. Fair, Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(2), 211–223 (2006)CrossRef F. Su, K. Chakrabarty, R.B. Fair, Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(2), 211–223 (2006)CrossRef
21.
Zurück zum Zitat Z. Li, K.Y.-T. Lai, P.-H. Yu, T.-Y. Ho, K. Chakrabarty, C.-Y. Lee, High-level synthesis for micro-electrode-dot-array digital microfluidic biochips, in Proceedings of the 53rd Annual Design Automation Conference, ser. DAC ’16 (ACM, New York, NY, USA, 2016), pp. 146:1–146:6. http://doi.acm.org/10.1145/2897937.2898028 Z. Li, K.Y.-T. Lai, P.-H. Yu, T.-Y. Ho, K. Chakrabarty, C.-Y. Lee, High-level synthesis for micro-electrode-dot-array digital microfluidic biochips, in Proceedings of the 53rd Annual Design Automation Conference, ser. DAC ’16 (ACM, New York, NY, USA, 2016), pp. 146:1–146:6. http://​doi.​acm.​org/​10.​1145/​2897937.​2898028
22.
Zurück zum Zitat Z. Li, K. Y.-T. Lai, P.-H. Yu, K. Chakrabarty, M. Pajic, T.-Y. Ho, C.-Y. Lee, Error recovery in a micro-electrode-dot-array digital microfluidic biochip? in Proceedings of the 35th International Conference on Computer-Aided Design (ACM, 2016), p. 105 Z. Li, K. Y.-T. Lai, P.-H. Yu, K. Chakrabarty, M. Pajic, T.-Y. Ho, C.-Y. Lee, Error recovery in a micro-electrode-dot-array digital microfluidic biochip? in Proceedings of the 35th International Conference on Computer-Aided Design (ACM, 2016), p. 105
23.
Zurück zum Zitat G. Wang, D. Teng, Y.T. Lai, Y.W. Lu, Y. Ho, C.Y. Lee, Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnol. 8(3), 163–171 (2014)CrossRef G. Wang, D. Teng, Y.T. Lai, Y.W. Lu, Y. Ho, C.Y. Lee, Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnol. 8(3), 163–171 (2014)CrossRef
25.
Zurück zum Zitat J. Hong, Y.K. Kim, D.-J. Won, J. Kim, S.J. Lee, Three-dimensional digital microfluidic manipulation of droplets in oil medium. Sci. Rep. 5 (2015) J. Hong, Y.K. Kim, D.-J. Won, J. Kim, S.J. Lee, Three-dimensional digital microfluidic manipulation of droplets in oil medium. Sci. Rep. 5 (2015)
26.
Zurück zum Zitat T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298(5593), 580–584 (2002) T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298(5593), 580–584 (2002)
27.
Zurück zum Zitat J. Melin, S.R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)CrossRef J. Melin, S.R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)CrossRef
28.
Zurück zum Zitat D.C. Duffy, J.C. McDonald, O.J. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem. 70(23), 4974–4984 (1998)CrossRef D.C. Duffy, J.C. McDonald, O.J. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem. 70(23), 4974–4984 (1998)CrossRef
29.
Zurück zum Zitat M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113–116 (2000)CrossRef M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113–116 (2000)CrossRef
30.
Zurück zum Zitat I. Emreá Araci et al., Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves. Lab Chip 12(16), 2803–2806 (2012) I. Emreá Araci et al., Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves. Lab Chip 12(16), 2803–2806 (2012)
31.
Zurück zum Zitat W.H. Minhass, P. Pop, J. Madsen, T.-Y. Ho, Control synthesis for the flow-based microfluidic large-scale integration biochips, in Proceedings of the IEEE Asia and South Pacific Design Automation Conference (IEEE, 2013), pp. 205–212 W.H. Minhass, P. Pop, J. Madsen, T.-Y. Ho, Control synthesis for the flow-based microfluidic large-scale integration biochips, in Proceedings of the IEEE Asia and South Pacific Design Automation Conference (IEEE, 2013), pp. 205–212
33.
Zurück zum Zitat T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)CrossRef T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)CrossRef
34.
Zurück zum Zitat F. Yu, M.A. Horowitz, S.R. Quake, Microfluidic serial digital to analog pressure converter for arbitrary pressure generation and contamination-free flow control. Lab Chip 13(10), 1911–1918 (2013)CrossRef F. Yu, M.A. Horowitz, S.R. Quake, Microfluidic serial digital to analog pressure converter for arbitrary pressure generation and contamination-free flow control. Lab Chip 13(10), 1911–1918 (2013)CrossRef
35.
Zurück zum Zitat C.L. Hansen, M.O. Sommer, S.R. Quake, Systematic investigation of protein phase behavior with a microfluidic formulator. Proc. Natl. Acad. Sci. 101(40), 14431–14436 (2004) C.L. Hansen, M.O. Sommer, S.R. Quake, Systematic investigation of protein phase behavior with a microfluidic formulator. Proc. Natl. Acad. Sci. 101(40), 14431–14436 (2004)
36.
Zurück zum Zitat J.W. Hong, Y. Chen, W.F. Anderson, S.R. Quake, Molecular biology on a microfluidic chip. J. Phys.: Condens. Matter 18(18), S691 (2006) J.W. Hong, Y. Chen, W.F. Anderson, S.R. Quake, Molecular biology on a microfluidic chip. J. Phys.: Condens. Matter 18(18), S691 (2006)
37.
Zurück zum Zitat M.K. Araz, A.M. Tentori, A.E. Herr, Microfluidic multiplexing in bioanalyses. J. Lab. Autom., 2211068213491408 (2013) M.K. Araz, A.M. Tentori, A.E. Herr, Microfluidic multiplexing in bioanalyses. J. Lab. Autom., 2211068213491408 (2013)
38.
Zurück zum Zitat M.W. Toepke, V.V. Abhyankar, D.J. Beebe, Microfluidic logic gates and timers. Lab Chip 7(11), 1449–1453 (2007)CrossRef M.W. Toepke, V.V. Abhyankar, D.J. Beebe, Microfluidic logic gates and timers. Lab Chip 7(11), 1449–1453 (2007)CrossRef
39.
Zurück zum Zitat E.C. Jensen, W.H. Grover, R.A. Mathies, Micropneumatic digital logic structures for integrated microdevice computation and control. J. Microelectromech. Syst. 16(6), 1378–1385 (2007)CrossRef E.C. Jensen, W.H. Grover, R.A. Mathies, Micropneumatic digital logic structures for integrated microdevice computation and control. J. Microelectromech. Syst. 16(6), 1378–1385 (2007)CrossRef
40.
Zurück zum Zitat N.S.G.K. Devaraju, M.A. Unger, Pressure driven digital logic in pdms based microfluidic devices fabricated by multilayer soft lithography. Lab Chip 12(22), 4809–4815 (2012)CrossRef N.S.G.K. Devaraju, M.A. Unger, Pressure driven digital logic in pdms based microfluidic devices fabricated by multilayer soft lithography. Lab Chip 12(22), 4809–4815 (2012)CrossRef
41.
Zurück zum Zitat M. Rhee, M.A. Burns, Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems. Lab Chip 9(21), 3131–3143 (2009)CrossRef M. Rhee, M.A. Burns, Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems. Lab Chip 9(21), 3131–3143 (2009)CrossRef
42.
Zurück zum Zitat A. Russomanno, S. O’Modhrain, M. Burns, R.B. Gillespie, Modeling latching fluidic circuits to determine clocking limits for a refreshable braille display, in IEEE Haptics Symposium (HAPTICS) IEEE, 2016, pp. 179–184 A. Russomanno, S. O’Modhrain, M. Burns, R.B. Gillespie, Modeling latching fluidic circuits to determine clocking limits for a refreshable braille display, in IEEE Haptics Symposium (HAPTICS) IEEE, 2016, pp. 179–184
43.
Zurück zum Zitat P.N. Duncan, T.V. Nguyen, E.E. Hui, Pneumatic oscillator circuits for timing and control of integrated microfluidics. Proc. Natl. Acad. Sci. 110(45), 18104–18109 (2013) P.N. Duncan, T.V. Nguyen, E.E. Hui, Pneumatic oscillator circuits for timing and control of integrated microfluidics. Proc. Natl. Acad. Sci. 110(45), 18104–18109 (2013)
44.
Zurück zum Zitat S.-J. Kim, R. Yokokawa, S.C. Lesher-Perez, S. Takayama, Constant flow-driven microfluidic oscillator for different duty cycles. Anal. Chem. 84(2), 1152–1156 (2011)CrossRef S.-J. Kim, R. Yokokawa, S.C. Lesher-Perez, S. Takayama, Constant flow-driven microfluidic oscillator for different duty cycles. Anal. Chem. 84(2), 1152–1156 (2011)CrossRef
49.
Zurück zum Zitat M.J. Tomlinson, S. Tomlinson, X.B. Yang, J. Kirkham, Cell separation: terminology and practical considerations. J. Tissue Eng. 4, 2041731412472690 (2013)CrossRef M.J. Tomlinson, S. Tomlinson, X.B. Yang, J. Kirkham, Cell separation: terminology and practical considerations. J. Tissue Eng. 4, 2041731412472690 (2013)CrossRef
50.
Zurück zum Zitat C.W. Shields IV, C.D. Reyes, G.P. López, Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5), 1230–1249 (2015)CrossRef C.W. Shields IV, C.D. Reyes, G.P. López, Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5), 1230–1249 (2015)CrossRef
51.
Zurück zum Zitat M. Zhao, P.G. Schiro, J.S. Kuo, K.M. Koehler, D.E. Sabath, V. Popov, Q. Feng, D.T. Chiu, An automated high-throughput counting method for screening circulating tumor cells in peripheral blood. Anal. Chem. 85(4), 2465–2471 (2013)CrossRef M. Zhao, P.G. Schiro, J.S. Kuo, K.M. Koehler, D.E. Sabath, V. Popov, Q. Feng, D.T. Chiu, An automated high-throughput counting method for screening circulating tumor cells in peripheral blood. Anal. Chem. 85(4), 2465–2471 (2013)CrossRef
52.
Zurück zum Zitat S. Yang, A. Ündar, J.D. Zahn, A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6(7), 871–880 (2006)CrossRef S. Yang, A. Ündar, J.D. Zahn, A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6(7), 871–880 (2006)CrossRef
53.
Zurück zum Zitat G. Mernier, N. Piacentini, T. Braschler, N. Demierre, P. Renaud, Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting. Lab Chip 10(16), 2077–2082 (2010)CrossRef G. Mernier, N. Piacentini, T. Braschler, N. Demierre, P. Renaud, Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting. Lab Chip 10(16), 2077–2082 (2010)CrossRef
56.
Zurück zum Zitat C.D. Chin, T. Laksanasopin, Y.K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse, G. Umviligihozo, E. Karita, L. Mwambarangwe, S.L. Braunstein, J. van de Wijgert, R. Sahabo, J.E. Justman, W. El-Sadr, S.K. Sia, Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 17(8), 1015–1019. http://dx.doi.org/10.1038/nm.2408 C.D. Chin, T. Laksanasopin, Y.K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse, G. Umviligihozo, E. Karita, L. Mwambarangwe, S.L. Braunstein, J. van de Wijgert, R. Sahabo, J.E. Justman, W. El-Sadr, S.K. Sia, Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 17(8), 1015–1019. http://​dx.​doi.​org/​10.​1038/​nm.​2408
57.
Zurück zum Zitat E. Lagally, I. Medintz, R. Mathies, Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal. Chem. 73(3), 565–570 (2001)CrossRef E. Lagally, I. Medintz, R. Mathies, Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal. Chem. 73(3), 565–570 (2001)CrossRef
58.
Zurück zum Zitat C. Zhang, J. Xu, W. Ma, W. Zheng, Pcr microfluidic devices for dna amplification. Biotechnol. Adv. 24(3), 243–284 (2006)CrossRef C. Zhang, J. Xu, W. Ma, W. Zheng, Pcr microfluidic devices for dna amplification. Biotechnol. Adv. 24(3), 243–284 (2006)CrossRef
59.
Zurück zum Zitat T. Laurell, G. Marko-Varga, Miniaturisation is mandatory unravelling the human proteome. Proteomics 2(4), 345–351 (2002)CrossRef T. Laurell, G. Marko-Varga, Miniaturisation is mandatory unravelling the human proteome. Proteomics 2(4), 345–351 (2002)CrossRef
60.
Zurück zum Zitat H. Zhu, M. Snyder, Protein chip technology. Curr. Opin. Chem. Biol. 7(1), 55–63 (2003)CrossRef H. Zhu, M. Snyder, Protein chip technology. Curr. Opin. Chem. Biol. 7(1), 55–63 (2003)CrossRef
61.
Zurück zum Zitat E. Scrivener, R. Barry, A. Platt, R. Calvert, G. Masih, P. Hextall, M. Soloviev, J. Terrett, Peptidomics: A new approach to affinity protein microarrays. Proteomics 3(2), 122–128 (2003)CrossRef E. Scrivener, R. Barry, A. Platt, R. Calvert, G. Masih, P. Hextall, M. Soloviev, J. Terrett, Peptidomics: A new approach to affinity protein microarrays. Proteomics 3(2), 122–128 (2003)CrossRef
62.
Zurück zum Zitat D. Hou, H.-C. Chang, Ac field enhanced protein crystallization. Appl. Phys. Lett. 92(22), 223902 (2008)CrossRef D. Hou, H.-C. Chang, Ac field enhanced protein crystallization. Appl. Phys. Lett. 92(22), 223902 (2008)CrossRef
63.
Zurück zum Zitat J.W. Hong, S.R. Quake, Integrated nanoliter systems. Nat. Biotechnol. 21(10), 1179–1183 (2003)CrossRef J.W. Hong, S.R. Quake, Integrated nanoliter systems. Nat. Biotechnol. 21(10), 1179–1183 (2003)CrossRef
64.
Zurück zum Zitat J.M. Perkel, Life science technologies: microfluidicsbringing new things to life science. Science 322(5903), 975–977 (2008)CrossRef J.M. Perkel, Life science technologies: microfluidicsbringing new things to life science. Science 322(5903), 975–977 (2008)CrossRef
65.
Zurück zum Zitat W.H. Minhass, P. Pop, J. Madsen, System-level modeling and synthesis techniques for flow-based microfluidic very large scale integration biochips. Ph.D. dissertation, Technical University of Denmark, Department of Informatics and Mathematical Modeling, 2012 W.H. Minhass, P. Pop, J. Madsen, System-level modeling and synthesis techniques for flow-based microfluidic very large scale integration biochips. Ph.D. dissertation, Technical University of Denmark, Department of Informatics and Mathematical Modeling, 2012
66.
Zurück zum Zitat P. Pop, W.H. Minhass, J. Madsen, Microfluidic Very Large Scale Integration (VLSI) (Springer, 2016) P. Pop, W.H. Minhass, J. Madsen, Microfluidic Very Large Scale Integration (VLSI) (Springer, 2016)
68.
Zurück zum Zitat A. Waldbaur, B. Carneiro, P. Hettich, E. Wilhelm, B.E. Rapp, Computer-aided microfluidics (CAMF): from digital 3D-CAD models to physical structures within a day. Microfluid. Nanofluid. 15(5), 625–635 (2013)CrossRef A. Waldbaur, B. Carneiro, P. Hettich, E. Wilhelm, B.E. Rapp, Computer-aided microfluidics (CAMF): from digital 3D-CAD models to physical structures within a day. Microfluid. Nanofluid. 15(5), 625–635 (2013)CrossRef
69.
Zurück zum Zitat Y. Zhao, K. Chakrabarty, Cross-contamination avoidance for droplet routing in digital microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(6), 817–830 (2012)CrossRef Y. Zhao, K. Chakrabarty, Cross-contamination avoidance for droplet routing in digital microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(6), 817–830 (2012)CrossRef
70.
Zurück zum Zitat C.-Y. Lin, Y.-W. Chang, Cross-contamination aware design methodology for pin-constrained digital microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(6), 817–828 (2011)CrossRef C.-Y. Lin, Y.-W. Chang, Cross-contamination aware design methodology for pin-constrained digital microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(6), 817–828 (2011)CrossRef
71.
Zurück zum Zitat T.-W. Huang, C.-H. Lin, T.-Y. Ho, A contamination aware droplet routing algorithm for digital microfluidic biochips, in IEEE/ACM International Conference on Computer-Aided Design (IEEE, 2009), pp. 151–156 T.-W. Huang, C.-H. Lin, T.-Y. Ho, A contamination aware droplet routing algorithm for digital microfluidic biochips, in IEEE/ACM International Conference on Computer-Aided Design (IEEE, 2009), pp. 151–156
72.
Zurück zum Zitat H. Chanson, Applied hydrodynamics: An Introduction to Ideal and Real Fluid Flows (CRC Press, 2009) H. Chanson, Applied hydrodynamics: An Introduction to Ideal and Real Fluid Flows (CRC Press, 2009)
73.
Zurück zum Zitat B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid et al., Printing meets lithography: soft approaches to high-resolution patterning. IBM J. Res. Dev. 45(5), 697–719 (2001)CrossRef B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid et al., Printing meets lithography: soft approaches to high-resolution patterning. IBM J. Res. Dev. 45(5), 697–719 (2001)CrossRef
74.
Zurück zum Zitat M. Iyengar, M. McGuire, Imprecise and qualitative probability in systems biology, in International Conference on Systems Biology, 2007 M. Iyengar, M. McGuire, Imprecise and qualitative probability in systems biology, in International Conference on Systems Biology, 2007
75.
Zurück zum Zitat M.J. Powers, K. Domansky, M.R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K.E. Wack, D.B. Stolz, R. Kamm et al., A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol. Bioeng. 78(3), 257–269 (2002)CrossRef M.J. Powers, K. Domansky, M.R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K.E. Wack, D.B. Stolz, R. Kamm et al., A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol. Bioeng. 78(3), 257–269 (2002)CrossRef
76.
Zurück zum Zitat C.A. Mein, B.J. Barratt, M.G. Dunn, T. Siegmund, A.N. Smith, L. Esposito, S. Nutland, H.E. Stevens, A.J. Wilson, M.S. Phillips et al., Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation. Genome Res. 10(3), 330–343 (2000)CrossRef C.A. Mein, B.J. Barratt, M.G. Dunn, T. Siegmund, A.N. Smith, L. Esposito, S. Nutland, H.E. Stevens, A.J. Wilson, M.S. Phillips et al., Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation. Genome Res. 10(3), 330–343 (2000)CrossRef
77.
Zurück zum Zitat H.G. Kerkhoff, Testing microelectronic biofluidic systems. IEEE Design Test Comput. 1, 72–82 (2007)CrossRef H.G. Kerkhoff, Testing microelectronic biofluidic systems. IEEE Design Test Comput. 1, 72–82 (2007)CrossRef
78.
Zurück zum Zitat T. Xu, K. Chakrabarty, Fault modeling and functional test methods for digital microfluidic biochips. IEEE Trans. Biomed. Circuits Syst. 3(4), 241–253 (2009)CrossRef T. Xu, K. Chakrabarty, Fault modeling and functional test methods for digital microfluidic biochips. IEEE Trans. Biomed. Circuits Syst. 3(4), 241–253 (2009)CrossRef
79.
Zurück zum Zitat Q. Al-Gayem, A. Richardson, H. Liu, N. Burd, An oscillation-based technique for degradation monitoring of sensing and actuation electrodes within microfluidic systems. J. Electron. Test. 27(3), 375–387 (2011)CrossRef Q. Al-Gayem, A. Richardson, H. Liu, N. Burd, An oscillation-based technique for degradation monitoring of sensing and actuation electrodes within microfluidic systems. J. Electron. Test. 27(3), 375–387 (2011)CrossRef
80.
Zurück zum Zitat K. Chakrabarty, F. Su, Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques (CRC Press, 2006) K. Chakrabarty, F. Su, Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques (CRC Press, 2006)
81.
Zurück zum Zitat H. Hassanin, A. Mohammadkhani, K. Jiang, Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process. Lab Chip 12(20), 4160–4167 (2012)CrossRef H. Hassanin, A. Mohammadkhani, K. Jiang, Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process. Lab Chip 12(20), 4160–4167 (2012)CrossRef
Metadaten
Titel
Introduction
verfasst von
Kai Hu
Krishnendu Chakrabarty
Tsung-Yi Ho
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-56255-1_1

Neuer Inhalt